<u>№</u>3

Təbiət elmləri seriyası

2011

УДК 549.6:539.26

УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ЭПИДОТА И КРИСТАЛЛОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПРЕВРАЩЕНИЯ В ПУМПЕЛЛИТ

Р.Г.АСКЕРОВ, А.Ф.ШИРИНОВА, М.И.ЧЫРАГОВ Бакинский Государственный Университет afashf@rambler.ru

Для уточнения структуры был использован минерал эпидот из гидротермальных жил вторичных кварцитов Кедабекского рудного района Азербайджана. Параметры моноклинной ячейки: a = 0.8890(2), b = 0.5624(1), c = 1.0159(2) нм, $\beta = 115.362(2)^{\circ}$ и интенсивности 1527 независимых дифракционных отражений получены на автодифрактометре APEX-II, CCD (Мо K_{α} -излучение), простр. гр. $P2_1/m$, Z = 2. В структуре координаты атомов уточнены с изотропными и анизотропными приближениями МНК. Окончательный фактор расходимости $R_1(F^2 > 2\sigma(F^2) = 0.031; \omega R_2(F^2) = 0.080.$ В результате химический состав эпидота уточнен в виде $Ca_2(Fe_{0.76}Al_{0.24})Al_2H(Si_2O_7)(SiO_4)O_2$. В структуре эпидота AlO₆ октаэдры образуют колонки двух типов. Первая – Оливиноподобная, то есть одиночная колонка из AlO₆ октаэдров, в «зубцах» которой располагаются (Fe,Al) O_6 октаэдры с расстояниями (Al-O)_{cp} = 0.1914 нм и [(Fe,Al) - O]_{cp} = 0.2004 нм. Вторая – одиночная из AlO₆ октаэдров с расстоянием (Al-O)_{сп} равным 0.1883 нм. Эти колонки конденсируются SiO_4 и Si_2O_7 тетраэдрами [(Si-O)_{cp} = 0.1614 нм] и создают смешанный структурный блок, в шестичленных каналах которого располагается атом кальция Са₁. Вокруг Са₁ мостиковые кислороды создают одношапочную тригональную призму с расстоянием (Ca₁-O)_{cp} = 0.2407 нм. Эквивалентные структурные блоки цементируются двухшапочной тригональной призмой Са2, где расстояние (Са₂-О)_{со} = 0.2548 нм. Сравнительным кристаллохимическим анализом выявлены особенности превращения эпидота в пумпеллит и обоснованы парагенетические ассоциации этих минералов.

Ключевые слова: структура эпидота, кристаллохимия превращения минералов.

В земной коре эпидот является одним из более распространенных минералов. Возможно, это связано с его образованием в различных геологических процессах. В сложном химическом составе минералов группы эпидота как крупные, так и мелкие металлические катионы в широком диапазоне образуют изоморфное замещение. Целью данной работы является уточнение кристаллической структуры эпидота, исследование структурно-типоморфных особенностей минерала и выявление изоморфной смесимости разнотипных катионов. Структура эпидота и минералов из этого семейства изучена разными авторами с различной степенью точности /1,2,3/. Для изучения структуры эпидота методом рентгеноструктурного анализа были использованы хорошо ограненные монокристаллы из гидротермальных жил вторичных кварцитов Кедабекского рудного района Азербайджанской Республики. Оксидный состав эпидота определен химическим анализом (в %): SiO₂ – 37.38; TiO₂ - 0.38: Al₂O₃ – 23.86: Fe₂O₃ – 11.99; FeO – 1.6; MgO – 0.2; CaO – 23.37; MnO – 0.19; H₂O – 0.36 и установлена кристаллохимическая формула минерала в виде: $Ca_2Mg_{0.02}Mn_{0.01}Fe_{0.01}^{2+}Al_{2.24}Fe_{0.72}^{3+}Ti_{0.02}Si_{2.99}O_{12}(OH)$

Таблица 1

Химическая формула	$Ca_2(Fe_{0.76}Al_{0.24})Al_2H$	θ _{max} , град	<u>2.5–30.6</u> °
	$(Si_2O_7)(SiO_4)O_2$	Область <i>h, k, l</i>	-12≤ h ≤12
М			$-8 \le k \le 7$
Сингония, пр.гр., Z	950.62		$-14 \le l \le 14$
а, нм	Моноклинная, Р 21/m, 1	измерено отражений:	5704
b , нм	0.8890(2)	независимых отражений:	1521
с, нм	0.56234(1)	(N ₁), R_{int}/c I >2 σ (I)	
β, град	10.1584(2)	Метод уточнения	0.041/ <u>1512</u>
V, нм ³	$115.362(2)^0$	Число уточняемых пара-	MHK по F ²
D_x , г/см ³	45.890(1)	метров	<u>121</u>
Излучение, λ, Å	<u>3.440</u>	Весовая схема	
μ, мм ⁻¹	MoK _α , <u>0.71073</u>		$\frac{1}{[\sigma^2(F_0^2) + (0.050P)^2 + (0.050P)^2$
F(000)	<u>3.09</u>		<u>0.736P</u>]
T,K	469.5	Факторы недостоверно-	$\underline{P} = (F_0^2 + 2F_c^2)/3$
Размер образца, мм	296	сти:	
Дифрактометр	0.20 imes 0.10 imes 0.10	wR_2 по N_1	
Тип сканирования	Bruker APEX-II, CCD	R_1 по N ₂	0.087
Учет поглошения, T _{min} ,	ω/2θ	S	0.0306
T _{max}	Полуэмпирический, по экви-	$\Delta \rho_{max} / \Delta \rho_{min}$, $3 / Å^3$	1.02
	валентам, <u>0.725</u> , <u>0.847</u>	Программа	0.70/-0.54
			SHELXS97

Кристаллографические характеристики, данные эксперимента и уточнения структуры эпидота Ca₂(Fe_{0.76}Al_{0.24})Al₂H (Si₂O₇)(SiO₄)O₂.

В таблице 1 представлены кристаллографические характеристики, экспериментальные данные и результаты определения структуры эпидота. Все установленные данные или параметры показывают, что экспериментальные материалы получены на высоком уровне и структура изучена с большой точностью.

Структура определена прямыми методами, координаты атомов уточнены полноматричным методом наименьших квадратов в изотропном и далее в анизотропном приближении для неводородных атомов. Положения атомов водорода установлены из разностных синтезов Фурье (табл. 2). Основываясь на полученные данные, химический состав эпидота можно представить в виде: Ca₂(Fe_{0.76}Al_{0.24})Al₂H (Si₂O₇)(SiO₄)O₂.

