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BERTRAND MATE OF BIHARMONIC CURVES IN THE SPECIAL
THREE-DIMENSIONAL KENMOTSU MANIFOLD K WITH η− PARALLEL

RICCI TENSOR

TALAT KÖRPINAR1, ESSIN TURHAN1

Abstract. In this paper, we study biharmonic curves in the special three-dimensional Ken-

motsu manifold K with η-parallel Ricci tensor. We characterize the biharmonic curves in terms

of their curvature and torsion. Moreover, we construct parametric equations of Bertrand mate

of biharmonic curves in the special three-dimensional Kenmotsu manifold K with η-parallel

Ricci tensor.
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1. Introduction

Let (M, g) and (N,h) be manifolds and φ : M −→ N a smooth map. Denote by ∇φ the
connection of the vector bundle φ∗TN induced from the Levi-Civita connection ∇h of (N,h).
The second fundamental form ∇dφ is defined by

(∇dφ) (X, Y ) = ∇φ
Xdφ (Y )− dφ (∇XY ) , X, Y ∈ Γ (TM) .

Here ∇ is the Levi-Civita connection of (M, g). The tension field τ (φ) is a section of φ∗TN

defined by
τ (φ) = tr∇dφ. (1)

A smooth map φ is said to be harmonic if its tension field vanishes. It is well known that φ

is harmonic if and only if φ is a critical point of the energy :

E (φ) =
1
2

∫
h (dφ, dφ) dvg

over every compact region of M . Now let φ : M −→ N be a harmonic map. Then the Hessian
H of E is given by

Hφ (V, W ) =
∫

h (Jφ (V ) , W ) dvg, V, W ∈ Γ (φ∗TN) .

Here the Jacobi operator Jφ is defined by

Jφ (V ) := ∆φV −Rφ (V ) , V ∈ Γ (φ∗TN) , (2)

∆φ :=
m∑

i=1

(
∇φ

ei
∇φ

ei
−∇φ

∇eiei

)
,Rφ (V ) =

m∑

i=1

RN (V, dφ (ei)) dφ (ei) , (3)

where RN and {ei} are the Riemannian curvature of N , and a local orthonormal frame field of
M , respectively.
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Let φ : (M, g) → (N, h) be a smooth map between two Lorentzian manifolds. The bienergy
E2(φ) of φ over compact domain Ω ⊂ M is defined by

E2 (φ) =
∫

Ω
h (τ (φ) , τ (φ)) dvg.

A smooth map φ : (M, g) → (N, h) is said to be biharmonic if it is a critical point of the
E2(φ).

The section τ2(φ) is called the bitension field of φ and the Euler-Lagrange equation of E2 is

τ2(φ) := −Jφ (τ(φ)) = 0. (4)

In general, the fourth-order equation (4) is difficult to solve. Natural candidates for solutions
are submanifolds of parallel mean curvature, see [10, 11]; or submanifolds with harmonic mean
curvature, see [5, 6, 9]. In [1, 2], examples of biharmonic nonminimal submanifolds of spheres are
given, as well as a complete classification of biharmonic curves in a sphere. Biharmonic curves
on a surface are studied in [3]. We adopt a different approach here to construct biharmonic,
nonharmonic maps.

Recently, there has been a growing interest in the theory of biharmonic maps which can
be divided in two main research directions. On the one side, constructing the examples and
classification results have become important from the differential geometric aspect. The other
side is the analytic aspect from the point of view of partial differential equations [2, 12, 15, 20, 21],
because biharmonic maps are solutions of a fourth order strongly elliptic semilinear PDE. In
differential geometry, harmonic maps, candidate minimisers of the Dirichlet energy, can be
described as constraining a rubber sheet to fit on a marble manifold in a position of elastica
equilibrium, i.e. without tension [7]. However, when this scheme falls through, and it can, as
corroborated by the case of the two-torus and the two-sphere [8], a best map will minimise this
failure, measured by the total tension, called bienergy. In the more geometrically meaningful
context of immersions, the fact that the tension field is normal to the image submanifold, suggests
that the most effective deformations must be sought in the normal direction.

