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1. Introduction. The theory of impulse differential equations is presented as a
natural description of some real processes that are subject to certain perturbations,
the duration of which is insignificant in comparison with the duration of the process.
Examples of such problems arise mainly in physics, technology, biology, economics
and other areas of natural science. The mathematical models of such processes are
described by the differential equations, the solutions of which are the functions with
discontinuities of the first kind at fixed or non-fixed time moments. Such differential
equations are well studied in monographs [10, 11, 14, 24, 26, 27]. In those works,
mainly differential equations with local conditions were studied. However, in recent
years, interest has increased in differential equations with impulses and nonlocal
boundary conditions, which describe many practical processes.

The problems with integral boundary conditions have been used to describe
many phenomena in applied sciences. We refer the interested reader to [2-9, 12,
13, 15-21, 23, 28-33] for the examples and references.

To date, there are a large number of works devoted to ordinary differential
equations with impulses and nonlocal boundary conditions, in which existence the-
orems for the solutions under various types of the nonlocal conditions have been
proved [2-9, 12, 13, 15-21, 23, 28-33].

Note that numerical methods for the multipoint and integral boundary value
problems for ordinary differential equations of the first order were developed in [1,
22].

In this paper, we study a nonlocal boundary value problem for the systems of
ordinary differential equations with impulses, the boundary conditions of which
include pointwise and integral terms. Note that the investigated boundary value
problem is rather general. In particular cases, it covers the Cauchy problem, non-
separated two-point boundary value problem, and the “pure” integral condition.
The questions of the existence and uniqueness of the solution of the considered
boundary value problem, as well as the continuous dependence of the solution on
the right-hand side of the boundary conditions are investigated.

2. Formulation of the problem. We consider the existence and uniqueness
problems for the solution to the following system of differential equations

ẋ(t) = f(t, x(t)), t ∈ [0, T ] , t ̸= ti, i = 1, 2, ..., p (2.1)

with nonlocal boundary condition

Ax(0) +

T∫
0

n (t)x (t) dt+Bx (T ) = C, (2.2)

and impulses
x(t+i )− x(ti) = Ii(x(ti)), i = 1, 2, ..., p, (2.3)

where 0 = t0 < t1 < ... < tp < tp+1 = T ;A,B ∈ Rn×n, n (t) ∈ Rn×n are
given matrices; C ∈ Rn is a given vector, moreover, det N ̸= 0, wher e N =

A+
T∫
0

n (t) dt+B; Ii : R
n → Rn are given functions; ∆x(ti) = x(t+i )−x(t−i ), where
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x(t+i ) = lim
h→0+

x(ti + h), x(t−i ) = lim
h→0+

x(ti − h) = x(ti) are right and left limits of

the function x(t) at the point t = ti, correspondingly.

3. Some auxiliary results and facts. Here we give some definitions and
auxiliary facts that will be used below.

By C ([0, T ] : Rn) we define the Banach space of the continuous vector functions
x(t), defined on the interval [0, T ] , with values from Rn and with the norm ∥x∥ =
max
[0,T ]

|x(t)| , where | · | stands for the norm in Rn.

By PC ([0, T ] , Rn) we denote the linear space

PC ([0, T ] , Rn) = {x : [0, T ] → Rn; x(t) ∈ C ((ti, ti+1] , R
n) , i = 0, 1, ..., p;

moreover x(t+i ) and x(t−i ), i = 1, 2, ..., p exist and are bounded; x(t−i ) = x(ti)}.
Obviously, the linear space PC ([0, T ] ; Rn) is a Banach space with the norm

∥x∥Pc = max
{
∥x∥C((ti,ti+1])

, i = 0, 1, ..., p
}
.

We define the solution to the boundary value problem (2.1)–(2.3) as follows.

Definition 3.1. The function x ∈ PC ( [0, T ] : Rn) is called to be a solution
to boundary value problem (2.1)–(2.3), if for arbitrary t ∈ [0, T ] , t ̸= ti, i =
1, 2, ..., p,

ẋ(t) = f(t, x(t))

and for t = ti i = 1, 2, ..., p 0 < t1 < t2 < ... < tp < T
is valid

∆x(t+i ) = x(t+i )− x(ti) = Ii(x(ti)).

Additionally the function x(t) satisfies to boundary condition (2.2).
Introduce the functions

K(t, τ) =

{
N−1(A+

∫ t

0
n (τ) dτ), 0 ≤ τ ≤ t,

−N−1
(∫ T

t
n (τ) dτ +B

)
, t < τ ≤ T.