В структуре эпидота (рис. 1) AlO₆ октаэдры образуют колонки двух типов. Первая оливиноподобная, то есть одиночная колонка из AlO₆ ок-

таэдров, в «зубцах» которой располагаются (Fe,Al)O₆ октаэдры, где атомы железа и алюминия статистически разупорядочены. Колонка второго типа одиночная и состоит из связанных ребрами AlO₆ октаэдров. Значение периода обеих колонок соответствует параметру \boldsymbol{b} . Подобные колонки характерны для структур силикатов алюминия /4/. Описанные октаэдрические колонки конденсируясь |SiO₄|⁴⁻ и |Si₂O₇|⁶⁻ тетраэдрами, создают смешанный структурный блок, в пятичленных пустотах которого располагаются атомы Ca₁. Эти атомы координируются семью мостиковыми кислородами, образуя вокруг себя одношапочную тригональную призму. Состав блока $/Ca_2Al_4H(Si_2O_7)_2(SiO_4)_2O_2/7^-$. Эквивалентные структурные блоки связываются искаженными (Fe,Al)-октаэдрами и атомами Са₂. Атомы Са₂, координируясь восемью мостиковыми кислородами, образуют вокруг себя двухшапочную тригональную призму. В результате такой полимеризации формируется структурный тип эпидота. В структуре полиэдры Са₁ и Са₂ образуют димеры с расстоянием Са₁ – Са₂ равным 0.35 нм.

Рис. 1. Кристаллическая структура эпидота.

Следует отметить, что структуру эпидота можно представить как смешанную из двух электронейтральных структурных элементов, где выделяются две подрешетки. Одна состоит из Ca – ортосиликатов с химическим составом Ca₄(SiO₄)₂, в которой полиэдры Ca₁ и Ca₂ связываются ребрами с $|SiO_4|^{4-}$ тетраэдрами и создают смешанные колонки с межатомными расстояниями Ca₁–Si₂ = 0.335 нм и Ca₂ – Si₂ = 0.330 нм. Последнее характерно для всех ортосиликатов с крупными катионами /5/. Вторая подрешетка, состоящая из Al- и (Fe,Al)-октаэдров и $|Si_2O_7|$ Диортогрупппы, образует каркас с химическим составом (Fe,Al)₂Al₄H₂(Si₂O₇)₂O₄ или 2(Fe,Al)Al₂H(Si₂O₇)O₂.

В структуре эпидота (табл. 3) в изолированном $|SiO_4|^{4-}$ тетраэдре межатомные расстояния Si₂ - О находятся в пределах 0.1626 – 0.1665нм

 $[(Si_2-O)_{cp}=0.1644$ нм]. В диортогруппе $|Si_2O_7|$ расстояние $Si_1 - O$ находится в пределах 0.1567 - 0.1650 нм [(Si₁ - O)_{ср}= 0.1613 нм], а расстояние Si₃-О в пределах 0.1591 - 0.1638нм [(Si₃-O)_{ср}= 0.1615 нм]. Значение валентных углов для Si₂ тетраэдров изменяется от 102° до 112.41°, в диортогруппе в Si₁ тетраэдре в пределах 106.49° - 112.89°, в Si₃ - тетраэдре от 107.10° до 110.79°. В тетраэдрах средние значения валентных углов (О-Si₁-O)_{cp} = 109.49°, (O-Si₂-O)_{cp} = 109.49° и (O-Si₃-O)_{cp} = 109.70°. В оливиноподобной колонке в AlO_6 октаэдре межатомные расстояния Al_1 -О в пределах 0.1844 – 0.1959нм [(Al₁ - O)_{ср}= 0.1914 нм]. В (Fe,Al)O₆ октаэдре, расположенном в «зубцах» колонки, расстояния изменяются в больших пределах 0.1840 - 0.2235 нм [(Fe, Al)-O_{lcp} = 0.2004 нм], т.е. (Fe,Al)O₆ октаэдры более деформированные. Это связано со статистическим распределением атомов железа и алюминия в одной кристаллографической позиции. В одиночном Al2 октаэдре расстояния Al2-О в пределах 0.1854 -0.1925 нм [(Al₂-O)_{ср} = 0.1883 нм]. В октаэдрах средние значения валентных углов (О -Al₁-O)_{ср} и (O – Al₂ – O)_{ср} равны 90°, а [O-(Fe,Al)-O]=89.77°. Величины валентных углов соответствуют идеальному тетраэдрическому – 109.45° и октаэдрическому – 89.92° значениям.

Все атомы кальция окружаются атомами кислорода неупорядоченно. В одношапочных тригональных призмах шесть расстояний Ca₁-O в пределах 0.2290 – 0.2559 нм [(Ca₁ - O)_{cp} = 0.2407 нм]. Одно расстояние более удлиненное 0.2872 нм и с учетом последнего (Ca₁-O)_{cp} = 0.2500 нм. В двухшапочных тригональных призмах расстояния Ca₂-O в пределах 0.2250 – 0.2779 нм [(Ca₂ - O)_{cp} = 0.2548 нм]. Расстояния Ca₁ – O₉ и Ca₂ – O₉ укороченные и равны 0.2291 и 0.225 нм, соответственно. Следовательно, кислород O₉ связан с двумя атомами кальция и одним тетраэдром кремния (Si₁ - O₉ = 0.1566 нм), при этом дефицит баланса валентности (1.55) устраняется уменьшением межатомных расстояний.

В результате определения положения водородного иона установлено, что расстояние $O_8 - H = 0.118$ нм, $H \cdots O_6 = 0.176$ нм, угол $O_6 - H - O_8 = 178.8^\circ$. Расстояние между атомами O_6 и (OH)₈, расположенными в неэквивалентных колонках равно 0.2944 нм. Атомы кислорода O_6 связаны с двумя Al- и одним (Fe,Al)-октаэдром, при этом формальный баланс валентности 1.50, т.е. заряд кислорода ненасыщенный. Гидроксильная группа связана с двумя Al – октаэдрами и полиэдром Ca₂, формальный баланс валентности 1.25, т.е. заряд (OH)-группы пересыщенный. Таким образом, можно предположить, что в структуре эпидота между атомами кислородов (O₆ и O₈) имеются слабые водородные связи, обусловленные наличием протона H⁺, нейтрализующего заряд октаэдрических колонок.

Таблица 2

Координаты базисных атомов (×10⁻⁴) и эквивалентных тепловых параметров (×10⁻³) в структуре эпидота.

