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Introduction and Summary

The present report is designed to focus attention on the Hartree-Fock

approximation

as a general basic for construction some non-perturbative approaches for
describe of dynamics of strong interaction systems.



Introduction and Summary

Ever since of success of the Tomonaga-Schwinger-Feynman-Dyson

formalism in QED, corresponding field-theoretic formulations have been
in the forefront of strong interaction dynamics since the early fifties of
past century, the main strategy being to device various ’closed’ form of
approaches which are represented as appropriate ’integral’ equations.



Introduction and Summary

One of the earliest efforts in this direction was the Tamm-Dancoff
formalism,

I.E. Tamm:J. Phys. 9:449, 1945;
S.M. Dancoff:Phys. Rev. 78:382, 1950

which showed a great intuitive appeal.
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In this method, the state vector of the system under consideration is
Fock-expanded in terms of a complete set of eigen-functions of the free
field hamiltonian, which was first systematically applied by Dyson (+
Cornell collaborators) in the early fifties, to the meson-nucleon scattering
problem, for a dynamical understanding of the ’Delta’ and other
low-energy resonances

H.A. Bethe and F. de Hoffmann: Mesons and Fields II, Row, Peterson
and Co, N.Y.,1955, p.199;
V.P. Silin, I.Y. Tamm, V.Ya. Fainberg: ZhETF 29:6, 1955.
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The 3D Tamm-Dankoff equation and the 4D Schwinger-Dyson equation
(SDE) have been the source of much wisdom underlying the formulation
of many approaches to strong interaction dynamics. To these one should
add the Bethe-Salpeter equation (BSE),

E.E. Salpeter and H.A. Bethe: Phys. Rev. 84:1232, 1951
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which is an approximation to SDE for the dynamics of a 4D two-particle
amplitude, characterized by an effective (gluon-exchange-like) pairwise
interaction, for the effective N-N interaction, but now adapted to the
quark level.
A major bottleneck for the BSE approach has been its resistance to a
probability interpretation, since the logical demands of its 4D content are
incompatible with its approximate nature. This has led to Instantaneous
approximation
M. Levy: Phys. Rev. 88:72, 1952;
variants of on-shellness of the associated propagators
R. Blakenbecler and R. Sugar: Phys. Rev. 142:105, 1966.
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and to Logunov-Tavkhelidze Quasi-potential equation

A.A. Logunov and A.N. Tavkhelidze: Nuovo Cimento 29:380, 1963
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and Kadyshevsky formalism:

V.G. Kadyshevsky: Sov Phys. JETF 19:443;597, 1964,; Nucl. Phys.
B6:125, 1968,;
C. Itzikson, V.G. Kadyshevsky,I.T. Todorov: Phys. Rev. D1:2823, 1970.



Introduction and Summary

Above-named equations have been widely employed as prototypes of
strong interaction dynamics, addressing issues of gauge and chiral
symmetries, as well as dynamical breaking of chiral symmetry (DBCS) via
an NJL-type mechanism

Y. Nambu and G. Jona-Lasinio: Phys. Rev. 122:345, 1961; 124:246,1961.
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The report is organized as follows:
In sections 2-3 we results the solutions of ladder perturbative BSE. And
discuss about multifermion equations in QED.
In Section 4 we describe the method of construction of the MFE with the
fermion bilocal source for the NJL model with the
SUV (2)× SUA(2)–symmetric four-quark interaction and, for the sake of
completeness, consider the well-known leading approximation results of
this model. Also in this section we investigate the first-after-leading step
of the iteration scheme, which gives us the equations for the leading
order two-particle Green function and NLO correction to the propagator
of quarks.
In Section 5 we describe the second step of the iteration scheme. As a
result we obtain the equations for four-quark Green function and for the
three-quark Green function. We also obtain in this step the equations for
NLO two-quark function and NNLO correction to quark propagator. We
discuss the structure of second step equations and obtain the solutions of
four-quark and three-quark equations.
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In Section 6 we describe the third step of iteration scheme. As a result we
obtain the equations for six-quark Green function and for the five-quark
Green function, and, the NLO equations for four-quark and three-quark
Green functions. We also obtain in this step the equations for NNLO
two-particle function and NNNLO correction to quark propagator.
In Section 7 the modification of the MFE for the NJL model in the
formalism with the multilocal diquark and triple-quark sources is briefly
discussed.



Section 2. The ladder Bethe-Salpeter equations and their
possible solutions

The ladder approximation in method of BSE for the scattering amplitude
in field theory models was originally used justify Regge behavior at high
energies

B.A. Arbuzov, A.A. Logunov, A.N. Tavkhelidze, R.N. Faustov: Phys.
Lett. 2:150, 1962;
J.C. Polkinghorne: J. Math. Phys.4:503, 1963;
D. Amati, S. Fubini, A. Stanghellini: Nuovo Cim.26:896, 1962;
L. Bertocchi, S. Fubini, M. Tonin: Nuovo Cim.25:626, 1962

and was the point of departure in the construction of the multi-peripheral
model.
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Different methods have been used to obtain exact solutions of ladder
BSE for forward scattering amplitude in a number of models and other
works by B.A. Arbuzov and Co

B.A. Arbuzov, V.E. Rochev: Yad.Fiz. 21:883, 1975;
B.A. Arbuzov, V.Yu. Diakonov, V.E. Rochev: Yad.Fiz. 23:904, 1976;
K.G. Klimenko, V.E. Rochev: Yad.Fiz. 31:448, 1980;
V.Yu. Diakonov: TMF 43:218, 1980

and

C.G. Callan, M.L. Goldberger: Phys. Rev. D11:1553, 1975
I.J. Muznich, H.S. Tsao: Phys. Rev. D11:2203, 1975

and the behavior of these solutions in both the Regge and deep inelastic
(Bjorken) regions has been investigated.
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In particular for ladder BSE for imaginary part of scattering amplitude
p+ p′ = k + k′

F (s, t) = πλ2δ(s−µ2)+
πλ2

(2π)4

∫
d4q

θ(s′ − q0)δ(q2 − µ2)

[(p− q)2 −m2][(k − q)2 −m2]
F (s′, t)

(1)

Here s = (p+ p′)2, s′ = (p+ p′ − q)2, t = (p− k)2 and µ is exchange
mass, and m0 is the mass in other propagators,
d4q = dq0|−→q |d|−→q |dcosθdϕ.



Section 2. Forward scattering:

In these works to find via different mathematical way (the inverse Mellin
transformation,a and/or via diagonalized way by means of an expansion
in Gegenbauer polynomials) to find the solutions in high energies s→∞,
and at t = 0 - only forward scattering, in common approximately in form

F (s′) = C(g2, α)(
s

m2
)α,

where g2 = λ2

32π2m2 , and Regge parameter α has the form

α = −1

2
+

√
1

4
+ g2.

