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In this paper we determine the spectrum of a new generalized difference operator, denoted by
Aqp, OVer the sequence space ¢, . The class of the introduced operator includes some other special
cases such as the generalized difference operator A,, the generalized difference operator B(r, s),
the difference operator A, the right shift and Zweier operators. The boundedness of the operator
Aq,p On the sequence space ¢, has been proved. Also, the norm of this operator has been found.

1. Introduction
Let X be a nontrivial complex normed space and T :D(T)— X also be a linear

operator with domain D(T)c X. With T we associate the operator T, =T —Al ,
where A is a complex number and | is the identity operator on the domain of T. If T, has

an inverse, we denote it by T, =(T — A1) and call it the resolvent operator of T.

Let X be a Banach space and T : X — X be a bounded linear operator. In this
paper,  C,,c,1,bv T X" B(X),RT), o ,X),c,T.X),0,T,X)0,,X)
respectively denote null sequences; convergent sequences; p-absolutely summable se-
quences; p- bounded variation sequences; the adjoint operator of T; the dual of X ; the
linear space of all bounded linear operators on X into itself; the range of T; the spec-
trum of T on X; the point spectrum of T on X; the residual spectrum of T on X; and the
continuous spectrum of T on X.

In this paper we introduce the generalized difference operator A, on the se-
quence space Cq as follows:

A,p: Cy —Cy is defined by, A, X=A,(X,)=@xX,+b,_X )y, with
X, = 0and b =0, where (a,) and (b,) are two sequences of nonzero real num-

bers such that:
lima, =a, limb, =b+#0,anda, #a+b, a,#a-b, forallnell .

N—0

The operator A, can be represented by the matrix

a 0 O
A= b, a 0

0 b aq
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It is clear that the operator A, is a straightforward generalization of the difference

operator A and its generalizations [see[3]-[5] and [9]].
Now, we may give:
Lemma 1.1 [11, p. 129]. The matrix A =(a, ) gives rise to a bounded linear operator

T €B(c,) from ¢, to itself if and only if

(1) The rows of A are in |; and their I; norms are bounded,

(2) The columns of A are in cq.

The operator norm of T is the supremum of the |; norms of the rows.
Lemma 1.2 [7, p. 59]. T has a dense range if and only if T" is one to one.

We summarize the knowledge in the existing literature concerning with the
spectrum of the linear operator defined by some particular limitation matrices
over some sequence spaces. The fine spectrum of the difference operator A over
the sequence space l,, (1< p<ow) was determined by A.Akhmedov and F.Basar
[1] and over the sequence spaces Cy and € by B. Altay and F. Basar [4]. B. De Ma-
lafosse [8] computed the spectrum of the difference operator on the space s,
where S, denotes the Banach space of all sequences X=(X,) normed by
||x||S = supt(—t|, r>0. A.Akhmedov and F. Basar [2] determined the fine spectrum
Tk

of the difference operator on the space bv,, (1< p<ow). Note that the sequence

space bv, was introduced and studied by B. Altay and F. Basar [6]. The continu-
ous dual of bv, determined by A. Akhmedov in [2]. P. Srivastava and S. Kumar
determined the spectrum and fine spectrum of the generalized difference operator A,
over the sequence space Cq in [9] and over the sequence space |; in [10]. The operator
Ay is a special case of our introduced operator A,p when b, =—a, =—v, forallk €[] .

The same problem in the case when the sequence (8, ) is assumed to be constant ex-

cept for finitely many elements was investigated in [3] by A. Akhmedov.

In this work, our purpose is to study the spectrum of the generalized differ-
ence operator A, on the sequence space Co. The main results of the present work
are more general than the corresponding results of [4], [S] and [9].

2. On the spectrum of the operator A, on the sequence space ¢y
In this section, we establish the boundedness of the operator A,, on Co. Also, we
examine the spectrum of the operator A, on the sequence space Cy.