Атомы	Х	у	Z	U _{изот}	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Alı	0	5000	0	012(1)	9(1)	11 (1)	13 (1)	1(1)	3 (1)	1(1)
Al_2	0	5000	5000	013(1)	10(1)	12(1)	16(1)	-1(1)	4(1)	0(1)
0.76Fe	2936(2)	2500	2225(3)	013(1)	10(1)	15(1)	13 (1)	0	3 (1)	0
+										
0.24Al										
Ca ₁	7568(2)	7500	1514(1)	017(1)	18(1)	16(1)	18(1)	0	9(1)	0
Ca ₂	6046(1)	7500	4240(1)	020(1)	16(1)	25(1)	16(1)	0	5(1)	0
Si1	3397(1)	7500	0476(1)	013(1)	11(1)	12(1)	14(1)	0	4(1)	0
Si ₂	1840(1)	7500	3184(1)	013(1)	10(1)	13(1)	14(1)	0	4(1)	0
Si ₃	6843(1)	2500	2746(1)	013(1)	12(1)	13 (1)	14(1)	0	4(1)	0
O_1	6274(3)	2500	0986(2)	024(1)	26(2)	30(1)	17(1)	0	11(1)	0
O_2	0677(3)	7500	4075(2)	015(1)	15(1)	14(1)	18(1)	0	9(1)	0
O ₃	3042(2)	9821(3)	3552(2)	016(1)	13(1)	16(1)	17(1)	-3(1)	6(1)	-1(1)
O_4	7950(2)	0138(3)	3394(2)	017(3)	13(1)	13 (1)	20(1)	3(1)	2(1)	-1(1)
O ₅	5252(3)	2500	3084(3)	020(1)	17(1)	22 (1)	24 (2)	0	12(1)	0
O_6	0529(3)	2500	1295(2)	014(1)	12(1)	14(1)	15(1)	0	4(1)	0
O_7	2342(2)	9945(2)	0412(2)	016(1)	13(1)	13 (1)	20(1)	1(1)	6(1)	0(1)
O_8	0834(3)	2500	4294(2)	015(1)	14(1)	14(1)	17(1)	0	8 (1)	0
O ₉	5151(3)	7500	1806(2)	017(1)	12(1)	18(1)	18(1)	0	3 (1)	0
O_{10}	0419(3)	7500	1458(2)	014(1)	12(1)	13 (1)	14(1)	0	3 (1)	0
Н	0730	2500	3100							

(Примечание 1. Расчет температурных параметров проведен по формуле $-2\pi^2 [h^2 a^{*2} U_{11} + ... + 2hka^* b^* U_{12}]$

Примечание 2. Преобразования симметрии, определяющие эквивалентные координаты атомов: #1 -x, -y+1, -z; #2 x, -y+3/2, z; #3 -x, y-1/2, -z; #4 x-1, -y+1/2, z; #5 -x+1, y+1/2, -z+1; #6 -x, -y+1, -z+1; #7 x, y-1, z; #8 x, y+1, z; #9 x, -y+1/2, z; #10 -x+1, y-1/2, -z; #11 -x+1, -y+2, -z; #12 x+1, y, z; #13 -x+1, -y+1, -z+1; #14 -x+1, -y+2, -z+1; #15 -x+1, y-1/2, -z+1; #16 -x+1, -y+1, -z; #17 -x, y+1/2, -z+1; #18 x-1, y, z; #19 -x, y+1/2, -z; #20 -x, y-1/2, -z+1.

Как видно из табл. 2, сравнительно стабильные температурные множители имеют атомы алюминия, расположенные в октаэдрических колонках и атомы кремния и кислорода орто- и диортотетраэдров. Для атомов Ca₁, Ca₂ и (Fe,Al) изменение значения температурных множителей связано с их статистической разупорядоченностью, т.е. изменением расстояния Ca – O и (Fe,Al) – O в больших пределах.