In this paper, we study biharmonic curves in the special three-dimensional Kenmotsu manifold
K with η-parallel Ricci tensor. We characterize the biharmonic curves in terms of their curvature
and torsion. Moreover, we construct parametric equations of Bertrand mate of biharmonic curves
in the special three-dimensional Kenmotsu manifold K with η-parallel Ricci tensor.

2. Preliminaries

Let M2n+1 (φ, ξ, η, g) be an almost contact Riemannian manifold with 1-form η, the associated
vector field ξ, (1, 1)-tensor field φ and the associated Riemannian metric g. It is well known
that [1]

φξ = 0, η (ξ) = 1, η (φX) = 0, (5)

φ2 (X) = −X + η (X) ξ, (6)

g (X, ξ) = η (X) , (7)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , (8)

for any vector fields X, Y on M . Moreover,

(∇Xφ) Y = −η (Y ) φ (X)− g (X,φY ) ξ, X, Y ∈ χ (M) , (9)

∇Xξ = X − η (X) ξ, (10)
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where ∇ denotes the Riemannian connection of g, then (M,φ, ξ, η, g) is called an almost Ken-
motsu manifold [1].

In Kenmotsu manifolds the following relations hold [1]:

(∇Xη) Y = g (φX, φY ) , (11)

η (R (X, Y )Z) = η (Y ) g (X,Z)− η (X) g (Y, Z) , (12)

R (X, Y ) ξ = η (X) Y − η (Y ) X, (13)

R (ξ, X) Y = η (Y ) X − g (X, Y ) ξ, (14)

R (ξ, X) ξ = X − η (X) ξ, (15)

S (φX, φY ) = S (X, Y ) + 2nη (X) η (Y ) , (16)

S (X, ξ) = −2nη (X) , (17)

(∇XR) (X, Y ) ξ = g (Z, X) Y − g (Z, Y ) X −R (X,Y ) Z, (18)

where R is the Riemannian curvature tensor and S is the Ricci tensor. In a Riemannian manifold
we also have

g (R (W,X) Y,Z) + g (R (W,X) Z, Y ) = 0 (19)

for every vector fields X, Y, Z.

3. Special three-dimensional Kenmotsu manifold K with η-parallel Ricci tensor

Definition 3.1. The Ricci tensor S of a Kenmotsu manifold is called η-parallel if it satisfies

(∇XS) (φY, φZ) = 0.

We consider the three-dimensional manifold

K =
{(

x1, x2, x3
) ∈ R3 :

(
x1, x2, x3

) 6= (0, 0, 0)
}

,

where
(
x1, x2, x3

)
are the standard coordinates in R3. The vector fields

e1 = x3 ∂

∂x1
, e2 = x3 ∂

∂x2
, e3 = −x3 ∂

∂x3
(20)

are linearly independent at each point of K. Let g be the Riemannian metric defined by

g (e1, e1) = g (e2, e2) = g (e3, e3) = 1, (21)

g (e1, e2) = g (e2, e3) = g (e1, e3) = 0.

The characterising properties of χ(K) are the following commutation relations:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2. (22)

Let η be the 1-form defined by

η(Z) = g(Z, e3) for any Z ∈ χ(M).

Let be the (1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g we have

η(e3) = 1, (23)

φ2(Z) = −Z + η(Z)e3, (24)

g (φZ, φW ) = g (Z, W )− η(Z)η(W ), (25)
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for any Z, W ∈ χ(M). Thus for e3 = ξ, (φ, ξ, η, g) defines an almost contact metric structure
on M, [1,16].

The Riemannian connection ∇ of the metric g is given by

2g (∇XY,Z) = Xg (Y, Z) + Y g (Z, X)− Zg (X,Y )−
−g (X, [Y, Z])− g (Y, [X, Z]) + g (Z, [X, Y ]) ,

which is known as Koszul’s formula.
Koszul’s formula yields

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Moreover we put

Rijkl = R(ei, ej , ek, el),

where the indices i, j, k and l take the values 1, 2 and 3.

R1212 = R1313 = R2323 = 1.

Now, we consider biharmonicity of curves in the special three-dimensional Kenmotsu manifold
K.