Theorem 2.1. A, €B(c,)with a norm |A :sup(|ak | + |bk71|) .
k

ab |co
Proof. The matrix A, satisfies the conditions in Lemma 1.1, and so A,, €B(c).
Now, let us take any X =(X, ) €C,. Then, it is clear that

|

Conversely, let x=(1, 0, 0, ...). Then

ab co

< sup(a, |+,
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X
a.b c

= max {|a0

by |} 2.1)

a,b s

SO

On the other hand, for each kell , let y=(Yy,) be the sequence such that y, =1,
Y. =1 andy =0 forall nel \{k,k+1}. Then we can see that

Aa,by o
wl, 27y =max {[a |.|a, , +by |.Jo,..[}- (2.2)
Combining (2.1) and (2.2), we then have
Aus . =max{la|.Ja, +by|s[o, |}, forall k el. (2.3)
Similarly, we can also show that
Ay, =max{la | [a, —b [y} (2:4)

Consequently, (2.3) and (2.4) imply that
A > max{|ak +bk_1|, |ak -b,

}, forallk el ,

a,b c,
and so
Ausl, Z[a|+ b, forallk el
Thus
Ass, Zsup(fac|+ by

This completes the proof.
Theorem 2.2. Denote the set {/1 ell :|a—/1| < |b|} by D and the set {ak Q¢ D} by

E. Then the set E is finite and o(A,,,c,)=D UE .
Proof. It is easy to see that E is a finite set and {ak kel } c DUE. Now, we prove
that o(A,,,C)) =D UE .

Let A¢ DUE. Then |a—/”t| >|b| andA #a,, forallk elJ . So, (A,, —Al) is trian-
gle and hence (A,, -4l )" exists. Let Yy =(y,)eC, and solving the equation
(A, —ADx=y, for X=(X,) in terms of y, we get

1)k
X, = CUbb,.-by o Fee— be., yk_1+—1 y, »kel.
(ao _ﬂ’)(al _]“)"'(ak _/1) (ak—l _ﬂ)(ak _/1) (ak _/1)
Then,

1

0 0
(8, —-4)
b, 1
Dy = A '=(54)= (@, —4)@ —1) (& -4)
b()b] _bl 1 cee
(@ -A@E -, -4) @-@-4) (@-4)
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Let S, = Z|Snk|. Then, for each nell , the series S is convergent since it is finite.
k=0

Next, we prove that supS, is finite.
n

Since limﬂz |b|
ela -4 Ja-4

=(Q <. Then there exists k, €[] and q, < 1such that

b |
|a /1| <q, <l,forall k>k,+1. Then, for each n >k, +1, we can prove that
-
1 Nk,
S, £|a _/1|[1+q0 Qg+ ... Hqphe 1mko],
bo,, lo,,||pe, loy, ||, 1|-~Ppo|

where m, =1+ Then

B A o Ao A T~ A - A4

m,,
2, = 2|

Thus, supS, <o, since ¢, < 1.

S, < [1+0,+ag +...+ag 7" |-

Now it is easy to see that }]erlo|snk| =0,for all Kk ell,since
b | _[b]
a,, -4 la-4|
Then, from Lemma 1.1, we have (A, — Al )'eB(c,) andso ¢ o(A,;.C,) . Thus
o(A,,.c,)cDUE.