Таблица 3

Межатомные расстояния d (нм) и валентные

углы (ω) в структуре эпидота

Связь	d	Связь	d
Si(1)- тетраэлр		A1(1) октаэли	
G'(1) = O(0)	0.15(((0))		
SI(1) = O(9)	0.1506(2)	AI(1) = O(0)	$0.1843(1) \times 2$
- O(1)	0.1633(2)	- O(7)#2	0.1939(2)×2
- 0(7)	$0.1.649(2) \times 2$	- O(10)	$0.1959(1) \times 2$
(Si. 0)	0.1625	(AL O)	0.1959(1)~2
(31] - O)cp	0.1025	(All-O)cp	0.1914
Si(2)- тетраэдр		Al(2) октаэдр	
$Si(2) = O(3)^{2}$	0.1626(2)>2	A(2) = O(4)#4	0 1955(2) 2
O(2) = O(3)	0.1020(2)×2	O(8)	0.1855(2)×2
- 0(2)	0.1639(2)	- 0(8)	0.1869(1)×2
- O(10)	0.1665(2)	- O(2)	$0.1925(1) \times 2$
(Si ₂ -O) _{cn}	0.1639	(Al ₂ -O) _{cn}	0.1992
(- 2 -)op	0.1009	(2 ·) (p	0.1885
8:(2)			
S1(3)- тетраэдр		(Fe,AI) октаздр	
Si(3) - O(5)	0.1592(2)	(Fe,Al) - O(5)	0.1861(5)
- 0(4)	0.1616(2)>2	- 0(6)	0.1801(5)
O(1)	0.1010(2)×2	O(2)#2	0.1933(5)
- 0(1)	0.1627(2)	- 0(3)#2	0.1996(2)×2
(S13-O) _{cp}	0.1615	- O(/)#/	$0.2214(2) \times 2$
		[(Fe,Al)-O] _{cp}	0.2214(2)~2
$C_{2}(1) = O(9)$	0.2202(2)		0.2036
$O(4)^{\#9}$	0.2292(2)		
- 0(4)#8	0.2325(2)×2		
- O(7)#10	0.2456(2)×2		
- O(10)#12	0.2550(2)		
- O(2) # 12	0.2009(2)		
- 0(2)#12	0.2872(2)		
(Ca ₁ -O) _{cp}	0.2469		
	0.2250(2)		
$C_{2}(2) = O(9)$	0.2230(2)		
$O(8)^{\#12}$	0.2524(2)		
- 0(8)#13	0.2530(2)×2		
- O(3)#14	0.2656(2) 2		
- O(4)#8	0.2030(2)×2		
O(3)#2	0.2780(2)×2		
- O(5)#2	0.2588		
$(Ca_2-O)_{cp}$			
-			
ντοπ		νгол	0
Угол	ω	Угол	ω
Угол Si(1)- тетраэдр	ω	Угол Al(1) октаэдр	0
Угол Si(1)- тетраэдр	ω	Угол Al(1) октаэдр	0
Угол Si(1)- тетраэдр O(9)- Si(1) -	ω	Угол Al(1) октаэдр Q(6)#1– Al(1) -Q(7)#2	0 93 67(8)×2
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16	ω 106.49(13) 111.04(7)×2	Угол Al(1) октаэдр O(6)#1- Al(1) -O(7)#2	93.67(8)×2 9(-2)(9)→2
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16	ω 106.49(13) 111.94(7)×2	Угол Al(1) октаэдр O(6)#1– Al(1) –O(7)#2 O(6) – Al(1) – O(7)#2	0 93.67(8)×2 86.33(8)×2
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2	ω 106.49(13) 111.94(7)×2 106.53(8)×2	Угол Al(1) октаэдр O(6)#1– Al(1) –O(7)#2 O(6) – Al(1) – O(7)#2 O(6) – Al(1)-O(10)	0) 93.67(8)×2 86.33(8)×2 35.74(7)×2
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) -	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11)	Угол Al(1) октаэдр O(6)#1– Al(1) –O(7)#2 O(6) – Al(1) – O(7)#2 O(6) – Al(1)–O(10) O(6) – Al(1) – O(10)#1	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2	<u>ω</u> 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39	Угол Al(1) октаэдр O(6)#1– Al(1) –O(7)#2 O(6) – Al(1) – O(7)#2 O(6) – Al(1)–O(10) O(6) – Al(1) – O(10)#1 O(7)#2–Al(1)–O(10)#1	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 0.79(7)×2
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 Si(1) - O(7)	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39	Угол Al(1) октаэдр O(6)#1- Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7)	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39	Угол Al(1) октаэдр O(6)#1– Al(1) –O(7)#2 O(6) – Al(1) – O(7)#2 O(6) – Al(1)–O(10) O(6) – Al(1) –O(10)#1 O(7)#2 –Al(1) –O(10)#1 O(7)#3–AL(1)–O(10)#1	93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7) (O - Si(1) - O) _{ср}	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39	$\label{eq:starsest} \begin{array}{c} & & & \\ & & \\ & Al(1) \ \text{октаэдр} \\ \\ & O(6) = Al(1) = O(7) \# 2 \\ & O(6) = Al(1) = O(7) \# 2 \\ & O(6) = Al(1) = O(10) \# 1 \\ & O(7) \# 2 = Al(1) = O(10) \# 1 \\ & O(7) \# 2 = Al(1) = O(10) \# 1 \\ & O(7) \# 2 = Al(1) = O(10) \# 1 \\ & (O = Al(1) = O)_{\text{ср}} \end{array}$	93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90
Угол Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7) (O - Si(1) - O) _{cp}	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39	$\begin{tabular}{ c c c c c } \hline $Vron$ \\ \hline $Al(1)$ октаэдр$ \\ \hline $O(6) = Al(1) = O(7)\#2$ \\ \hline $O(6) = Al(1) = O(7)\#2$ \\ \hline $O(6) = Al(1) = O(10)\#1$ \\ \hline $O(7)\#2 = Al(1) = O(10)\#1$ \\ \hline $O(7)\#3 = AL(1) = O(10)\#1$ \\ \hline $O(7)\#3 = AL(1) = O_{cp}$ \\ \hline $O(10) = Al(1) = Al(1) \\ \hline $O(10) = Al(1) = Al(1) \\ \hline $O(10) = A$	0) 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7) (0 - Si(1) - O) _{ср} Si(2)- тетраэдр	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11)	Угол Al(1) октаэдр O(6)#1 - Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#1 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(O - Al(1) - O)_{cp}$ Al(2) октаэдр	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 90.78(7)×2 90.78(7)×2 90.22(7)×2 90
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7) (O - Si(1) - O) _{ср} Si(2)- тетраэдр	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2	$\begin{tabular}{ c c c c c } \hline V гол \\ \hline $Al(1)$ октаэдр \\ $O(6) = Al(1) = O(7) \# 2$ \\ $O(6) = Al(1) = O(7) \# 2$ \\ $O(6) = Al(1) = O(10) \# 1$ \\ $O(7) \# 2 = Al(1) = O(10) \# 1$ \\ $O(7) \# 2 = Al(1) = O(10) \# 1$ \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = O(10) \# 3 \\ $O(7) \# 3 = AL(1) = AL(1) \oplus AL(1) \\ $O(7) \# 3 = AL(1) = AL(1) \oplus AL(1) \\ $O(7) \# 3 = AL$	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(1)$ #16 $O(9)$ - Si(1) - $O(7)$ #2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(7)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(O - Al(1) - O)_{cp}$ Al(2) октаэдр	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2
<u>Угол</u> Si(1)- тетраэдр O(9)- Si(1) - O(1)#16 O(9)- Si(1) - O(7)#2 O(1)#16-Si(1) - O(7)#2 O(7)#2 - Si(1) - O(7) (O - Si(1) - O) _{ср} Si(2)- тетраэдр O(3) - Si(2) - O(3)#2	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5)	Угол Al(1) октаэдр $O(6)#1-Al(1)-O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(10)$ $O(6) - Al(1) - O(10)#1$ $O(7)#2-Al(1) - O(10)#1$ $O(7)#3-AL(1)-O(10)#1$ $O(7)#3-AL(1) - O(10)#1$ $O(7)#3-AL(1) - O(10) = 0$ $O(7)#3-AL(1) - O(10) = 0$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(1)$ #16 $O(9)$ - Si(1) - O(7)#2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(3)$ -Si(2) - O(3)#2 $O(3)$ $O(3)$ $O(3)$ $O(3)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(2)-O(8)\#6$	0) 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 90.72
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(1)$ #16 $O(9)$ - Si(1) - O(7)#2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(3)$ -Si(2) - O(7) $O(3)$ - Si(2) - O(3)#2 $O(3)$ - Si(2) - O(2) $O(2)$ $O(2)$ $O(2)$ $O(10)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(O - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(2)	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – O(7)#2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – O(3)#2 $O(3)$ – Si(2) – O(10) $O(3)$ – Si(2) – O(10)	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5	Угол Al(1) октаэдр O(6)#1-Al(1)-O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#2 O(6) - Al(1) - O(10) O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(O - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(8)#6 O(4)#4 - Al(2) - O(2)	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(1)$ #16 $O(9)$ - Si(1) - O(7)#2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(3)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8) ×2 109.5	Угол Al(1) октаэдр $O(6)#1-Al(1) -O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(10)#1$ $O(7)#2 - Al(1) - O(10)#1$ $O(7)#2 - Al(1) - O(10)#1$ $O(7)#3 - AL(2) - O(8)#6$ $O(4)#4 - Al(2) - O(8)#6$ $O(4)#5 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7)