Lemma 3.1. Let y ∈ C ([0, T ] ; Rn) ai ∈ Rn i = 1, 2 , ..., p. The differential
equation

ẋ(t) = y (t) (3.1)

with impulses

x(t+i )− x(ti) = ai; i = 1, 2, ..., p, 0 < t1 < t2 < ... < tp < T, (3.2)

and nonlocal boundary conditions

Ax(0) +

∫ T

0

n (t)x (t) dt+Bx (T ) = C (3.3)

has the unique solution x(t) ∈ PC ( [0, T ] , Rn) that is expressed by the formula

x(t) = N−1C +

∫ T

0

K(t, τ) y(τ) dτ +
∑

0<ti<T

K (t, ti) ai (3.4)

for t ∈ (ti, ti+1] , i = 0, 1, ... , p.
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Proof. Let the function x(t) ∈ PC ( [0, T ] , Rn) be a solution to boundary value
problem (3.1)–(3.3). Then integrating equation (3.1) on the interval t ∈ (0, ti+1)we
get

t∫
0

y(s)ds =

t∫
0

ẋ(s)ds =
[
x(t1)− x(0+)

]
+
[
x(t2)− x(t1

+)
]
+ ...+

[
x(t)− x(ti

+)
]
=

= −x(0)−
[
x(t1

+)− x(t1)
]
−
[
x(t21

+)− x(t2)
]
− ...−

[
x(ti

+)− x(ti)
]
+ x(t).

Considering condition (3.2) in the last equality we obtain

x(t) = x(0) +

t∫
0

y(s)ds+
∑

0<ti<t

ai. (3.5)

Now we require that the function x(t) ∈ PC ( [0, T ] , Rn)defined by equality
(3.5) satisfy the boundary condition (3.3)

(A+

∫ T

0

n (t) dt+B)x(0) = C −
T∫

0

n (t)

t∫
0

y (sdsdt)−

−
T∫

0

n (t)
∑

0<ti<t

aidt−B

T∫
0

y (t) dy −B
∑

0<ti<T

ai. (3.6)

Since det N ̸= 0 from (3.6) we have

x(0) = N−1

C −
T∫

0

n (t)

t∫
0

y (s) dsdt−
T∫

0

n (t)
∑

0<ti<T

aidt−B

T∫
0

y (t) dy

−B
∑

0<ti<T

ai

]
. (3.7)

Now we put the value x(0) defined by equality (3.7) into (3.6). It gives

x(t) = N−1

C −
T∫

0

n (t)

t∫
0

y (s) dsdt−
T∫

0

n (t)
∑

0<ti<T

aidt−B

T∫
0

y (t) dy

−B
∑

0<ti<T

ai

]
+

t∫
0

y (s) ds+
∑

0<ti<t

ai. (3.8)

Since
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T∫
0

n (t)

t∫
0

y (s) dsdt =

T∫
0

T∫
t

n (s) dsy (t) dt

T∫
0

n (t)

t∫
0

y (s) dsdt

=

T∫
0

n (t)
∑

0<ti<T

aidt =
∑

0<ti<T

T∫
ti

n (t) dtai,

is valid then from (3.8) we obtain

x(t) = N−1

C −
T∫

0

T∫
t

n (s) dsy (t) dt−
∑

0<ti<T

T∫
ti

n (t) dtai −B

T∫
0

y (t) dy

−B
∑

0<ti<T

ai

]
+

t∫
0

y (s) ds+
∑

0<ti<t

ai. (3.9)

Making the simplifications below

x(t) = N−1

C−
t∫

0

T∫
τ

n (s) dsy (τ) dτ−
∑

0<ti<t

T∫
ti

n (t) dtai−B

t∫
0

y (s) ds−B
∑

0<ti<t

ai

+

−N−1

(
T∫
t

T∫
τ

n (s) dsy (τ) dτ −
∑

t<ti<T

∫ T

ti
n (t) dtai −B

T∫
t

y (s) ds−B
∑

t<ti<T

ai

)
+

+
t∫
0

y (s) ds+
∑

0<ti<t

ai

we get

x(t) = N−1C +

t∫
0

E −N−1B −N−1

T∫
τ

n (s) ds

 y (τ) dτ

+N−1

T∫
t

[
−B −

∫ T

τ

n (s) ds

]
y (s) ds

+
∑

0<ti<t

E −N−1B −N−1

T∫
ti

n (t) dt

 ai

+
∑

t<ti<T

−N−1B −N−1

T∫
ti

n (t) dt

 ai.