Conversely, suppose that A¢&o(A,,,c,). Then (A,, —Al )'eB(c,). Since

Sn+1,k

<1. So, the columns of (A,, —Al )" are in Co.
sn,k ’

=1lim

n—oo

lim

n—w

ab

(Aa’b—/ll)’1 -transform of the unit sequence € =(1,0,0,...) is in Cy, we have
lim b, ‘: b

k—o

<1 and A=, forallkell . Then {iel :Ja-4/<[pl} co(4,,.c,)

a, -4 la-4

and {a, :k e} co(A,,.C,) . But, o(A,,.C,) is a compact set, and so it is closed. Then
D ={/1 el :|a—/1| S|b|} co(A,,.C) and E ={a, :a, ¢D}co(A,,,C,). This com-

pletes the proof. O
E, if there exists mell :a; #a; Vi,j>m;
Theorem 2.3. o ,(A,;.C) = .
’ &, otherwise
Proof. Consider the equation A, x=Ax for any X in Co. Then (&, —4)X, =0 and
(& — )X +b_x_, =0, for all k=1,2,3,... Hence, for all A¢{a :kell}, we
have X, =0, for all kel. So, A¢o0,(A,;,C,). This shows that

o, (A, cf{a, kel
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Now, if 1 =3, and there exists j e[l , such that & =a,, then we can easily see

that X, =0 for all k <max{i, j}. Then we have the following cases:
Case (i): Let (a) be such that & #a; for alli, jell and let, 1=a,. Ifx, =0, then

X, =0,for all kel and so A¢o,(A,,,C,). Also, if X, #0 then we have

- . |X b
Xy, = il X, #0, for all kell, and hence lim|—|= But
& & k—o0 X, a-a,
#1, since a,#a+b, a,#a—b . Then, X ec, if and only if |a—a0|>|b|.
a-a,

Then &, €0, (A,,.C,) if and only if [a—a,|>|b|.

Similarly, we can prove that & €o,(A,;.C,) if and only if |a—ak| >|b|. Thus
0,(A,,C,) =E in this case.
Case (ii): If (&) is such that there exists mell with g =a, for alli, j>m, then we
b|. Thus

can prove, as in Case (i), that a €o,(A,,,C,) if and only if |a—ak| >
o, (Aa’b ,Co)=E .

Case (iii): If (ay) is not as in Case (i) or Case (ii), that is for all me[l there exist
i<mand j>m such that & =a;, then we have x=6. Thus o (A,,,C)) =% in this

case.
This completes the proof. O
It is well known that if T :c, —C, is a bounded matrix operator with the matrix

A, then the adjoint operator T":C, —> ¢, is defined by the transpose A' of the matrix
A.

Theorem 2.4. (i) {2el :la-A|<p|} co,(A,,.co)

(i) {a :k el }co,(A,p.Co),

a,—4

n

(iii) {/1 el :sup

a, —

n

(iv) o, (AL .Co) S {,1 el :inf

< 1} co, (A;b ,C;),
4 <1},
(V) Jp(A;,bﬂcg)g(D UE)\G,
where the set G is defined as:
A€G if and only if there exists k, €[l such that |ak —l| = |bk

, for all k >k,.

Proof. (i) Suppose that A, f =Af for f =(f,f,f,,...)# 6 in c, = . Then, by solving
the system of equations a,f,+b,f, =Af, anda,f, +b,f, . =Af,, k 21, we obtain
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*

ab»

- :(l;ak)fk, k el] . Thus, {leD :|/”L—a|<|b|}gap(A

k
the proof of (i).
@) Clearly, for all ke[l , the vector f =(f,f,,..., f,,0,0,...) is an eigenvector of the

f ¢,). This completes

operator A;b corresponding to the eigenvalue A =a, , where f, #0 for alln=0,1,2,...k
A- a,

and f = f,,. foralln=1,2,3, k. Thus {a :kel}co,(A,,,C,). This

n
n-1

completes the proof of (ii).