Such result lead us to idea, which consist in finding the solution in
starting as Regge form of behavior of scattering amplitude.



Ceremony of award to Regge and L.N. Lipatov Pomeranchuck price



Subsection 2.1. Easy way for solution of ladder BSE for
imaginary part of forward scattering amplitude

Let us to introduce in kernel of integral (1) a one as integral
1 =

∫
δ((p+ p′ − q)2 − s′)ds′. In case of forward scattering p = k,

p′ = k′ and p2 = m2, the integration with respect to ϕ, dcosθ, dq0 and
d|−→q | in c.m.s. |−→p |+ |

−→
p′ | = 0 is trivial. The result is

F (s) =
π2λ2

2(2π)4m2

∫
d(
s′

s
)

(1− s′

s )F (s′)

(1− s′

s )2 + µ2

m2

Let us to find the solution as

F (s) = sα.

The result of integration is the sum of two hypergeometric equations

64π2µ2 (α+ 1)(α+ 2)

λ2
= F (1, 2;α+ 3;−im

µ
) +F (1, 2;α+ 3; i

m

µ
). (2)



Subsection 2.1. Forward scattering

1) In case m << µ,

α = −3

2
± 1

2

√
1 +

λ2

8π2µ2
.

2)At µ << m

α = −n± (−32π2m2

λ2
+

1

2
ln
µ2

m2
), n = 1, 2, 3, ....

S.A. Gadjiev, R.G. Jafarov: Dokl.AN Azerb. , v.XLII: Nо11: 20, 1986;
S.A. Gadjiev, R.G. Jafarov: Dokl.AN Azerb. , v.XLIII: Nо1:34, 1987.



Subsection 2.2. Small momentum transfers

The Eq.(1) after the integration with respect to ϕ, dcosθ, dq0 and d|−→q |
in c.m.s. |−→p |+ |

−→
p′ | = 0, in case p = k, p′ = k′ and p2 = m2 and

k2 = m2 receive the form

F (s, t) =
π2λ2

8(2π)4|−→p |2
√
s
√

(s−s′+µ2)2

4s − µ2

·

·
∫
ds′dz

F (s′, t)

(β + z)(z2 + 2βz0z + β2 + z0
2 − 1)1/2

,

where z = cosθ, z0 = cosθ0, θ0-the scattering angle and
β = µ2−s+s′

4|−→p |
√

(s−s′+µ2)2

4s −µ2
.

Let us take in place z0 = 1 + ε, where ε << 1 and to expand to series.
We find the solution as F (s, t) = sα,t. The result of integrations is

64π2µ2 (α+ 1)(α+ 2)

λ2(1 + t
6m2 )

= F (1, 2;α+ 3;−im
µ

) +F (1, 2;α+ 3; i
m

µ
). (3)



Subsection 2.2.

1) In case m << µ,

α = −3

2
± 1

2

√
1 +

λ2

8π2µ2
(1 +

t

6m2
).

2)At µ << m

α = −n± (− 32π2m2

λ2(1 + t
6m2 )

+
1

2
ln
µ2

m2
), n = 1, 2, 3, ....

In case t = 0 all results have exact co-ordinate with results of forward
scattering.

S.A. Gadjiev, R.G. Jafarov: Krat. Soobsh. po Fizike FIAN, No11:25, 1986.
S.A. Gadjiev, R.G. Jafarov, A.I. Livashvili: Izvest. Vuzov. Fizika No5:49,
1989.



Section 3. Multi-particle equations

The multi-particle (three or more particle) generalizations of the 4D BSE
have been studied in detail. A straightforward generalization of
two-particle BSE has bee intensively studied in sixties-seventies of last
century. A best exposition of these studied can be found in the work of
Huang and Weldon

K. Huang and H.A. Weldon: Phys. Rev.D11:257, 1975.

These generalizations are based on the analysis of Feynman diagrams,
and all statements have a perturbative sense only. A form of the
equations was chosen arbitrary. (This arbitrariness is connected with a
choice of an inhomogeneous term). In addition, one can prove any
proposition by the diagrammatic method in a framework of some model
only, and the question about the model-independence is inevitable. An
additional disadvantage of the diagrammatic method is the fact almost
all propositions can be formulated in words and cannot be formalized.
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The above-mentioned difficulties cannot be resolved in the framework of
the diagrammar. However, the natural language exists for the description
multi-particle equations in the framework of the Lagrangian field theory.
There are Legendre transformations of the generating functional for the
Green’s functions.
Functional Legendre transformations were firstly introduced in quantum
statistics

C. De Dominicis: J. Math. Phys.3:983, 1962;
C. De Dominicis and P.C. Martin: J. Math. Phys.5: 31 1964.

Then they were applied to the quantum field theory

Dahmen H.D., Jona-Lasinio G: Nuovo Cim. A52:807, 1967;
Vassiliev A.N.: Functional methods in quantum field theory and
statistics.Leningrad, 1976;
Rochev V.E.:Teor. Mat. Fiz. 51:22, 1982.
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With these transformations one can obtain multi-particle equations as a
consequence of Schwinger ones. These multi-particle equations are
model-independent, and they do not depend on perturbation theory. Any
dynamical information about an interaction is contained in the equation
kernel.
A number of perspective physical applications of the effective models are
connected with multi-particle functions, which are, in the main, the
subject of present report. The basic method of calculations is a formalism
of multilocal sources.



Section 3.1. New non-perturbative method in QED and the
multi-fermion equations

The problem of nonperturbative calculations in QED arose practically
simultaneously with the principal solution of the problem of perturbative
calculations with based on renormalized coupling constant perturbation
theory. It is necessary to recognize, however, that the progress in the
nonperturbative calculations during last decades is not to large.
Quantative description of nonperturbative effects either is based on
non-relativistic foundations (an example is the bound state description
based on non-relativistic Coulomb problem) of is rather open to injury for
a criticism. Besides, the problem of inner inconsistency of QED exist.
This problem can be formulated as a deep-rooted thesis on triviality of
QED in the nonperturbative region. A new approach to nonperturbative
calculations in quantum electrodynamics is proposed in work

Rochev V.E.:J.Phys. A33:7379, 2000.
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This approach is based on a regular iteration scheme for the solution of
Schwinger-Dyson equations for generating the functional of Green
functions of QED by an exactly soluble equation. Its solution generates a
linear iteration scheme each step of which is described by a closed system
of integro-differential equation.
Note that equations of Green function at leading approximation and at
the first step of iteration scheme in two versions. First of them on the
language of Feynman diagrams of perturbative theory is analog of
summation of chain diagrams with fermion loop.
The second version of the iteration scheme can be compared on the
diagram language a ladder summation. The generating functional has the
form