This implies the validity of representation (3.4). 2

Note. Formula (3.4) implies the following statements:
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(1) The constant vector function x (t) = N−1C is a solution of the differential
equation

ẋ(t) = 0

with nonlocal condition

Ax(0) +

T∫
0

n (t)x (t) dt+Bx (T ) = C.

(2) The function x(t) =
T∫
0

K(t, s) y(s) ds is a solution of the differential equation

ẋ(t) = y(t)

with nonlocal condition

Ax(0) +

T∫
0

n (t)x (t) dt+Bx (T ) = 0.

Here the matrix function K(t, s) is indeed Green’s function for the considered
problem.

(3) Piecewise constant function

x(t) =
∑

0<ti<t

K(t, ti) ai, i = 1, 2, ..., p,

is a solution of the differential equation

ẋ(t) = 0

with impulses
x(ti

+)− x(ti) = ai, i = 1, 2, ..., p

and boundary condition

Ax(0) +

T∫
0

n (t)x (t) dt+Bx (T ) = 0.

Lemma 3.2. Suppose that f ∈ C ([0, T ]×Rn, Rn) and Ii(x) ∈ C(Rn). Then the
function x(t) ∈ PC ( [0, T ] , Rn) is a solution of boundary value problem (2.1)–
(2.3) if and only if the function x(t) ∈ PC ( [0, T ] , Rn) would be a solution to the
following impulsive integral equation

x(t) = N−1B +

T∫
0

K(t, s) f(s, x(s)) ds+

P∑
i=1

K(t, ti) Ii(x(ti)), (3.10)

for t ∈ (ti, ti+1), i = 0, 1, ..., p.
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Proof. Let x(t) ∈ PC ( [0, T ] , Rn) be a solution to the boundary value problem
(2.1)–(2.3). Then similarly to Lemma 1 one may show that the function x(t) ∈
PC ( [0, T ] , Rn) satisfy integral equation (3.10).

The opposite statement is also true. By direct calculation, one can make sure
that the solution to integral equation (3.10) also satisfies equation (2.1), boundary
condition (2.3), and impulse conditions (2.2).

The lemma is proved. 2

4. Main results. The first main result of this section is based on the Banach
fixed point principle. On the basis of this principle, a theorem on the existence and
uniqueness of the solution to boundary value problem (2.1)–(2.3) is proved.

Theorem 4.1. Suppose that the following conditions are satisfied:
(H1) There exists a constant M ≥ 0 such that

|f(t, x)− f(t, y)| ≤ M |x− y| ,

for any t ∈ [0, T ] and for any x, y ∈ Rn.
(H2) There exist constants li ≥ 0, i = 1, 2, ..., p such that

|Ii(x)− Ii(y)| ≤ li |x− y|

for any x, y ∈ Rn.
Then if

L = S

(
MT +

p∑
k=1

lk

)
< 1, (4.1)

boundary value problem (2.1)–(2.3) has a unique solution.
Here the number S is defined by the relation

S = max
0≤t,s≤T

∥K(t, s)∥ .

Proof. For the proof, we use the Banach fixed point principle.
Define the operator F : PC ([0, T ] ; Rn) → PC ([0, T ] × Rn) by the relation

(Fx) (t) = N−1B +

T∫
0

K(t, s) f(s, x(s)) ds+

P∑
k=1

K (t; tk) Ik (x (tk)) (4.2)

for t ∈ (ti, ti+1), i = 0, 1, 2, ..., p.
Obviously, the fixed points of the operatorF are solutions to boundary value

problem (2.1)–(2.3). Using the principle of contracting operators, we will show
that the operator Fdefined by equality (4.2) has a unique fixed point.

Set Mf = max
[0,T ]

|f (t, 0)| mI = max
k∈{1,2,...,p}

|Ik (0)| and fix the number

r ≥
∥∥N−1B

∥∥+ S (MfT + pmI)

1− L
.
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Now we show that FBr ⊂ Br, where

Br = {x ∈ PC ([0, T ] , Rn) : ∥x∥PC ≤ r} .

