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SOME INTEGRAL FORMULAS FOR CLOSED MINIMALLY IMMERSED
HYPERSURFACE IN THE UNIT SPHERE Sn+1
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Abstract. In this paper, we obtain some integral formulas for minimal hypersurfaces in the
unit sphere Sn+1.
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1. Introduction

The Clifford torus is the only minimal surface in S3 with constant contact angle. The study
of minimal surfaces has played a formative role in the development of mathematics over the last
two centuries. Today, minimal surfaces appear in various guises in diverse areas of mathematics,
physics, chemistry and computer graphics, but have also been used in differential geometry to
study basic properties of immersed surfaces in contact manifolds [6].

Many works have been done related to integral formulas by many mathematicians (see [1], [3],
[4] and [7]). For example, Cao [1] obtained integral formulas for minimal space-like hypersurfaces
in (n+1)-dimensional indefinite space form. In addition, Ximin [7] gave similar integral formulas
for minimal space-like hypersurfaces in (n+p)-dimensional indefinite space form.

Later, significant works in this direction have been obtained by Külahcı, Ergüt and Bektaş
[3,4].

In this paper, we conduct a study about minimal hypersurfaces in the unit sphere Sn+1.
However, to the best of our knowledge, these integral formulas have not been presented for
closed minimally immersed hypersurface in the unit sphere Sn+1. Thus, the study is proposed
to serve such a need.

2. Preliminaries

Let M be an n-dimensional hypersurface in a unit sphere Sn+1. We choose a local orthonormal
frame field in {e1, ..., en+1} in Sn+1, so that, restricted to M , e1, ..., en are tangent to M . Let
w1, ..., wn+1 denote the dual co-frame field in Sn+1. Then, in M

wn+1 = 0.

It follows from Cartan’s Lemma that

wn+1,i =
∑

j

hijwj , hij = hji. (1)

The second fundamental form h and the mean curvature H of M are defined by

h =
∑

i,j

hijwiwjen+1 and H =
∑

i

hii. (2)
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We recall that M is by definition a minimal hypersurface if the mean curvature of M is
identically zero. The connection form wij is characterized by the structure equations





dwi +
∑
j

wij ∧ wj = 0, wij + wji = 0,

dwij +
∑
k

wik ∧ wkj = Ωij

Ωij = 1
2

∑
kl

Rijkl wk ∧ wl,

(3)

where Ωij(resp.Rijkl) denotes the curvature form (resp. the components of the curvature tensor)
of M . The Gauss equation is given by

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk). (4)

The covariant derivative 5h of the second fundamental form h of M with components hijk is
given by ∑

k

hijkwk = dhij +
∑

k

hjkwik +
∑

k

hikwjk.

Then the exterior derivative of (1) together with the structure equations yield the following
Codazzi equation

hijk = hikj = hjik. (5)
Similarly, we have the covariant derivative 52h of 5h with components hijkl as follows

∑

l

hijklwl = dhijk +
∑

l

hljkwil +
∑

l

hilkwjl +
∑

l

hijlwkl

and it is easy to get the following Ricci formula

hijkl − hijlk =
∑
m

himRmjkl +
∑
m

hmjRmikl. (6)

From now on, we assume that M is minimal. Denote by S =
∑
i,j

h2
ij the square of length of h.

The components of the Ricci curvature and the scalar curvature are given respectively by

Rij = (n− 1)δij −
∑

k

hikhjk, (7)

R = n(n− 1)− S. (8)
It follows from (8) that S is constant if and only if R is constant. For any fixed point p in M ,
we can choose a local orthonormal frame field e1, ..., en such that

hij = λiδij . (9)

Let S =
∑
i,j

h2
ij . The following formulas can be obtained by a direct computation

∆hij = (n− S)hij , (10)
1
2
∆S =

∑

i,j,k

h2
ijk − S(S − n). (11)

The Gauss-Kronecker curvature K of M is defined by

K = det(hij). (12)

Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphere Sn+1.
Assume in addition that M has constant scalar curvature or constant Gauss-Kronecker curva-
ture. In this paper we announce that if M has (n− 1) principal curvatures with the same sign

everywhere, then M is isometric to a Riemannian product S1
(√

1
n

)
× Sn−1

(√
n−1

n

)
. This

Riemannian product also correspond to Clifford Torus [5].
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From now on, we assume that M is a Riemannian product.