G(J, η) =

∫
D(ψ, ψ̄, A)expi{

∫
(L+Jµ(x)Aµ(x))−

∫
dxdyψ̄βηβα(y, x)ψα(x)}.
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Functional derivatives of G with respect to sources are vacuum
expectation values. SDEs for the generating functional of Green functions
of QED has the forms:

(gµν∂
2 − ∂µ∂ν +

1

dl
∂µ∂ν)

1

i

δG

δJν
+ ietr

[
γµ
δG

δη

]
+ JµG = 0, (4)

G+ (i∂̂ −m)
δG

δη
+
e

i
γµ

δ2G

δJµη
− η ? δG

δη
= 0. (5)

In correspondence with the choice of the leading approximation i-th term
of the iteration expansion of the generating functional

G = G(0) +G(1) +G(2) + · · ·, (6)

which is solution of iteration scheme equations. A solution of equations
(4), (5) is looked in the form:

G(i) = P (i)G(0).



Subsection 3.1.1. Chain approximation

Since P (0) ≡ 1, it is evident that for any ”i” the functional P (i) is a
polynomial in functional variables J and η. This circumstance is very
important since it means the system of equations for coefficient functions
of this functional take closed in any order of the iteration scheme.
This iteration scheme has no explicit small parameter. In some sense, the
sources J and η play the role of such a parameter. Expansion (6) of the
generating functional should be treated as an approximation of G(J, η)
near the point Jµ = 0, η = 0.
The iteration equation for the generating functional of Green functions of
chain approximation in switching off photon sources Jµ = 0 has the form:

G(i) +(i∂̂−m0)
δG(i)

δη
−ie2{Dµν ?γµ

δ

δη
tr[γν

δG(i)

δη
]} = η?

δG(i−1)

δη
. (7)

The solution of first step equation is

G(1) =

{
1

2
S2 ? η

2 + S(1)

}



Subsection 3.1.1.

Let us use the following Feynman graphical rules

Figure 1.

we obtain the BSE in chain approximation

Figure 2.
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as means as series (see Fig.2)

Figure 3.

The second step generation functional is

G(2)(η) = P (2)(η)G(0), (8)

where

P (2) =
1

4!
S4 ? η

4 +
1

3!
S3 ? η

3 +
1

2
S

(1)
2 ? η2 + S(2) ? η.



Subsection 3.1.1.

The second iteration step contains the equations for the four S4- and
three S3 functions and also the equations for the first order correction to
two-fermion function S(1)

2 and second-order correction equation to
electron propagator S(2). For these four functions we have a system of
four integral equations, which , and all equations, (also for next, ladder
approximation equations) posses the similar structure.

Sn = S0
n − ie2

{
(Dc

µν ? S · γµS) ? tr[γνSn]
}

and differ from each other by the structure of inhomogeneous terms S0
n.
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The inhomogeneous term S0
4 for four-electron function is

S0
4 = −3 · {S · S · S2},

where S2 is very well known form.

Figure 4.



Subsection 3.1.1.

The inhomogeneous term of three-electron equation is

S0
3 = −2 · {S · S · S(1)} − 2 · {S · S2} − ie2

{
(Dc

µν ? Sγµ) ? tr[γνS4]
}
.

Here S(1) is first step correction electron function, which is defined in
preceding step.

Figure 5.



Subsection 3.1.1.

The inhomogeneous term of the first order correction for two-electron
function has the following form

(S
(1)
2 )0 = −{S · S(1)} − ie2

{
(Dc

µν ? Sγµ) ? tr[γνS3]
}
,

Figure 6.

and the inhomogeneous term of second-order correction for single
electron function absence

Figure 7.



Subsection 3.1.2. Ladder BSE

As we note the leading order and first step equations are very well known

Rochev V.E.:J.Phys. A33:7379, 2000.

Here we would like to demonstrate the solution of ladder BSE for
two-electron bound state and the constructing of second order equations.

Jafarov R.G.:Izv. Akad. nauk Azerb. 25, No5:19, 2005;
Gadjiev S.A., Jafarov R.G.:Izv. Akad. nauk Azerb. 26, No5:20, 2006.

This step leads us very to well known two-electron function equation is

S2 = −S · S +K ? S2

where K = ie2{tr[Dµν ? SSγµS2γνS], } is the kernel of equation.



Subsection 3.1.2. Ladder BSE

The equation for first step electron propagator is

S(1) = ie2Dc
µν ? SγµS2γν + ie2Dc

µν ? SγµS
(1)γνS

which have a following graphical form



Subsection 3.1.2. Ladder BSE

BSE in momentum space is

S−1 · S2 · S−1 = 1 · 1 + ie2Dc
µν ? γµS2γν

Figure 10.

The BSE for bound states is

S−1χαβS−1 = ie2Dc
µν ? γµχ

αβγν

Figure 11.



Section 4. Mean-field expansion for Nambu–Jona-Lasinio
model and the multi-quark functions

A number of perspective physical applications of the effective models are
connected with multi-quark functions, which are the subject of present
report. The basic method of calculations is a formalism of multilocal
(double, triple, etc.) sources

Rochev V.E.:Teor. Mat. Fiz. 51:22, 1982.

As an object of application of the method we choose Nambu -
Jona-Lasinio (NJL) model
This model is one of the most successful effective models of quantum
chromodynamics for the light hadrons. For review see

Klevansky S.P.:Rev. Mod. Phys. 64:649, 1992;
Hatsuda T. and Kunihiro T.:Phys. Reports 247:221, 1994;
Volkov M.K., Radjabov A.E.:Uspekhi Fiz. Nauk 176:569, 2006.