$\begin{tabular}{ c c c c c }\hline \hline Vron\\ \hline Si(1)- тетраэдр\\ O(9)- Si(1)- O(7)#2\\ O(1)#16- Si(1)- O(7)#2\\ O(7)#2- Si(1)- O(7)\\ (O-Si(1)- O)_{cp}\\ \hline Si(2)- тетраэдp\\ O(3)- Si(2)- O(3)#2\\ O(3)- Si(2)- O(2)\\ O(2)- Si(2)- O(10)\\ O(3)- Si(2)- O(10)\\ O(3)- Si(2)- O(10)\\ (O-Si(2)- O)_{cp}\\ \hline \end{tabular}$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8) ×2 109.5	Угол Al(1) октаэдр $O(6)#1-Al(1) -O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(10)$ $O(6) - Al(1) - O(10)$ $O(6) - Al(1) - O(10)#1$ $O(7)#2 - Al(1) - O(10)#1$ $O(7)#3 - AL(2) - O(10)#1$ $O(7)#3 - AL(2) - O(8)#6$ $O(4)#5 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(8)#6 - Al(2) - O(2)$	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.96(7)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ $O(3)$ $O(3)$ $O(3)$ $O(3)$ $O(7)$ $O(7)$ $O(3)$ $O(3)$ $O(7)$ $O(7)$ $O(3)$ $O(7)$ $O(7)$ <t< td=""><td>ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5</td><td>Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#2-Al(1)-O_{cp}$ Al(2) октаэдр $O(4)\#4-Al(2)-O(8)\#6$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)=6-Al(2)-O(2)$</td><td>ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2</td></t<>	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#2-Al(1)-O_{cp}$ Al(2) октаэдр $O(4)\#4-Al(2)-O(8)\#6$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)=6-Al(2)-O(2)$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(1)$ #16 $O(9)$ - Si(1) - $O(7)$ #2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(3)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(O - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)=AL(2) - O	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – $O(3)$ #2 $O(3)$ – Si(2) – $O(2)$ $O(3)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – $O)_{cp}$ Si(3) - тетраэдр	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8) ×2 109.5	Угол Al(1) октаэдр $O(6)#1-Al(1)-O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(10)#1$ $O(7)#2 - Al(1) - O(10)#1$ $O(7)#3 - AL(2) - O(2)$ $O(4)#4 - Al(2) - O(8)#6$ $O(4)#5 - Al(2) - O(2)$ $O(4)#4 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(4)#4 - Al(2) - O(2)$ $O(8)#6 - Al(2) - O(2)$ $O(8)=AL(2) - O(2)$ $O(8)=AL(2) - O(2)$ $O(8)=AL(2) - O(2)$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 89.77(8)×2 89.73(8)×2 84.05(7) 95.95(7)×2 90
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – $O(3)$ #2 $O(3)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – O_{cp} Si(3) - тетраэдр $O(5)$ – $O(7)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 110.58(11)	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(2)-O(10)\#1$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$ $O(8)=6-AL(2)-O(2)$	0) 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ $O(3)$ $O(2)$ $O(2)$ $O(2)$ $O(2)$ $O(2)$ $O(2)$ $O(2)$ $O(3)$ $O(3)$ $O(3)$ $O(2)$ $O(3)$ $O(3)$ $O(5)$ $O(5)$ $O(4)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8) ×2 109.5	Угол Al(1) октаэдр $O(6)#1-Al(1) -O(7)#2$ $O(6) - Al(1) - O(7)#2$ $O(6) - Al(1) - O(10)$ $O(6) - Al(1) - O(10)$ $O(6) - Al(1) - O(10)#1$ $O(7)#2 - Al(1) - O(10)#1$ $O(7)#3 - AL(2) - O(10)#1$ $O(7)#3 - AL(2) - O(10)#1$ $O(7)#3 - AL(2) - O(2) O(3)#6$ $O(4)#4 - Al(2) - O(2) O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(4)#5 - Al(2) - O(2)$ $O(8)#6 - Al(2) - O(2)$ $O(8)=-AL(2) - O(2)$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.58(11) 110.36(13) 107.10(8)×2	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(2)-O(10)\#1$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(7)=O(2)$ $O(7)=O(2)$ $O(7)=O(2)$ $O(8)=AL(2)-O(2)$ $O(7)=O(2)$ $O(7)=O(2)$ $O(7)=O(2)$ $O(7)=O(7)$ $O(7)=O(7)$	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90
Угол Si(1)- тетраэдр $O(9)$ - Si(1) - $O(7)$ #2 $O(1)$ #16 $O(9)$ - Si(1) - $O(7)$ #2 $O(1)$ #16-Si(1) - $O(7)$ #2 $O(3)$ $O(5)$ $O(3)$ $O(4)$ $O(5)$ $O(4)$ $O(4)$ $O(4)$ $O(4)$ #9 $O(4)$	$\begin{array}{c} & \\ \hline \\ 106.49(13) \\ 111.94(7)\times 2 \\ 106.53(8)\times 2 \\ 112.89(11) \\ 109.39 \\ \hline \\ 106.78(11) \\ 112.41(7)\times 2 \\ 102.00(5) \\ 111.70(8)\times 2 \\ 109.5 \\ \hline \\ 110.79(8)\times 2 \\ 110.58(11) \\ 110.36(13) \\ 107.10(8)\times 2 \\ 109.5 \\ \hline \end{array}$	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3-AL(1) - O(10)#1 O(7)#3-AL(2) - O(2) = O(8)#6 O(4)#4 - Al(2) - O(2) = O(8)#6 O(4)#5 - Al(2) - O(2) = O(8)#6 O(5) - (Fe Al) - O(3)#2	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 90.23(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – $O(3)$ #2 $O(3)$ – Si(2) – $O(2)$ $O(3)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – $O(10)$ $(O - Si(2) - O)_{cp}$ Si(3) - retpa3pp $O(5)$ – Si(3) – $O(4)$ $O(4)$ $O(5)$ – Si(3) – $O(4)$ $O(4)$ $O(5)$ $O(1)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 105.58(11) 110.58(11) 110.66(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(1)#2 O(6) - Al(1) - O(10)#1 O(7)#2-Al(1) - O(10)#1 O(7)#3-AL(1)-O(10)#1 O(7)#3-AL(1)-O(10)#1 $(0 - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(8)#6-Al(2) - O(2) O(8)#6-Al(2) - O(2) O(8)#6-Al(2) - O(2) O(8)#6-Al(2) - O(2) O(8)=AL(2)-O(2) $(O - Al(12 - O)_{cp}$ (Fe,Al) октаэдр O(5) - (Fe,Al) - O(3)#2 O(5) - (Fe,Al) - O(3)#2	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 90.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – $O(7)$ $O(3)$ – Si(2) – $O(2)$ $O(2)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – $O(1)$ $O(5)$ – Si(3) – $O(4)$ $O(4)$ #9 – Si(3) – $O(4)$ $O(4)$ – Si(3) – $O(1)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 110.58(11) 110.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(2)-O(10)\#1$ $O(7)\#2-Al(2)-O(2)$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $(O-Al(12-O)_{cp})$ (Fe,Al) октаэдр $O(5)-(Fe,Al)-O(3)\#2$ $O(5)-(Fe,Al)-O(7)\#2$	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 90 88.13(8)×2 92.87(8)×2 90.78(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ $O(3)$ $O(2)$ $O(2)$ $O(2)$ $O(2)$ $O(3)$ $O(5)$ $O(5)$ $O(5)$ $O(4)$ $O(4)$ $O(4)$ $O(5)$ $O(7)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 100.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(2)-O(10)\#1$ $O(4)\#4-Al(2)-O(8)\#6$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(6)=-Al(12-O)_{cp}$ (Fe,Al) OKTA3DP $O(5)=(Fe,Al)-O(3)\#2$ $O(6)=(Fe,Al)-O(3)\#7$	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2 97.99(14)