Theorem 2.1. Let M be an n-dimensional compact Riemannian product S1
(√

1
n

)
×Sn−1

(√
n−1

n

)
,

then ∫

M

{
−1

2

∑
R2

mijk +
∑

R2
mj + nR

}
dV ≤ 0, (13)

where
∑

R2
mijk is the square length of the sectional curvature,

∑
R2

mj is the square length of
the Ricci curvature tensor, R is the scalar curvature, dV is the volume element of M .

Theorem 2.2. Let M be an n-dimensional compact Riemannian product S1
(√

1
n

)
×Sn−1

(√
n−1

n

)
,

then ∫

M

{
−1

2

∑
R2

mijk +
∑

R2
mj

}
dV ≤ {

n2(n− 1)− nS
}

V ol(M), (14)

where
∑

R2
mijk is the square length of the sectional curvature,

∑
R2

mj is the square length of the
Ricci curvature tensor, S is the square of length of second fundamental form, dV is the volume
element of M .
Theorem 2.3. Let M be an n-dimensional compact Riemannian product S1

(√
1
n

)
×Sn−1

(√
n−1

n

)
,

then ∫

M

{
−1

2

∑
R2

mijk − (3n− 2)S +
1
n

S2

}
dV ≤ n(−2n2 + 3n− 1)V ol(M), (15)

where
∑

R2
mijk is the square length of the sectional curvature, S is the square of length of second

fundamental form, dV is the volume element of M .

3. Proof of theorems

Proof of Theorem 2.1. From the definition of Laplacian we have

∆hij =
∑

himRmkjk +
∑

hkmRmijk. (16)

From (4),(16) and taking into consideration M is minimal , we get
∑

hij∆hij =
∑

hijhmkRmijk +
∑

hijhimRmkjk,

∑
hij∆hij =

1
2

∑
(hijhmk − hmjhik)Rmijk +

∑
(hijhim − hiihjm)(−Rmj). (17)

If the equality (4) is used in the first term at the right side of the equality (17), we find
1
2

∑
(hmkhij − hmjhik) =

1
2

[−(δmkδij − δmjδik)−Rmijk] . (18)

If the equality (4) is used in the second term at the right side of the equality (17), we have
∑

(himhji − hiihjm) = (δimδji − δiiδjm) + Rijim. (19)

If (18) and (19) are written in (17), we obtain
∑

hij∆hij =
1
2

∑
[−(δmkδij − δmjδik)−Rmijk] Rmijk +

+
∑

[(δimδji − δiiδjm) + Rijim] (−Rmj)

or ∑
hij∆hij = −1

2

∑
R2

mijk +
∑

R2
mj +

1
2

∑
[−(δmkδij − δmjδik)]Rmijk+ (20)

+
∑

[(δimδji − δiiδjm)] (−Rmj).
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After some calculation last two terms at the right side of (20) are obtained as the following:
1
2

∑
[−(δmkδij − δmjδik)]Rmijk +

∑
[(δimδji − δiiδjm)] (−Rmj) = nR. (21)

If (21) is written in (20), we find
∑

hij∆hij = −1
2

∑
R2

mijk +
∑

R2
mj + nR. (22)

Since
∫
M

{∑hij∆hij} dv ≤ 0 [2], we have the following:

∫

M

{
−1

2

∑
R2

mijk +
∑

R2
mj + nR

}
dV ≤ 0.

This completes proof of theorem 2.1.
Proof of Theorem 2.2. If (8) is considered in (13), the proof of the theorem 2.2 is trivial.

In order to prove theorem 2.3, we need the following lemma.
Lemma. Let a1, ..., an be real numbers, then

∑
(ai)2 ≥ 1

n

(∑
ai

)2
, (23)

where the equality sign holds when and only when a1 = ... = an.
Proof of Theorem 2.3. If (9) is considered in (7), we have

Rmj = (n− 1)δmj −
∑

λ2
jδmj . (24)

If (23) is used in (24), we find
∑

R2
mj = n(n− 1)2 − 2(n− 1)S +

∑
λ4

j ≥

≥ n(n− 1)2 − 2(n− 1)S +
1
n

(∑
λ2

j

)2

∑
R2

mj ≥ n(n− 1)2 − 2(n− 1)S +
1
n

S2. (25)

If (25) and (8) are used in (13), we obtain
∫

M

{
−1

2

∑
R2

mijk + n(2n2 − 3n + 1)− S(3n− 2) +
1
n

S2

}
dV ≤ 0

or ∫

M

{
−1

2

∑
R2

mijk − (3n− 2)S +
1
n

S2

}
dV ≤ n(−2n2 + 3n− 1)V ol(M).

This completes the proof.
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