.
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It is necessary to note, that this method has been successfully applied for
the other field-theoretic models and can be applied also for analogous
calculations in other similar effective models.
The multi-quark functions arise in higher orders of the mean-field
expansions (MFE) for the NJL model. To formulate the MFE we have
used an iteration scheme of solution of the Schwinger-Dyson equation
with the fermion bilocal source, which has been developed in works by
Rochev. We have considered the equations for Green functions of the
NJL model up to the third order of the MFE. The leading approximation
and first order of the MFE maintains equations for the quark propagator
and the two-quark function and also the NLO correction to the quark
propagator. The second order of MFE includes the equations for the
four-quark and the three-quark functions and also the equations for the
NLO two-quark function and NNLO quark propagator.
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Furthermore we have considered the generalization of the method in the
framework of the NJL-type models, which includes the other multilocal
sources (specifically, the diquark and three-quark sources).
We have found a solution of the four-quark and three-quark equations.
The solution of the four-quark function is a disconnected combination of
the leading-order functions and, consequently, the corresponding physical
effects (i.e., pion-pion scattering) are suppressed in this order of the
MFE. Therefore, we also investigate the third step of iterations, which
gives us the equations for the six-quark and five-quark functions and the
equations for the NLO four-quark and three-quark functions. The solution
of the six-quark functions equation has the disconnected form, which is
similar to the solution for the four-quark function of the preceding step.
The solution of the second-step four-quark equation gives us a possibility
to close the equation for the three-quark function.



Subsection 4.1. The method. Leading order and first step
equations

The Lagrangian of the two-flavor NJL model may be written in the
well-known form

L = ψ̄i∂̂ψ +
g

2

[
(ψ̄ψ)2 + (ψ̄iγ5τ

aψ)2

]
. (9)

To construct the MFE we use an iteration scheme of the solution of
functional-differential SDE

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
+ iγ5τ

a δ

δη
tr

[
iγ5τ

a δG

δη

]}
= η ?

δG

δη
(10)

for the generating functional G of Green functions.
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The generating functional G can be represented as the functional integral
with bilocal fermion source η:

G(η) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)

}
. (11)

We shall solve Eq. (10) employing the method which proposed in work by

Rochev V.E., Jafarov R.G.:Central Eur. J. Phys. 2:367, 2004
(arXiv:hep-ph/0311339).

The solution of the equation of leading approximation,i.e., the
functional-differential SDE (10) with zero r.h.s., is the following
functional G(0) = exp

{
Tr
(
S ? η

)}
, where S is solution of the equation

1 + i∂̂S + igS · tr[S(0)] = 0. (12)



Subsection 4.1.

The leading approximation generates the linear iteration scheme

G = G(0) +G(1) + · · ·+G(n) + · · · ,

consists in the step-by-step solutions of the equations

G(n)+i∂̂
δG(n)

δη
+ig

{ δ

δη
tr

[
δG(n)

δη

]
−γ5τ

a δ

δη
tr

[
γ5τ

a δG
(n)

δη

]}
= η?

δG(n−1)

δη
.

(13)
Functional G(n) is G(n) = P (n)G(0), where P (n) is a polynomial of 2n
-th degree on the bilocal source η.
The unique connected Green function of the leading approximation S is
the quark propagator. A solution of Eq. (12) is

S(p) = (m− p̂)−1,

where m is the dynamical quark mass, which is a solution of the gap
equation of the NJL model in the chiral limit.



Subsection 4.1.

The other connected Green’s functions appear in the subsequent steps of
the iterative scheme.
The first iteration step contains the leading-order equation for the
two-particle S2 quark function

S2 = −S · S +K ? S2 (14)

K = ig
{

(S · S) ? tr[S2]− (Sγ5τ
aS) ? tr[γ5τ

aS2]
}
is the kernel of

equation

Figure 12.

and first order quark function equation

Figure 13.



Subsection 4.2. Dimensional-analytically regularized NJL
model and NJL model with 4- cutoff regularization. Gap
equations

Since the NJL model in the mean-field approximation includes quark
loops, the essential aspect of application of this model is a regularization.
Most common regularizations for NJL model traditionally entail a 4D
cutoff in Euclidean momenta or 3D momentum cutoff. Other
regularization schemes (Pauli-Villars regularization or non-local Gauss
formfactors) also are used for the NJL model. The least common
regularization for NJL model is a dimensional regularization. Thus in
reviews cited above,

Klevansky S.P.:Rev. Mod. Phys. 64:649, 1992;
Hatsuda T. and Kunihiro T.:Phys. Reports 247:221, 1994

this regularization is not even mentioned.
The parameter of dimensional regularization, which traditionally treated
as a deviation in physical dimension of space,does not permit any
physical interpretation in this treatment.



Subsection 4.2.

However, an alternative treatment of dimensional regularization exists -
as a variant of an analytical regularization. In this treatment all
calculations are made in 4-dimensional Euclidean momentum space, and
the regularization parameter is treated as a power of a weight function

wΛ,D(q2e) = wΛ(q2
e)wD(q2

e) = θ(Λ2 − q2
e)

(
µ2

q2
e

)2−D/2

,

(µ2)2−D/2 =
ΩD
Ω4

(2π)4

(2π)D
(M2)2−D/2, (15)

which regularizes divergent integrals.

Krewald S. and Nakayama K. Annals of Phys.216:201, 1992.



Subsection 4.2.

It should be stressed that in this treatment of dimensional regularization,
the regularization parameter is not at all a deviation in the physical
dimension of space. Can be to suppose that a possible treatment of this
parameter is a power of some factor, which is a measure of gluon
influence on the effective four-fermion quark self-action of NJL model,
which has something in common with non-local variants of the NJL
model.
For dimensionally-analytical regularization the gap equation has the form

1 = κΓ(ξ) (16)

where ξ = 1 + D
2 , D = 2− 2ξ and κ = gncm

2

2π2 .
And in for 4-dimensional cutoff regularization

1 = κΛ

(
1− m2

Λ2
log

(
1 +

Λ2

m2

))
, (17)

where κΛ = gncΛ
2

2π2 .



Subsection 4.3. Two-particle amplitude and model
parameters in leading approximation

Scalar and pseudoscalar amplitudes

Aσ =
1

4nc (4m2 − p2) I0
, (18)

Aπ =
1

4ncp2I0
, (19)

where

I0
(
p2
)

=

∫
d
∼
q(

m2 − (p+ q)
2
)

(m2 − q2)
, (20)



Subsection 4.3.

which are in both regularization as following:

[I0
(
p2
)
]DAR =

i

(4π)
2

ξ

κ
F

(
1 + ξ, 1; 3/2;

p2

4m2

)
, (21)

[I0
(
p2
)
]FDC =

i

(4π)
2 [log (1 + x)−

− x

1 + x
F

(
1, 1; 3/2;

p2

4m2 (1 + x)

)
−

− p2

6m2(1 + x)
F

(
1, 1; 5/2;

p2

4m2 (1 + x)

)
+

+
p2

6m2
F

(
1, 1; 5/2;

p2

4m2

)]
. (22)

Here F (a, b; c; z) is the Gauss hypergeometric function.