$\begin{tabular}{ c c c c c c }\hline \hline $Vron$\\\hline $Si(1)$- тетраэдр\\ $O(9)$- $Si(1)$-$-$O(7)#2\\ $O(1)#16$-$Si(1)$-$O(7)#2\\ $O(7)#2$-$Si(1)$-$O(7)#2\\ $O(7)#2$-$Si(1)$-$O(7)$\\ $(O-Si(1)$-$O)$_{cp}$\\\hline $Si(2)$- тетраэдр\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(5)$- $Si(3)$-$O(4)$\\ $O(4)#9$- $Si(3)$-$O(4)$\\ $O(4)#9$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(1)$-$O]$_{cp}$\\\hline \end{tabular}$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.58(11) 110.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(10)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 O(7)#3 - AL(2) - O(2) = O(8)#6 O(4)#4 - Al(2) - O(2) = O(7)#6 O(5) - (Fe,Al) - O(7)#7 = O(7)#7 O(5) - (Fe,Al) - O(7)#7 = O(7)#7	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 90 88.13(8)×2 92.87(8)×2 90.23(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2 97.99(14) 102.21(16)×2
$\begin{tabular}{ c c c c c c }\hline \hline Vron\\ \hline Si(1)- тетраэдр\\ O(9)- Si(1)- O(7)#2\\ O(1)#16-Si(1)- O(7)#2\\ O(7)#2-Si(1)- O(7)\\ (O-Si(1)-O)_{cp}\\ \hline Si(2)- тетраэдр\\ O(3)-Si(2)- O(2)\\ O(3)-Si(2)- O(2)\\ O(3)-Si(2)- O(10)\\ O(3)-Si(2)- O(10)\\ O(3)-Si(2)- O(10)\\ O(3)-Si(2)- O_{cp}\\ \hline Si(3)- тетраэдp\\ \hline O(5)-Si(3)- O(4)\\ O(4)#9-Si(3)- O(4)\\ O(4)=Si(3)- O(1)\\ O(4)-Si(3)- O(1)\\ (O-Si(1)- O)_{cp}\\ \hline \end{tabular}$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 105.88(11) 110.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)\#6-Al(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(8)=AL(2)-O(2)$ $O(5)-(Fe,Al)-O(3)\#2$ $O(6)-(Fe,Al)-O(3)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(6)-(Fe,Al)-O(7)\#7$	0 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2 97.99(14) 102.21(16)×2 76.99(12)×2
$\begin{tabular}{ c c c c c c }\hline \hline $Vron$\\\hline $Si(1)$- тетраэдр\\ $O(9)$- $Si(1)$-$-$O(7)#2\\ $O(1)#16$-$Si(1)$-$O(7)#2\\ $O(7)#2$-$Si(1)$-$O(7)#2\\ $O(7)#2$-$Si(1)$-$O(7)$\\ $(O-Si(1)$-$O)$_{cp}$\\\hline $Si(2)$- тетраэдр\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(2)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $O(3)$- $Si(2)$-$O(10)$\\ $(O-Si(2)$-$O)$_{cp}$\\\hline $Si(3)$- тетраэдр\\ $O(5)$- $Si(3)$-$O(4)$\\ $O(4)#9$- $Si(3)$-$O(4)$\\ $O(4)#9$- $Si(3)$-$O(4)$\\ $O(5)$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(3)$-$O(1)$\\ $O(4)$- $Si(1)$-$O]$_{cp}$\\\hline \end{tabular}$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 100.58(11) 110.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(1)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(0 - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(5) - (Fe, Al) - O(3)#2 O(5) - (Fe, Al) - O(7)#7 O(5) - (Fe, Al) - O(7)#7 O(6) - (Fe, Al) - O(7)#7	ω 93.67(8)×2 86.33(8)×2 35.74(7)×2 84.26(7)×2 90.78(7)×2 89.22(7)×2 90 88.13(8)×2 92.87(8)×2 89.77(8)×2 89.77(8)×2 90.23(8)×2 84.05(7) 95.95(7)×2 90 87.74(14)×2 93.03(16)×2 97.99(14) 102.21(16)×2 76.92(12)×2
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ – Si(2) – $O(3)$ #2 $O(3)$ – Si(2) – $O(2)$ $O(2)$ – Si(2) – $O(10)$ $O(3)$ – Si(2) – $O(10)$ $O(5)$ – Si(3) – $O(4)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 105.8(11) 110.36(13) 107.10(8)×2 109.45 154.1	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(2)-O(2)$ $O(4)\#4-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(8)-Al(2)-O(2)$ $O(6)-(Fe,Al)-O(3)\#7$ $O(5)-(Fe,Al)-O(3)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(6)-(Fe,Al)-O(7)\#7$ $O(6)-(Fe,Al)-O(7)\#7$	$\begin{array}{c} & \\ & \\ 93.67(8)\times 2 \\ 86.33(8)\times 2 \\ 35.74(7)\times 2 \\ 84.26(7)\times 2 \\ 90.78(7)\times 2 \\ 90.78(7)\times 2 \\ 90.22(7)\times 2 \\ 90 \\ \end{array}$
Угол Si(1) - тетраэдр $O(9)$ – Si(1) – $O(1)$ #16 $O(9)$ – Si(1) – $O(7)$ #2 $O(1)$ #16-Si(1) – $O(7)$ #2 $O(3)$ $O(3)$ $O(3)$ $O(2)$ $O(2)$ $O(2)$ $O(3)$ $O(3)$ $O(3)$ $O(5)$ $O(3)$ $O(4)$ $O(4)$ $O(4)$ $O(4)$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 100.58(11) 110.36(13) 107.10(8)×2 109.45	Угол Al(1) октаэдр $O(6)\#1-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(7)\#2$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)$ $O(6)-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#2-Al(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(1)-O(10)\#1$ $O(7)\#3-AL(2)-O(10)\#1$ $O(-Al(1)-O)_{cp}$ Al(2) октаэдр $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(4)\#5-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(8)=-Al(2)-O(2)$ $O(6)-(Fe,Al)-O(3)\#2$ $O(5)-(Fe,Al)-O(3)\#7$ $O(5)-(Fe,Al)-O(3)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(5)-(Fe,Al)-O(7)\#7$ $O(3)\#7-(Fe,Al)-O(7)\#7$ $O(7)\#7-(Fe,Al)-O(7)\#7$	$\begin{array}{c} & \\ & \\ 93.67(8)\times 2 \\ 86.33(8)\times 2 \\ 35.74(7)\times 2 \\ 84.26(7)\times 2 \\ 90.78(7)\times 2 \\ 89.22(7)\times 2 \\ 90 \\ \end{array}$ $\begin{array}{c} 88.13(8)\times 2 \\ 92.87(8)\times 2 \\ 89.27(8)\times 2 \\ 89.77(8)\times 2 \\ 90.23(8)\times 2 \\ 84.05(7) \\ 95.95(7)\times 2 \\ 90 \\ \end{array}$ $\begin{array}{c} 87.74(14)\times 2 \\ 93.03(16)\times 2 \\ 97.99(14) \\ 102.21(16)\times 2 \\ 76.92(12)\times 2 \\ 89.85(16) \\ 80.91(12) \\ \end{array}$
$\begin{tabular}{ c c c c c }\hline \hline $Vron$\\\hline $Si(1)$- тетраэдр\\ $O(9)$- $Si(1)$-$-$O(7)#2\\ $O(1)#16$-$Si(1)$-$O(7)#2\\ $O(7)#2$-$Si(1)$-$O(7)$\\$(O-Si(1)$-$O)$_{cp}$\\\hline $Si(2)$- тетраэдр\\ $O(3)$- $Si(2)$-$O(2)$\\$O(3)$- $Si(2)$-$O(2)$\\$O(3)$- $Si(2)$-$O(2)$\\$O(3)$- $Si(2)$-$O(10)$\\$O(3)$- $Si(2)$-$O(10)$\\$O(3)$- $Si(2)$-$O(10)$\\$O(3)$- $Si(2)$-$O(10)$\\$O(5)$- $Si(3)$-$O(4)$\\$O(4)#9$- $Si(3)$-$O(4)$\\$O(4)= $Si(3)$-$O(1)$\\$O(4)$- $Si(3)$-$O(1)$\\$O(5)$- $Si(3)$-$O(1)$\\$O(4)$- $Si(1)$-$O]$_{cp}$\\\hline Si-$O-Si\\\hline Si-$O-$Si$\\\hline \end{tabular}$	ω 106.49(13) 111.94(7)×2 106.53(8)×2 112.89(11) 109.39 106.78(11) 112.41(7)×2 102.00(5) 111.70(8)×2 109.5 110.79(8)×2 100.58(11) 110.36(13) 107.10(8)×2 109.45 154.1	Угол Al(1) октаэдр O(6)#1-Al(1) -O(7)#2 O(6) - Al(1) - O(7)#2 O(6) - Al(1) - O(1)#2 O(6) - Al(1) - O(10)#1 O(7)#2 - Al(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 O(7)#3 - AL(1) - O(10)#1 $(0 - Al(1) - O)_{cp}$ Al(2) октаэдр O(4)#4 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(8)#6 O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(4)#5 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8)#6 - Al(2) - O(2) O(8) - AL(2) - O(2) O(5) - (Fe, Al) - O(3)#2 O(5) - (Fe, Al) - O(7)#7 O(5) - (Fe, Al) - O(7)#7 O(5) - (Fe, Al) - O(7)#7 O(3)#7 - (Fe, Al) - O(7)#7 O(7)#7 - (Fe, Al) - O(7)#7	$\begin{array}{c} & \\ & \\ 93.67(8)\times 2 \\ 86.33(8)\times 2 \\ 35.74(7)\times 2 \\ 84.26(7)\times 2 \\ 90.78(7)\times 2 \\ 89.22(7)\times 2 \\ 90 \\ \end{array}$ $\begin{array}{c} 88.13(8)\times 2 \\ 92.87(8)\times 2 \\ 89.77(8)\times 2 \\ 90.23(8)\times 2 \\ 84.05(7) \\ 95.95(7)\times 2 \\ 90 \\ \end{array}$ $\begin{array}{c} 87.74(14)\times 2 \\ 93.03(16)\times 2 \\ 97.99(14) \\ 102.21(16)\times 2 \\ 76.92(12)\times 2 \\ 89.85(16) \\ 80.91(12) \\ 89.87 \\ \end{array}$