(A=8)(A-a)..(A=8 ). |

(7ii) We have f, = =1,2,3,.... Then

b, ..b,

k

=l + 3 ”‘ao“—aﬂ--“—ak1>||f0|s|f0|+|f0|2{sup Ao } |
K k1 b, ..b, | ] S ]

a, -1

Thus, {/1 ell :sup

< 1} co, (A;b,cg) . This completes the proof of (iii).

n

(i) Let A€o,(A,,.C,). Then there exists f # 6 inc, such that A;, f =Af . Then

the series Z| fk| is convergent, and so,
k

k
R L e (N AR

| bb,..b, |

|f0|+|f0|k2{irn1f
=1

A-a,
n

aﬂ

This implies that inf < 1. This completes the proof of (iv).
n

(v) Let A eap(A:’b,cg). Then there exists f #6in ¢, such that A, f =Af. Then
the series »_|f,| is convergent. If f #0andf, =0 forallk e[ \{0},then A=a,.
k

Similarly, we can have A=a,, for some Kk >1. Then, 4 may belongs to the set
{a :k e[ }. On the other hand, ifA¢{a :kell}, then f #0 forallk el and so,

k+1 A-a

by wusing d’Alembert criterion, we must have %im <1. Hence,

—>0

5

o, (Ay,.C0) {4 el Ja—2| <[} u{a, :k e} . Also, if there exists k, €[] such that
la, —4|=|b,

, for all k >k, then we have the series Z| fk| be not convergent, and
k

so A ¢G . This completes the proof of (V).
In general, o, (A, ,.¢,) #{A €l :]a— 4| <[b]} . This can be shown in the following

example.
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2 2
Example 2.5 Let a, = LSl ,andb, = kel . Then, sup|ak|=sub|bk|=a=b =1,
k+3 k+2 k k

and a, #a+b, for all k €[] .Clearly,Og{/leD :|a—/1|<|b|}. But, Oco (A;b,cg)
(0 ak)f

k

since there exists f =(f ,f,,f,,...) suchthat f,#0and f, = and we can

2
2) <oo,  This  proves that

easily see that Z|fk|=|f0|+4|f0|i( !
k Lk +

o, (A -Co)#{ el :fa— 2] <} 0

Theorem 2.6. If there exists mell such that & #a; for all i, j>m, then:

(i){4el :la=2|<p|} c o, (A,p.Co)

(i) {a, :fa-a,|<p|} c o, (A,p.co),

(iii){/leD - sup|
k

-1
< 1} - Gr (Aa,b ’Co)v

k
—4 <1},

k

(IV) 0, (Ayy Co) {/I €0 tinf o

(V) 0, (A,y:6,) < (D UE)\G.

Proof. (i) Let A€l with |a—/1|<|b|. Then, the operator (A,, —Al) is triangle
except may be for A=a,, for some kell, and consequently the operator
(A, —Al) has an inverse. Further, by Theorem 2.3, we see that the operator

(A,, —Al) is one to one for A=a,, for some k €[l , when |a—i|<|b|. So,
(A, — A1) exists.

Also, if Ae€ll with |a—/1| <|b|, then 1eo,(A,,.c,) and so (A,, —Al)is not
one to one. Hence, by Lemma 1.2, the range of the operator (A, —Al) is not dense
in Co. Thus {l el :|a—ﬁ,| < |b|} c0,.(A,,C)-

(@) It is clear that, for all a;x with |a— ak| <

, we have a ¢0,(A,,,C,)) . Then, the
operator (A,, —a,|)™ exists. On the other hand a, € Jp(A;b,Cg) ,and so (A, —Al)
is not one to one. Then it is easy to see that (A,, —Al) is not dense in Co. Thus,

{a,:J]a-a|<|of} c o, (Aaqb,co).

-1
(iii) Let A el] with sup <1. Then it is easy to see that |a /1| |b| Similarly,

k

k
as in (i) we can prove that A€o, (A,,,C,) which shows that
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a —A

{AED :sup
k

< 1} co,.(A,;.C)-

k

(iv) Forall Aeo,(A,,,C,), we have (A,, — A1) exists and defined on a set which

is not dense in Co. Then, (A;b —Al) is not one to one, and therefore A€o, (A,},C,).