Subsection 4.3.1. Model parameters

As a measure of quantum fluctuations of the chiral field, consider a ratio
of first-order condensate to the leading-order condensate

r ≡ χ(1)

χ(0)
=
itrS(1)(0)

itrS0(0)
= rσ + rπ. (23)

The results of parameter fixing in the leading approximation are given in
Table.1 and Table.2. As it is seen from these Tables the value of the
main parameter - quark mass m in model with 4D cutoff is much more
sensitive to the value of chiral condensate in comparison with that of the
model with DAR. At the same time it is necessary to point, that there are
no some principal distinctions of this variants of the NJL model at the
level of leading approximation for quark propagator and two-particle
amplitude.

JafarovR.G.. Vestnik BGU. No4:143, 2004.



Subsection 4.3.1. Model parameters

c(MeV ) m(MeV ) ξ κ = 3gm2/2π2

-210 357 0.333 0.373
-220 356 0.289 0.322
-230 354 0.252 0.277
-240 353 0.221 0.242
-250 352 0.195 0.212

Таблица: 1. The model parameters in leading order (dimensionally-analytical
regularization): chiral condensate c, quark mass m, regularization parameter ξ
and dimensionless coupling κ.



Subsection 4.3.1. Model parameters

c(MeV ) m(MeV ) Λ(MeV ) κΛ = 3gΛ2/2π2

-210 423 733 1.86
-220 323 791 1.488
-230 276 873 1.315
-240 253 947 1.240
-250 236 1029 1.187

Таблица: 2. The model parameters in leading order (4-dimensional cutoff):
chiral condensate c, quark mass m, regularization parameter Λ and
dimensionless coupling κΛ.



Subsection 4.4. Meson amplitudes contributions in chiral
condensate and in quark propagator

Since the foundation of the NJL model is non-renormalizable interaction,
the quit essential point of the model is a regularization. It already
advances in the literature an opinion, that the NJL model for different
regularization can lead to different physical results.
First-order equations of the MFE define corrections to quark propagator.
First-order mass operator Σ(1) = S

(−1)
0 ? S(1) ? S

(−1)
0 , where S(1) is a

first-order correction to quark propagator, is defined by equation

Σ(1) = S0(x)Aσ(x) + 3S0(−x)Aπ(x) + igtrS(1)(0) (24)

Let us to introducing dimensionless NLO mass functions a(1) and b(1):

Σ(1) ≡ a(1)p̂− b(1)m. (25)



Subsection 4.4.

and using the formula (23) for ratio of NLO condensate to the LO
condensate, we obtain from (24) the expressions for a(1) and b(1) in
momentum space the following formulaes:

p2a(1)(p2) =

∫
dq̃

p2 − (pq)

m2 − (p− q)2
[Aσ(q)− 3Aπ(q)], (26)

b(1)(p2) = r −
∫
dq̃

1

m2 − (p− q)2
[Aσ(q) + 3Aπ(q)]. (27)

Using expression (23) for the NLO mass operator, we may to rewrite
inverse quark propagator

S−1 = m− p̂− Σ(1) (28)

as the form:
S−1 = (1 + b(1))m− (1 + a(1))p̂ (29)

(where, according gap equation, m is LO quark mass).



Subsection 4.4.

Suppose the propagator has a pole in point p2 = m2
r, which corresponds

to a particle with mass mr, which corresponds to a particle with mass
mr:

b(m2
r) = mra(m2

r)

Since a(1) and b(1) are small additions (a(1) � 1, b(1) � 1 ),
we can to expand a(1)(m

(2)
r ) and b(1)(m

(2)
r ) near the point m and to

obtain the formula for the quark-mass correction δm ≡ mr −m:

δm

m
∼= b(1)(m(2))− a(1)(m(2)). (30)

Jafarov R.G.:Izv. vuzov Fiz. No7:31, 2006.



Subsection 4.4.1. Sigma-meson amplitudes contribution

Consider a contribution of scalar amplitude in pole approximation Aσ in
quark mass. In correspondence with Eqs. (26) and (27) we have

p2a(1)
σ (p2) =

∫
dq̃

p2 − (pq)

m2 − (p− q)2
Aσ(q), (31)

b(1)
σ (p2) = rσ −

∫
dq̃

1

m2 − (p− q)2
Aσ(q). (32)

To calculate this contributions we use the leading-singularity
approximation for amplitudes:

Apoleσ =
1

4ncI0(4m2)(4m2 − p2)|p→4m2

, (33)

with

[I0(4m2)]FDC =
i

(4π)
2 [log (1 + x)−

√
x arctan

1√
x

]−

according Eq. (22) in p2 = 4m2, for FDG regularization and Eq. (21) for
DAR.



Subsection 4.4.1. Sigma-meson amplitudes contribution

From Eq. (23) we obtain the quantity rσ in DAR. A computation gives
us the following values for sigma-meson contribution:
ξ = 0.25 we obtain (rσ)DAR = −0.033;
ξ = 0.4 we obtain (rσ)DAR = −0.01.
The sigma-meson contribution is small in comparison of the contribution
and possesses the opposite sign, i.e. it decrease the common contribution.
For FDC regularization the leading-singularity approximation for Aσ
coincides with the pole approximation. This quantity for FDC is a
function of x ≡ Λ2/m2. The values of rFDCσ (x) for two characteristic
values of ratio:
x = 3 (c(0) = −210MeV ) - rFDCσ (3) = −0.007;
x = 19 (c(0) = −250MeV ) - rFDCσ (19) = −0.116.
In contrast to the DAR, the sign of sigma contribution for FDC is the
same as for pion contribution.



Subsection 4.4.1. Sigma-meson amplitudes contribution

A sigma-correction to quark mass for DAR given by formula(
δmσ

m

)DAR
= rDARσ − cosπξ

41+ξncπ(1/2− ξ)
and attains:
at ξ = 0.25: δmDAR

σ = −0.086m,
at ξ = 0.4: δmDAR

σ = −0.056m.(
δmσ

m

)FDC
= rFDCσ − 4 log(1 + x/4)− log(1 + x)

8nc[log(1 + x) +
√
x arctan

√
1/x]

,

at x = 3: δmFDC
σ = −0.022m;

at x = 19: δmFDC
σ = −0.158m.

Since a pion correction to quark mass in both regularizations equal zero
(see below), these values are full corrections to quark mass.