Рис. 2. Структурные блоки с распределением катионов в пустотах, в структурах пумпеллита (*a*) и эпидота (*b*).

Известно, что минералы эпидот и пумпеллит Ca₂(Mg,Fe,Al)Al₂(OH,O)₂(Si₂O₇)(SiO₄) (a = 0.883, b = 0.590, c = 1.917 нм, $\beta = 97.71^{\circ}$; Z=4; пр. гр. $A2_1/m$) /6/ и синтетический Mg – пумпеллит Mg₈(Mg₂Al₂)Al₈Si₁₂(O,OH)₅₆ (a=0.858, b = 0.573, c = 1.854 нм, $\beta = 97.69^{\circ}$, z=1, пр. гр. P2₁/m) /7/, имеют моноклинную ячейку и подобные хи-мические составы. Первые два минерала в природе встречаются в пара-генетических ассоциациях. Для выяснения этого природного явления методом сравнительной кристаллохимии /5/ исследованы структуры названных минералов.

Как видно из рис. 2 а, б структуры эпидота, пумпеллита и Mg – пумпеллита формируются из одинаковых смешанных колонок. Структуры первых двух минералов состоят из колонок AlO₆ октаэдров, а Mg – пумпеллита из неэквивалентных колонок AlO₆ - и MgO₆ – октаэдров, которые соединяются с Si₂O₇ и SiO₄ тетраэдрами через вершины и образуют смешанные колонки с составом $|Al_2(Si_2O_7)_2(SiO_4)_2|$ и $|Al_2(Mg_2)(Si_2O_7)_2(SiO_4)|$, соответственно.

В структуре эпидота в пустотах смешанной колонки располагаются (Fe,Al)-октаэдры и одношапочные тригональные призмы кальция, в пумпеллите полиэдры кальция, в Mg – пумпеллите MgO₆ – октаэдры. При полимеризации последних формируется единый структурный блок, который в структуре пумпеллита и Mg – пумпеллита связывается с одиночными колонками AlO₆ - октаэдров, а в структуре эпидота половины позиций в одиночных колонках остаются вакантными. Следовательно, структурные блоки связываются одиночной колонкой AlO₆ – октаэдров и зигзагообразной колонкой двухшапочной тригональной призмы атомов кальция. Возможно, этим объясняется различие в значениях валентных углов Si-O-Si, равное в эпидоте 154.4° и в пумпеллите 133.5°.

В структуре эпидота между структурными блоками (рис.1.2) в позициях ¹/₂¹/₄¹/₂ и ¹/₂³/₄¹/₂ образуются октаэдрические вакансии. Если атомы (Fe,Al)'($y = \frac{1}{4}$) и (Fe,Al)" ($y = \frac{3}{4}$) поместить в вакантные позиции, а Ca₂' ($y = \frac{1}{4}$) поместить в позиции (Fe,Al)' и Ca₂"($y = \frac{3}{4}$) в позиции (Fe,Al)", то при подобном перемещении атомов и сохранении химического состава эпидот превращается в пумпеллит. При таком превращении в структуре эпидота оливиноподобная колонка превращается в одиночную колонку. Два параметра ячейки сохраняются, а третий параметр, с уменьшением угла β , увеличивается в два раза и ячейка типа Р превращается в ячейку типа A, с сохранением группы симметрии.

Таким образом, представленные кристаллохимические особенности и структурный механизм превращения эпидота в пумпеллит однозначно определяют причины образования парагенетических ассоциаций этих минералов.