For x ∈ Br we have

∥(Fx) (t)∥ ≤
∥∥N−1B

∥∥+max
[0,T ]

T∫
0

|K(t, s)| [|f(s, x(s))− f (s, 0)|+ |f (s, 0)|] ds+

+max
[0,T ]

P∑
k=1

|K (t; tk) | [|Ik (x (tk))− Ik (0)|+ |Ik (0)|] ≤

≤
∥∥N−1B

∥∥+ S

[
(MTr +MfT ) +

(
p∑

k=1

lk

)
r + pmI

]
≤ r.

Let x, y ∈ PC ([0, T ] ; Rn) are arbitrary fixed elements. Then for any t ∈ (ti, ti+1]
we have

|F (x)(t)− F (y)(t)| ≤
T∫

0

|K(t, s)| · |f(s, x(s))− f(s, y(s))| ds+

+

P∑
k=1

|K(ti, tk)| · |Ik(x(tk))− Ik(y(tk))| .

Using conditions (H1), (H2) from the last inequality we get

|F (x)(t)− F (y)(t)| ≤ SNT ∥x− y∥+ S

P∑
k=1

lk |x(tk))− y(tk)| .

This inequality can be rewritten as follows

|F (x)(t)− F (y)(t)| ≤

[
S

(
NT +

P∑
k=1

lk

)]
× ∥x− y∥PC .

Thus
∥F (x)(t)− F (y)(t)∥ ≤ L ∥x− y∥PC .

Here, taking into account condition (4.1), we obtain that the operatorF is con-
tracting. According to the fixed point principle, it can be concluded that the
operator Fhas a unique fixed point. This is equivalent to the fact that nonlo-
cal boundary value problem (2.1)–(2.3) has a unique solution. The theorem is
proved. 2

The second result of this section is devoted to establishing the existence of
solutions to boundary value problem (2.1)–(2.3), which is based on the Schaufer
fixed point theorem.
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Theorem 4.2. Suppose that the following conditions are satisfied:
(H3) The function f : [0, T ]×Rn → R is continuous and there exists a constant

N1 > 0 such that

|f(x, t)| ≤ N1

for all t ∈ [0, T ] and x ∈ Rn.
(H4) The functions Ik : Rn → Rn are continuous and there exists constants

N2 > 0such that

max
k∈{1,2,...,P}

|Ik(x)| ≤ N2.

Then boundary value problem (2.1)–(2.3) has at last one solution on [0, T ].

Proof. Let us show that under the above conditions, the operator F (x)(t)defined
by equality (4.2) has fixed points. This will be done in some steps:

Step 1. The operator F within the conditions of the theorem is continuous in
PC ([0, T ] ;Rn) . Let {xn} be a functional sequence in the space PC ([0, T ] ;Rn)
and xn → x x ∈ PC ([0, T ] ;Rn). Then for any t ∈ (ti, ti+1] and i = 0, 1, ..., p is
valid

|F (xn)(t)− F (x)(t)| ≤
T∫

0

|K(t, s)| · |f(s, xn(s))− f(s, x(s))| ds

+
P∑

k=1

|K(t, tk)| · |Ik(xn(tk))− Ik(x(tk))| .

Considering here conditions (H3), (H4) we get

|F (xn)(t)− F (x)(t)| ≤ ST max
S∈[0,T ]

|f(s, xn(s))− f(s, x(s))|

+ S
P∑

k=1

|Ik(xn(tk))− Ik(x(tk))| .

Since the functions f and Ik, k = 1, 2, ..., p are continuous this implies

∥F (xn)(t)− F (x)(t)∥PC → 0

at n → ∞.

Step 2. The mapping F is limited in the space PC ([0, T ] ;Rn). This is equivalent
to showing that for any η > 0, there exists such l > 0 that for any

x ∈ Bη = {x ∈ PC ([0, T ] ;Rn) : ∥x∥ ≤ η}

takes place

∥F (x(·))∥ ≤ l.
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Applying the triangle inequality and using assumptions (H3) and (H4) fort ∈
(ti, ti+1] we get

|F (x)(t)| ≤
T∫

0

|K(t, s)| · |f(s, x(s))| ds+
P∑
i=1

|K(t, ti)| · |Ii(x(ti))| .

Thus,

|F (x)(t)| ≤ S [TN1 + pN2] = l.