Subsection 4.4.2. Pion amplitudes contribution
Pole approximation:

Pseudoscalar amplitude Aπ naturally is associated with the pion, which in
the chiral limit is a massless Goldstone particle. In both regularizations
under consideration we can define a pion propagator as a pole term of
Apoleπ , which leads to the singularity of pseudoscalar amplitude and in
both regularization are as following:

(
Apoleπ

)DAR
=

1

12p2IDAR0 (0)
= −2igm2

ξp2
, (34)

(
Apoleπ

)FDC
=

1

12p2IFDC0 (0)
=

= −i 4π2

3
(

log(1 + x)− x
1+x

)
p2
. (35)



Subsection 4.4.2. Pion amplitudes contribution

The pion contribution NLO condensate in pole approximation of pion
amplitude in both regularizations (DAR Eq.(34) and FDC regularization
Eq.(35)) is calculated by Eq. in pion channel

r =
24ignc

1− 8igncJ

∫
dp̃dq̃

[m2 − p2 + 2(pq)]Aπ(q)

(m2 − p2)2[m2 − (p− q)2]
,

where J is 2-loop integral. All integrals over dp and dq can be calculated
in closed form, and the results in both regularizations are the very simple
expressions:

rDARπ =
1

8ξ
, (36)

rFDCπ = − log(1 + x)

8
(

log(1 + x)− x
1+x

) , (37)

Jafarov R.G.:Fizika Azerb. NAS, No1:27, 2006(arXiv:hep-ph/0412114).



Subsection 4.4.2. Pion amplitudes contribution

According the Eqs. (26)-(27) the NLO mass functions a(1) and b(1) in
pion channel are defined by the following equations:

p2a(1)
π

(
p2
)

= −3

∫
dq̃

m2 − (p− q)2A
pole
π (q), (38)

b(1)
π

(
p2
)

= rπ − 3

∫
dq̃

m2 − (p− q)2A
pole
π (q) (39)

Using the leading singularity approximation for
(
Apoleπ

)DAR (34) and(
Apoleπ

)FDC (35) in (38) and (39) after calculating the integrals in DAR
and FDC regularization we obtain for the pion corrections to the quark
mass in next expressions according to (30)

(δmπ/m)DAR = rDARπ − 1/8ξ, (40)

(δmπ/m)FDC = rFDCπ + log(1 + x)/8(log(1 + x)− x/(1 + x)) (41)

The pion contribution in quark mass is equal zero, according to (36) and
(37).



Subsection 4.4.2. Pion amplitudes contribution
Non-pole approximation:

However, since the model is not renormalizable in four space-time
dimensions, the physical results and parameters depend on the
regularization method. This lead us to calculate the correction to quark
mass beyond the non-pole approach of the amplitude. Using the
expressions of pion amplitude (19) and the integral (21) in DAR, we can
to calculate the ratio in pion sector rπ. Also, having calculated in DAR
NLO mass functions by the Eqs. (38) and (39), according the formula
(30) of NLO quark mass correction we obtain:[(

δmπ

m

)DAR]non−pole
=
[
rDARπ

]non−pole−
1

2
√
πΓ(2− ξ)

∞∑
k=0

4kΓ(1− ξ − k)Γ(3/2− k)×

F (1 + ξ + k, 1 + k; 2− ξ; 1),



Subsection 4.4.2. Pion amplitudes contribution
Non-pole approximation:

where[
rDARπ

]non−pole
= −2

sin(πξ)

πξ

∫ ∞
0

dz
z−1−ξ

F (1 + ξ, 1; 3/2;−z/4)
×

∫ 1

0

du
1− u

[1 + u(1− u)z]1+ξ
·
[
1− ξ + (1 + ξ)

1 + u(u− 2)z

1 + u(1− u)z

]
From here is clear, that the result differ from zero.
This means, that the zero value of the pion correction to quark mass is
independent from regularization choice in NJL model in leading
singularity approach of pseudoscalar amplitude.

R.G. Jafarov: Georgian El. Science Jour. Physics No2:13, 2009.



Subsection 4.4.3. Improved model parameters

The condensate and the quark-mass corrections allow us to specify
parameters of the SU(2)−NJL model.
We modify a formula for the condensate as follows:

c3 = c30 + c31 = −m
2g

(1 + r). (42)

The formula for fπ stays the same, since corrections to amplitudes
generate in the next(second) order of MFE. The quark mass is the mass
mr:

mr = m+ δm.

Values of the model parameters for this improved choice are given in
Tables3. and 4.

R.G. Jafarov: Izv. Vuzov. Fizika. No7:31, 2006.



Subsection 4.4.3. Improved model parameters. DAR

m = − c
3

f2
π

· ξ

1 + 1
8ξ

,

1 =
3

4π2
· m

2

f2
π

Γ(1 + ξ),

c(MeV ) m(MeV ) ξ κ = 3gm2/2π2

-210 339 0.432 0.486
-220 336 0.385 0.434
-230 333 0.346 0.387
-240 330 0.312 0.334
-250 328 0.284 0.316

Таблица: 3. The model parameters with first-order (dimensionally-analytical
regularization): chiral condensate c, quark mass mr, regularization parameter ξ
and dimensionless coupling κ.



Subsection 4.4.3. Improved model parameters. 4D cutoff

m = − c
3

f2
π

·
log(1 + x)− x

1+x

x− log(1 + x)
(1 + r(x)),

1 =
3

4π2
· m

2

f2
π

[log(1 + x)− x

1 + x
],

c(MeV ) m(MeV ) Λ(MeV ) κΛ = 3gΛ2/2π2

-240 310 785 1.501
-250 283 819 1.408

Таблица: 4. The model parameters in leading order (4D cutoff): chiral
condensate c, quark mass m, regularization parameter Λ and κΛ.



Subsection 4.4.3. Improved model parameters. 4D cutoff

Table 4. does not contain the parameter values at c = −210MeV ,
c = −220MeV and c = −230MeV . These values are absent due to
following reason: the system of equations , which determines these
parameters, has no solution at fπ = 93MeV and at |c| ≤ 230MeV .
There is very important circumstance - for 4-dimensional cutoff the
meson contributions can destabilize the NJL model. Though these
contributions are relatively small (they do not exceed 25perecentege
from the leading contribution), but their opposite sign leads to a non
stability of all the system. The situation is very similar to that of pointed
of work by Kleinert at all.



Subsection 4.4.3. Improved model parameters

Note, that increasing a number of flavors, i.e. U(Nf )-NJL model, the
situation takes a turn for the worse, because a main pseudo-scalar
contribution is proportional to Nf .
At that for DAR the situation is principally different: due to the
coincidence of sign of the meson contributions with the sign of leading
contribution in condensate for this regularization a stabilization of the
model takes place. It is clearly seen, values of regularization parameter ξ
increase in comparison with corresponding leader-order values, i.e. shift to
a region of stability of model, where these meson contributions decrease.

R.G. Jafarov and V.E. Rochev: Izv. Vuzov. Fizika. No4:20, 2006 (arXiv:
hep-ph/0406333).