ЛИТЕРАТУРА

- 1. Dollase W.A. Refinement of the crystal structures of epidote, allanite and hancockite // Amer. Miner. 1971, №56, p. 447-464.
- 2. Catti M., Ferraris G. and Ivaldi G. On the crystal chemistry of strontian piemontite with some remarks on the nomenclature of the epidote group // Neues Jahrb. Mineral. Monatsh., 1989, p. 357-366.
- Kartashov P.M., Ferraris G. and Ivaldi G., Sokolova E., McCammon C.A. Ferriallanite -(Ce),CaCeFe³⁺AlFe²⁺(SiO₄)(Si₂O₇)O(OH), a new member of the epidote group: description, X-ray and mossbauer study // The Canadian Mineralogist. 2002, 40, p. 1641-1648.
- 4. Comodi P., Zanazzi P.F., Poli S., Schmidt M.W. High-pressure behavior of kyanite: Compressibility and structural deformations// Amer. Miner. 1997, №82, p. 452 - 459.
- 5. Чирагов М. И. Сравнительная кристаллохимия кальциевых и редкоземельных силикатов. Баку: Чашы оглу, 2002, 360 с.
- 6. Schiffmann P. and Liou J.G. Synthesis and stability relations of Mg-Al pumpellite, Ca₄Al₅MgSi₆O₂₁(OH)₇// Journal of Petrology. 1980, №21, p. 441 474.
- Artiolli G., Fumagalli P., and Poli S. The crystal structure of Mg₈(Mg₂Al₂)Al₈Si₁₂(O,OH)₅₆ pumpellite and its relevance in ultramatic systems at high pressure // Amer. Miner. 1999, №84, p. 1906 -1914.

EPİDOTUN KRİSTAL QURULUŞUNUN DƏQİQLƏŞDİRİLMƏSİ VƏ PUMPELLİTƏ ÇEVRİLMƏSİNİN KRİSTALLOKİMYƏVİ XÜSUSİYYƏTLƏRİ

R.Q.ƏSKƏROV, A.F.ŞİRİNOVA, M.İ.ÇIRAQOV

XÜLASƏ

Epidot mineralının quruluşunu dəqiqləşdirmək üçün Azərbaycanın Qədəbəy filiz rayonunun törəmə kvarsitlərinin hidrotermal damarlarından götürülmüş nümunələrdən istifadə edilmişdir. Monoklin qəfəsin parametrləri: a = 0.8890(2), b = 0.5624(1), c = 1.0159(2) nm, β = 115.362(2)°, 1527 qeyri - asılı difraksiya xətlərinin intensivliyi, fəza qrupu P2₁/m və Z = 2 APEX-II, CCD (MoK_{α} - şüası) avtodifraktometrində təyin edilmişdir. Quruluş statistik üsullarla təyin olunmuş, atomların koordinatları izotrop və anizotrop düzəlişləri nəzərə almaqla ən kiçik kvadratlar üsulu ilə dəqiqləşdirilmişdir. R₁ (F²>2 σ (F²) = 0.031; ω R₂(F²) = 0.080. Nəticədə epidotun kimyəvi tərkibi aşağıdakı kimi dəqiqləşdirilmişdir Ca₂(Fe_{0.76}Al_{0.24})Al₂H(Si₂O₇)(SiO₄)O₂. Epidotun quruluşunda AlO₆ – oktaedrləri iki tip sütun əmələ gətirir. Birincisi - olivinəbənzər, yəni AlO₆ – oktaedrləri birqat sütunlar əmələ gətirir, çıxıntılarında (Fe,Al)O₆ oktaedrləri yerləşir, bu quruluş elementində (Al-O)_{or} məsafəsi = 0.1914 nm və [(Fe,Al) – O]_{or} = 0.2004 nm-dir. İkincisi – tək AlO₆ oktaedr sütunu (Al-O)_{or} məsafəsi bərabərdir 0.1883 nm. Bu kolonkalar SiO₄ və Si₂O₇ tetraedrləri ilə polimerləşərək qarışıq quruluş bloku yaradır. Bu blokların altılıq kanallarında Ca atomu yerləşir. Quruluş blokunun oksigenləri ilə ətrafında triqonal prizma + yarımoktaedr çoxüzlüsü yaradır, (Ca₁-O)_{or} məsafəsi bərabərdir 0.2407 nm. Ca₂ ikitəpəli triqonal prizmaları ilə ekvivalent quruluş blokları sementləşir, (Ca₂-O)_{or} məsafəsi 0.2548 nm olur. Müqayisəli kristallokimya üsülu ilə epidotun pumpellitə çevrilmə mexanizmi aydınlaşdırılmış və bunun əsasında bu mineralların paraqenetik assosiasiya yaratma səbəbinə aşkarlıq gətirilmişdir.

Açar sözlər: epidotun quruluşu, mineral çevrilmələrinin kristallokimyası.

SPECIFICATION OF CRYSTAL STRUCTURE EPIDOTE AND CRYSTALLOCHEMICAL FEATURES OF TRANSFORMATION INTO PUMPELLYITE

R.G.ASKEROV, A.F.SHIRINOVA, M.I.CHYRAGOV

SUMMARY

For structural specification, the mineral epidote from hydrothermal veins of secondary quartzites of Gadabai ore area of Azerbaijan has been used. Parameters of monoclinic cells: a = 0.8890 (2), b = 0.5624 (1), c = 1.0159(2) nm, β = 115.362(2)° and intensity of 1527 independent diffraction reflections are received on diffractometer APEX-II, CCD, space group $P2_1/m$, Z = 2. The structure of the coordinate of atoms is specified with isotropic and anisotropic approximation. The definitive factor of divergence $R_1 (F^2 > 2\sigma(F^2) = 0.031; \ \omega R_2(F^2) =$ 0.080. As a result, the chemical compound of the epidote is specified in the form of $Ca_2(Fe_{0.76}Al_{0.24})Al_2H(Si_2O_7)(SiO_4)O_2$. In the structure of the epidote, AlO₆ octahedrons form columns of two types. The first - olivinesimilar, that is a single column from AlO_6 octahedrons in which "teeth" settle down (Fe, Al) O_6 octahedrons with distances (Al-O)_{mean} = 0.1914 nm and $[(\text{Fe}, \text{Al}) - \text{O}]_{\text{mean}} = 0.2004 \text{ nm}$. The second – single from AlO₆ octahedrons with distance (Al-O)_{mean} equal 0.1883 nm. These columns are condensed with SiO₄ and Si₂O₇ tetrahedrons [(Si-O)_{mean} = 0.1614 nm] and create the mixed structural block with six-membered channels that are filled with calcium Ca₁ atoms. Around Ca₁, bridging oxygens create monocapped trigonal prism with the distance of $(Ca_1-O)_{mean} = 0.2407$ nm. Equivalent structural blocks are cemented by twocapped Ca₂ trigonal prism with the mean interatomic distance $(Ca_2-O)_{mean} = 0.2548 \text{ nm}.$

Epidote structures and pumpellyite consist of equivalent columns AlO_6 of octahedrons, and Mg – pumpellyite of columns AlO_6 - and MgO_6 – octahedrons which incorporate with Si_2O_7 and SiO_4 tetrahedrons through tops and form the mixed columns with structure $|Al_2$ $(Si_2O_7)_2(SiO_4)_2 |$ and $|Al_2 (Mg_2) (Si_2O_7)_2 (SiO_4)|$, accordingly.

Key words: epidote structure, crystallochemistry, mineral transformation.

Поступила в редакцию: 26.09.2011 г. Подписано к печати: 02.11.2011 г.