Step 3. The operator F maps a bounded set into an equicontinuous subset of the
space PC ([0, T ] ;Rn). Let τ1, τ2 ∈ (ti, ti+1] and τ1 < τ2. Bη be a bounded set in
Step 2 and let x ∈ Bη. Then we have:

F (x)(τ2)− F (x)(τ1)

= N−1

τ2∫
0

A+

s∫
0

n (τ) dτ

 f(s, x(s)) ds−N−1

T∫
τ2

T∫
s

n (τ) dτf(s, x(s)) ds

−N−1

τ1∫
0

A+

s∫
0

n (τ) dτ

 f(s, x(s)) ds+N−1

T∫
τ1

T∫
s

n (τ) dτf(s, x(s)) ds

= N−1

τ2∫
τ1

A+

s∫
0

n (τ) dτ

 f(s, x(s) ds+N−1

τ2∫
τ1

T∫
s

n (τ) dτf(s, x(s) ds

=

τ2∫
τ1

f(s, x(s) ds.

From this we obtain

|F (x)(τ1)− F (x)(τ2)| ≤
τ2∫

τ1

|f(s, x(s))| ds.

At τ1 → τ2 the right side of the previous inequality tends to zero. Taking into
account that the mapping F is continuous and equicontinuous, we come to the
conclusion that the mapping

F : PC ([0, T ] ;Rn) → PC ([0, T ] ;Rn)

completely continuous.

Step 4. Let us show that the set

∆ = {x ∈ PC ([0, T ] : Rn) : x = λF (x)},
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is bounded for some 0 < λ < 1. Let for some 0 < λ < 1 the equality x = λ (Fx) is
valid. Then for any t ∈ (ti, ti+1] , i = 0, 1, ..., p we have

x(t) = λ

N−1B +

T∫
0

K(t, s) f(s, x(s)) ds+

P∑
k=1

K(ti, tk) In (x(tk))

 .

From this, considering conditions (H3) and (H4) (as in Step 2) for any t ∈ [0, T ] ,
we get

|F (x)(t)| ≤ [N1T + pN2] S.

Consequently, for any t ∈ [0, T ] we obtain

∥x∥PC ≤ [N1T + pN3]S = R.

This shows that the set ∆ is bounded. Hence, all conditions of the Schaufer
fixed point theorem are satisfied. It follows that the operator F has fixed points,
which are solutions to boundary value problem (2.1)–(2.3).

The theorem is proved. 2

Now let us show the continuous dependence of the solutions of problem (2.1)–
(2.3) on the right-hand side of (2.2).

Theorem 4.3. Let conditions (H1), (H2) be satisfied and L < 1. Then for any
B1, B2 ∈ Rn and for the corresponding solutions x1, x2 of the following boundary
value problems

ẋj(t) = f(t, xj(t)), t ∈ [0, T ] , t ̸= ti, i = 1, 2, ..., p, (4.3)

Axj(0) +

∫ T

0

n (t)xj (t) dt = Bj , (4.4)

xj(t
+
i )− xj(ti) = Ii(xj(ti)), i = 1, 2, ..., p, j = 1, 2, (4.5)

the estimate

∥x1 (t)− x2 (t)∥ ≤ (1− L)
−1 ∥∥N−1

∥∥ ∥B1 −B2∥

is true.

Proof. Let B1, B2 ∈ Rn be arbitrary points and x1, x2 be corresponding solutions
to problem (4.3)–(4.6). Then we can write

x1(t)− x2 (t) = N−1 [B1 −B2] +

∫ T

0

K(t, s) [f(s, x1(s))− f(s, x2(s))] ds+

+
P∑

k=1

K(t, tk) [Ik(x1(tk))− Ik(x2(tk))] . (4.6)
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Now, using conditions (H1) and (H2), from (4.6) we obtain

|x1 (t)− x2 (t)| ≤
∥∥N−1 [B1 −B2]

∥∥+ SM

T∫
0

|x1 (τ)− x2 (τ)| dτ

+ S

p∑
i=1

li |x1 (tk)− x2 (tk)| .

From this

∥x1 (t)− x2 (t)∥ ≤
∥∥N−1

∥∥ ∥B1 −B2∥+ S

(
MT +

p∑
i=1

li

)
∥x1 (t)− x2 (t)∥ .

Since L < 1 it follows from the last inequality that

∥x1 (t)− x2 (t)∥ ≤ (1− L)
−1 ∥∥N−1

∥∥ ∥B1 −B2∥ .

The theorem is proved. 2

Note that the scheme proposed in this work can be successfully applied in more
complex boundary value problems with impulses. For example, for the boundary
value problem, when (2.2) involves three-point or multi-point and integral terms.
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