Section 5. Second step equations

The second step contains the equations for the four S4- and three-particle
S3 functions and also the equations for the two-particle function S(1)

2 and
the second-order corrections to the quark propagator S(2). For these four
functions we have a system of four integral equations. All these equations
(and all equations of following steps of the iteration scheme) possess the
structure, which is similar to the structure of Eq. (14):

Sn = S0
n + ig

{
(S · S) ? tr[Sn]− (Sγ5τ

a · S) ? tr[γ5τ
aSn]

}
, (43)

Figure 14.

and differ from each other by the structure of inhomogeneous terms S0
n.



Section 5. Second step equations

The inhomogeneous term in the equation for four-quark function S4 is

S0
4 = −3 ·

{
S · S · S2

}
, (44)

where S2 is defined in preceding section by Eq. (14).

Figure 15.



Section 5. Second step equations

The inhomogeneous term in the equation for three-quark function S3

S0
3 = −2

{
S ·S ·S(1)

}
−2·

[
S ·S2

]
+ig ·S?

{
tr[S4]−γ5τtr[γ5τS4]

}
. (45)

Figure 16.



Section 5. Second step equations

The solution of four-quark equation is the sum of products of two-quark
functions S2:

S4 = 3 ·
{
S2 · S2

}
(46)

Figure 17.

R.G. Jafarov and V.E. Rochev: Proceedings of the XXVIII International
Workshop on the FPHEP and Field Theory(2005), New Physics at
Colliders and Cosmic Rays, Moscow Region, Protvino, p.27-33, 2005 and
in Proceedings of Workshop LHP06, Tehran, Iran, 2006 (arXiv:
hep-ph/0609183).



Section 6. Structure of third step of iteration step equations

As we have showed above the equation for the four-quark function S4

has a simple exact solution which is the product of first-order two-quark
functions (see Eq. (46)). As it seen from this solution, the pion-pion
scattering in NJL model is suppressed, i.e. in the second order of MFE
this scattering is absent. This process arises in the third order of our
iterative scheme, i.e. in NLO four-quark function S(1)

4 .
The third-step generating functional is

G(3) [η] =

{
1

6!
Tr
(
S6 ∗ η6

)
+

1

5!
Tr
(
S5 ∗ η5

)
+

1

4!
Tr
(
S

(1)
4 ∗ η4

)
+

1

3!
Tr
(
S

(1)
3 ∗ η3

)
+

1

2
Tr
(
S

(2)
2 ∗ η2

)
+ Tr

(
S(3) ∗ η

)}
G(0).

R.G. Jafarov: Fizika Azerb NAS, XI, No 3:27,2005.



Section 6. Structure of third step of iteration step equations

After standard operations we obtain the equations for six-quark function
S6 and for five-quark function S5. Inhomogeneous terms are following:

S0
6 = 5 ·

{
−S · S · S4

}
(47)

Figure 18.



Section 6. Structure of third step of iteration step equations

and

S0
5 = −4·

{
S ·S ·S3·

}
−4·

[
S ·S4

]
+ig

{
tr

[
S?S6

]
−tr

[
Sγ5τ

a?S6γ5τ
a

]}
,

(48)
accordingly. The equations for six-quark function and for the five-quark
function with inhomogeneous term (47) and (48) in our iteration scheme
are new. The third step of iterative scheme gives us the equation for
four-quark function (S(1)

4 ).

Figure 19.



Section 6. Structure of third step of iteration step equations

As we note above the structure of this equation have are the form (43)
with following inhomogeneous term

(S
(1)
4 )0 = −3·

{
S·S·S(1)

2

}
−3·
[
S·S3

]
+ig

{
tr

[
S?S5

]
−tr

[
Sγ5τ

a?S5γ5τ
a

]}
.

(49)
The equation for NLO four-quark function S(1)

4 gives us possibility to
describe the pion-pion scattering in quark fields context. The
inhomogeneous term (49) of equations for four-quark function S(1)

4

contains five-quark function S5, three-quark function S3 and two-quark
function S(1)

2 . The inhomogeneous term (48) for five-quark equation
include the six-quark function S6, four-quark function S4 and three-quark
function S3. Before the investigation of four-quark function S(1)

4 it is
necessary to find the solution of equation for six-quark function S6,
because the inhomogeneous part (48) includes function S6. Also it is
necessary to find a solution of equation for NLO two-quark function S(1)

2 .



Section 6. Structure of third step of iteration step equations

The solution of six-quark equation is the sum of products of two-quark
functions S2 and four-quark functions S4:

S6 = 5 ·
{
S2 · S4

}
(50)

Figure 20.

In this step we obtain also the equations for NLO three-quark function
S

(1)
3 , NNLO two-quark function S(2)

2 and the equation for NNNLO
correction to the quark propagator S(3), which matter the forms (43), at
n = 3, n = 2, n = 1, accordingly.

Jafarov R.G.:Izv. Akad. nauk Azerb. v.XXVI, No2:3, 2006.



Section 7. The formalism of other type sources

In this last Section we consider the generalization of MFE of Section 2,
which includes other types of multi-quark sources except of bilocal source
η. Such generalization can be useful for the description of baryons in the
framework of MFE.

R.G. Jafarov and V.E. Rochev: Talk given in QUARKS-2010 16th
International Seminar on High Energy Physics Kolomna, Russia, 6-12
June, 2010.



Subsection 7.1. The formalism with diquark sources

Firstly, consider the formalism with diquark sources. For this purpose, we
add two diquark-source terms ξ and ξ̄ in the exponent of Eq. (11) for
generating functional G:

G(η, ξ, ξ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x) +

+

∫
dx1dx2ψ̄(x1)ψ̄(x2)ξ(x1, x2) +

∫
dx1dx2ξ̄(x1, x2)ψ(x1)ψ(x2)

}
. (51)

With these sources SDE (10) is modified as follows:

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
− γ5τ

a δ

δη
tr

[
γ5τ

a δG

δη

]}
=

= η ?
δG

δη
+ 2 · δG

δξ
? ξ. (52)



Subsection 7.1. The formalism with diquark sources

We have, apart from SDE (52), the additional SDE, which generates by
new sources:

i∂̂
δG

δξ̄
+ ig

{ δ

δξ̄
tr

[
δG

δη

]
− γ5τ

a δ

δξ̄
tr

[
γ5τ

a δG

δη

]}
=

= η ?
δG

δξ̄
− 2 · ξ̄ ? δG

δη
. (53)

It should be noted, that the presence of the new diquark source leads to
the connection condition for derivatives of generating functional:

δ2G

δξ̄(x2, x1)δη(y, x)
= − δ2G

δξ̄(x1, x)δη(y, x2)
. (54)

Due to this connection condition SDE (53) can be rewritten in the
alternative forms. These alternative forms, being fully equivalent from the
point of view of an exact solution of SDE’s, can lead to different
approximations in the MFE. The choice of the suitable forms for the
construction of MFE in the case should be made with an assistance of
corresponding physical reasons.



