ЭЛЕКТРОННО-КОНФОРМАЦИОННЫЕ СВОЙСТВА ПРОТИВООПУХОЛЕВОГО ЛЕКАРСТВЕННОГО ПРЕПАРАТА-СREKA

Г. Д. Аббасова, Н. С. Набиев*, И. Н. Алиева**

Кафедра оптики и молекул. физики, *Кафедра химической физики наноматериалов ** Институт физических проблем, Бакинский государственный университет ул.3. Халилова,23, Az - 1148, Баку, Азербайджан

Одним из наиболее перспективных направлений исследований в современной нанобиотехнологии является изучение механизмов управляемого транспорта лекарственных и диагностических средств с помощью наночастиц, нагруженных молекулами лекарственного вещества. К числу таких лекарственных препаратов, используемых в терапии опухолевых клеток с использованием наночастиц относится соединение, состоящее из пяти аминокислотных остатков Cvs1-Arg2-Glu3-Lvs4-Ala5 и получившее название CREKA. Препарат CREKA был впервые синтезирован в 2006 году американскими учеными из Технологического Университета штата Массачусетс [1]. В данной работе полуэмпирическими методами квантовой химии-CNDO, AM1 и PM3 на основе вычислительных компьютерных программ исследовано пространственное строение и электронно-конформационные свойства молекулы CREKA. Расчетные модели молекул были построены на основе координат атомов молекулы CREKA, полученных методом теоретического конформационного анализа в рамках механической модели атома На основе исследования электронных характеристик препарата CREKA-[2]. распределения электронной плотности, парциальных зарядов на атомах, электрического дипольного момента молекулы в различных конформационных состояниях был проведен сопоставительный анализ результатов расчета, проведенных различными методами, а также данными, полученными другими авторами.

В таблице 1 приведены значения полной, электронной энергии и энергии связывания в низкоэнергетических конформациях молекулы, относительная энергия которых варьирует в интервале значений 0-5 ккал/моль.

Конфрмация	Относительная энергия	Полная энергия			Энергия связывания			Электронная энергия		
		CNDO	AMI	PM3	CNDO	AMI	PM3	CNDO	AM1	PM3
1	0.0	-288622	-188194	-170394	-21920	-7801	-7809	-2004372	-1806508	-1779765
2	0.3	-288603	-188163	-170375	-21901	-7771	-7790	-2005934	-1807608	-1780864
3	0.3	-288607	-188188	-170388	-21905	-7796	-7803	-2033603	-1834855	-1807921
4	0.5	-288609	-188172	-170374	-21907	-7780	-7789	-2080778	-1878808	-1851549
5	0.9	-288608	-188247	-170437	-21907	-7855	-7852	-2042134	-1842760	-1815884
6	1.0	-288565	-188136	-170372	-21864	-7744	-7787	-2080225	-1877820	-1850761
7	1.1	-288572	-188117	-170437	-21871	-7725	-7852	-2138608	-1932555	-1815884
8	1.2	-288575	-188161	-170367	-21874	-7769	-7782	-2096429	-1893598	-1866432
9	1.5	-288610	-188202	-170398	-21909	-7809	-7813	-2003220	-1805514	-1778711
10	2.8	-288605	-188172	-170378	-21903	-7779	-7793	-2014914	-1816196	-1789400
11	2.9	-288597	-188169	-170373	-21895	-7777	-7788	-2066093	-1864812	-1837813
12	3.4	-288602	-188274	-170377	-21900	-7882	-7792	-2046645	-1847454	-1820461

Таблица 1. Электронные характеристики (ккал/моль) различных конформационных состояний молекулы СRЕКА по данным методов CNDO, AM1 и PM3

Полуэмпирические квантово-химические методы расчета, используемые в работе, отличаются друг от друга как по выражению матричных элементов фокиана, так и по параметризации. В методах AM1 и PM3 используются матричные элементы фокиана, полученные на основе приближения пренебрежения двухатомным перекрыванием (NDO). Приближение NDO имеет более строгое физическое основание, чем приближение

нулевого дифференциального перекрывания. Анализ энергетических параметров и величин дипольных моментов, полученных методом CNDO отличаются от данных, полученных методами AM1 и PM3. Следует отметить также, что если между конформациями, попадающими в интервал относительной энергии 0-5 ккал/моль по данным метода молекулярной механики и квантовой химии имеется определенное согласие по характеру дифференциации низкоэнергетических состояний, для методов AM1 и PM3 такого согласия не наблюдается.

Таблица 2. Дипольные моменты (дебай) 12 конформационных состояний молекулы CREKA по данным методов CNDO, AM1 и PM3

Ы	Дипол	ьный м	юмент	ы	Дипольный момент			
Конформаци	CNDO	AM1	PM3	Конформаци	CNDO	AM1	PM3	
1	3.0	5.9	7.4	7	14.7	12.2	14.7	
2	6.3	4.1	0.9	8	10.4	8.6	8.6	
3	6.4	8.6	8.4	9	5.9	9.4	8.8	
4	3.3	8.5	8.4	10	8.6	12.1	11.3	
5	7.2	40.9	41.1	11	15.4	15.3	14.7	
6	11.7	8.0	7.7	12	13.2	49.9	11.2	

Полученные результаты будут использованы для молекулярного моделирования аналогов молекулы CREKA и изучения их структурно-функциональной взаимосвязи с целью выявления общих элементов пространственной структуры, ответственных за фармакологические эффекты исследуемого соединения.

ЛИТЕРАТУРА

- [1] O.C. Farokhzad, J.J. Cheng, B.A. Teply, I. Sherifi, S. Jon, P. W. Kantoff, J.P. Ritchie, R.Langer, Proceeding of the National Academy of Sciences, 103 (116), 6315 (2006).
- [2] Г.Д. Аббасова, И.Н. Алиева, Н.С. Набиев, Elm və təhsildə informasiya-kommunikasiya texnologiyaların tətbiqi, II Beynəlxalq Konfrans, Bakı, 553, 2007.