This implies that EE{ZGD 1nf|ak 4 8 —4 <1}.
k bk bk

(v) The proof is similar to that of (iv). O

Theorem 2.7. If for every mell there exists i<m and j >m such that & =a,,

then:

@) {/1 ell :|a —/1| < |b|} c o, (A,p,Co),

(i) {a :k el } co,(A,,.C),

<1}. Thus, o,(A,, ,Co)g{/‘t ell :i1gf

a —4

(iii) {Z ell :sup

< 1} c o, (A,p,C)

4 <1},
(V) 0, (A,.C,) < (D UE)\G.

Proof. The proof is similar to that of Theorem 2.6. 0
Also, is true the following theorem

Theorem 2.8. o, (A,;,,¢,) =0, (A,,.C0)\ 0, (A,p,C,) -

Theorem 2.9. If there exists me[l such that & #a; for all i, j >m, then:

(I) O-C(Aa,bﬂco)g{ﬂ‘eD :|a_/’t|=|b|}’
21},
(ili) G co. (A,p.Co).

Proof. The proof immediately follows from Theorem 2.2, Theorem 2.3 and Theo-
rem 2.6 because the parts 0,(A,,,C,), 7,(4,,,C,) and o, (A, ,C,) of the spectrum

(A
Theorem 2.10. If forevery me(l there exists i<m and j >m such that a; =a,, then:

(i) 0,(A,p.C)c{Aell (Ja—2=p|| VE,
1),
(i) G c oy (Ay5.C0).

Proof. The proof is similar to that of Theorem 2.9.

k

a —

(iv) o, (A,.C) S {/1 el 2iI|}f

k

A—-a,

k

(ii)Gc(Aa’b,Co)g{/ieD :|a—ﬂ|£|b|}m{/16D :sup
k

c,) of A,, €eB(c,) are disjoint and their union is o(A,,,C,) .

a -4

k

(i) o, (A,,.¢)) = (D uE)m{ﬂeD Jsup
k
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Co ARDICILLIQLAR FOZASINDA A, UMUMILOSMI$ FORQ
OPERATORUNUN SPEKTRi HAQQINDA

9.M.OHMBDOV, SAAD R.EL-SABRAVI

XULASO

Mogalonin osas magsadi yeni toyin olunmus Aa,b imumilosmis forq operatorunun

Co ardicilliglar fozasinda spektrini toyin etmokden ibarotdir. Molum A forq operatoru vo

onun {imumilogmolori olan B (r,s) vo A, operatorlart vo homg¢inin sag siiriismo vo Zveyer

operatorlart daxil edilon iimumilogmis farq operatorlari sinfina daxildirlor. Isdo Aa,b

operatorunun mahdudlugu goéstorilmis vo onun normasi hesablanmisdir.
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O CIIEKTPE OBOBHIEHHOI'O PAZHOCTHOTI'O OITEPATOPA Aa,b
MO MPOCTPAHCTBY MOCJEJIOBATEJBHOCTEN ¢,

AM.AXMEZIOB, CAA/L P.2JIb-ITABPABU
PE3IOME

OcHOBHas 1IeIb HACTOSAIICH PabOTHI ABISIETCS ONPE/EIICHNE CIIEKTpa OJHOTO HOBOTO
0006IIEHHOTO Pa3HOCTHOTO omeparopa A,y IO TPOCTPAHCTBY MOCIENOBATEIBHOCTEH Cj .

Knacc BBeieHHBIX 0000IIEHHBIX PA3HOCTHBIX ONEPAaTOPOB BKIIOYAET B ceOs pa3sHOCTHBIN oIe-
patop A u ero obobmenust B(r,s) u A, a Taxke oneparops! 3Beiiepa U IPaBOro CABHIa.

I[()Ka3aHa OrpaHNUYCHHOCTL OIIEpaTopa Aa p U HaﬁﬂeHa €r0 HOpMa B IMMPOCTPAHCTBE MMOCIICI0-

BaTeNIbHOCTEH C() .
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