Subsection 7.2. The formalism with triple-sources

In the very similar manner one can introduce three-quark, or baryon
sources. These sources can be used for the direct description of nucleons
and other baryons omitting the intermediate diquark modelling. The
generating functional with anti-commutative three-quark sources ζ and ζ̄
is

G(η, ζ, ζ̄) =

∫
D(ψ, ψ̄) exp i

{∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dx1dx2dx3ψ̄(x1)ψ̄(x2)ψ̄(x3)ζ(x1, x2, x3)+

+

∫
dx1dx2dx3ζ̄(x1, x2, x3)ψ(x1)ψ(x2)ψ(x3)

}
. (55)



Subsection 7.2. The formalism with triple-sources

The master-equations for generating of SDEs are follows

0 =

∫
D(ψ, ψ̄)

δ

δψ̄α(x)cj
ψ̄β(y)dk×

× exp i

[∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dxdydzξ̄(xyz)ψ(x)ψ(y)ψ(z) +

∫
dxdydzψ̄(x)ψ̄(y)ψ̄(z)ξ(xyz)

]
,

0 =

∫
D(ψ, ψ̄)

δ

δψ̄α1(x1)c1j1
ψα3(x3)c3j3ψ

α2(x2)c2j2×

× exp i

[∫
dxL−

∫
dxdyψ̄(y)η(y, x)ψ(x)+

+

∫
dxdydzξ̄(xyz)ψ(x)ψ(y)ψ(z) +

∫
dxdydzψ̄(x)ψ̄(y)ψ̄(z)ξ(xyz)

]
.



Subsection 7.2. The formalism with triple-sources

i.e.
ψ̄β(y)dk ψ

α(x)cj → i
δ

δηβα(y, x)dckj
,

ψγ(z)elψ
β(y)dk ψ

α(x)cj → −i
δ

δξ̄γβα(zyx)edclkj

,

ψ̄γ(z)el ψ̄
β(y)dk ψ̄

α(x)cj → i
δ

δξγβα(zyx)edclkj

.



Subsection 7.2. The formalism with triple-sources

SDE (10) with three-quark sources is modified as follows:

G+ i∂̂
δG

δη
+ ig

{ δ

δη
tr

[
δG

δη

]
− γ5τ

a δ

δη
tr

[
γ5τ

a δG

δη

]}
=

= η ?
δG

δη
− 3 · δG

δξ
? ζ. (56)

As above, apart from SDE (56), the additional SDE exists, which
generates by the three-quark sources:

i∂̂
δG

δζ̄
+ ig

{ δ

δζ̄
tr

[
δG

δη

]
− γ5τ

a δ

δζ̄
tr

[
γ5τ

a δG

δη

]}
=

= η ?
δG

δζ̄
+ 3i · δ

2G

δηδη
ζ̄. (57)

The connection condition for the derivatives of the generating functional,
which is very similar to the condition(54), also exists in the
three-quark-source formalism, and also leads to alternative forms of
SDE(57).



Section 7

The method of the construction of MFE for these system of equations is
similar to that of Section 2.
An analysis of this construction is the object of future investigations!.



Subsection 7.3. Bethe-Salpeter type equation for
three-quark Green function

Leading order:

G0 +(i∂̂−m0)
δG0

δη
+ ig

{
δ

δη
tr

[
δG0

δη

]
+ iγ5τ

a δ

δη
tr

[
iγ5 ·τa ·

δG0

δη

]}
= 0,

(i∂̂ −m0)
δG0

δξ̄
+ ig{ δ

δξ̄
tr[
δG0

δη
] + (iγ5τ

a)1
δ

δξ̄
tr[iγ5τ

a δG0

δη
]} = 0. (58)

G0 = expTr(S ? η)

Leading-order propagator:

S−1 = (m0 − i∂̂ − igtrS)



Subsection 7.3. Bethe-Salpeter type equation for
three-quark Green function

First step:
G1 = P1G0,

P1 =
1

2
S2η

2 + S(1)η + ξ̄G
(0)
3 ξ

S2 is two-particle function. G(0)
3 -eq.:

(i∂̂ −m0)G
(0)
3 ξ + igG

(0)
3 ξ · trS = 3iS · S ? ξ.

Solution:
G

(0)
3 = −3iS · S · S



Subsection 7.3. Bethe-Salpeter type equation for
three-quark Green function

Second step:
G2 = P2G0,

P2 =
1

4!
S4η

4 +
1

3!
S3η

3 +
1

2
S

(1)
2 η2 + S(2)η+

1

2
ξ̄H5η

2ξ + ξ̄H4ηξ +
1

2
ξ̄2G6ξ

2 + ξ̄G
(1)
3 ξ

From SDE (58):

−S−1[
1

2
H5η

2ξ+H4ηξ+ξ̄G6ξ
2+G

(1)
3 ξ]+ig[trH5η+iγ5τ

atriγ5τ
aH5η]ξ+

+ig[trH4 + iγ5τ
atriγ5τ

aH4]ξ =

= η ? G
(1)
3 ξ + 3i{S2 + [S2η + S(1)] · S + S · [S2η + S(1)]+

+S · S[
1

2
S2η

2 + S(1)η + ξ̄G
(1)
3 ξ]} · ξ.



Subsection 7.3. Bethe-Salpeter type equation for
three-quark Green function

O(ξ̄ξ2):
G6 = −3iS · S · S ·G(0)

3

O(η2ξ):
H5 = −3iS · S · S · S2

O(ηξ):

H4 = −S ·G(0)
3 − 3i[S · S2 · S + S · S · S2 + S · S · S · S(1)]+

+ig[S · trH5 + S · iγ5τ
a · triγ5τ

aH5]

O(ξ):
G

(1)
3 = −3i[S · S2 + S · S · S(1) + S · S(1) · S]+

+ig[S · trH4 + S · iγ5τ
a · triγ5τ

aH4]



Subsection 7.3. Bethe-Salpeter type equation for
three-quark Green function

Consequently,
G3 = G

(0)
3 +G

(1)
3 =

−3i[S·S·S+S·S2+S·S·S(1)+S·S(1)·S]+ig[S·trH4+S·iγ5τ
a·triγ5τ

aH4].



Subsection 7.3. A possible application of this BSE
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