4. Biharmonic curves in the special three-dimensional Kenmotsu manifold K
with η-parallel Ricci tensor

Biharmonic equation for the curve γ reduces to

∇3
TT−R (T,∇TT)T = 0, (26)

that is, γ is called a biharmonic curve if it is a solution of the equation (26).
Let us consider biharmonicity of curves in the special three-dimensional Kenmotsu manifold

K with η-parallel Ricci tensor. Let {T,N,B} be the Frenet frame field along γ. Then, the
Frenet frame satisfies the following Frenet–Serret equations:

∇TT = κN,

∇TN = −κT + τB, (27)

∇TB = −τN,

where κ = |T (γ)| = |∇TT| is the curvature of γ and τ its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,

g (T,N) = g (T,B) = g (N,B) = 0.

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T1e1 + T2e2 + T3e3,

N = N1e1 + N2e2 + N3e3, (28)

B = T×N = B1e1 + B2e2 + B3e3.
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Theorem 4.1. γ : I −→ K is a biharmonic curve if and only if

κ = constant 6= 0,

κ2 + τ2 = 1−B2
3 , (29)

τ ′ = N3B3.

Proof. Using (26) and Frenet formulas (27), we have (29). ¤

Theorem 4.2. Let γ : I −→ Kbe a non-geodesic curve on the special three-dimensional Ken-
motsu manifold K with η-parallel Ricci tensor parametrized by arc length. If κ is constant and
N3B3 6= 0, then γ is not biharmonic.

Proof. Using Frenet formulas (27) and ∇T B, we have

B′
3 = −τN3. (30)

Assume now that γ is biharmonic. Then, using τ ′ = N3B3 6= 0 and from (29), we obtain

ττ ′ = −B3B
′
3

and
τN3B3 = B3B

′
3 . (31)

Substituting B′
3 in equation (30), we find

τ = 0. (32)

Therefore, τ is constant and we have a contradiction. ¤

Theorem 4.3. Let γ : I −→ K be a unit speed non-geodesic curve with constant curvature.
Then, the parametric equations of γ are

x1 (s) = C2 − C1 sin3 ϕ

κ2
e− cos ϕs(

√
− cos2 ϕ +

κ2

sin2 ϕ
cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
−

− cosϕ sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
), (33)

x2 (s) = C3 − C1 sin3 ϕ

κ2
e− cos ϕs(− cosϕ cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
+

+

√
− cos2 ϕ +

κ2

sin2 ϕ
sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
),

x3 (s) = C1e
− cos ϕs,

where C, C1, C2, C3 are constants of integration.

Proof. Since γ is biharmonic, γ is a helix. So, without loss of generality, we take the axis of γ

is parallel to the vector e3. Then,

g (T, e3) = T3 = cosϕ, (34)

where ϕ is constant angle.
The tangent vector can be written in the following form

T = T1e1 + T2e2 + T3e3. (35)
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On the other hand the tangent vector T is a unit vector, so the following condition is satisfied

T 2
1 + T 2

2 = 1− cos2 ϕ. (36)

Noting that cos2 ϕ + sin2 ϕ = 1, we have

T 2
1 + T 2

2 = sin2 ϕ. (37)

The general solution of (37) can be written in the following form

T1 = sinϕ sinµ, (38)

T2 = sinϕ cosµ,

where µ is an arbitrary function of s.

So, substituting the components T1, T2 and T3 in the equation (35), we have the following
equation

T = sin ϕ sinµe1 + sin ϕ cosµe2 + cosϕe3. (39)

Since |∇TT| = κ, we obtain

µ =

√
− cos2 ϕ +

κ2

sin2 ϕ
s + C, (40)

where C ∈ R.
Thus (39) and (40), imply

T = sinϕ sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
e1 + (41)

+ sin ϕ cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
e2 + cos ϕe3.

Using (20) in (41), we obtain

T = (x3 sinϕ sin

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
, x3 sinϕ cos

[√
− cos2 ϕ +

κ2

sin2 ϕ
s + C

]
,

−x3 cosϕ). (42)

If we take integration above equation we have (33). (for details see [12]) ¤

We can use Mathematica, yields.

Figure 1. cos ϕ = sin ϕ =
√

2
2

, C = C1 = C2 = C3 = κ = 1.
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5. Bertrand mate of biharmonic curves in the special three-dimensional

Kenmotsu manifold K with η-parallel Ricci tensor

Definition 5.1. A curve γ : I −→ K with κ 6= 0 is called a Bertrand curve if there exist a curve
γ̃ : I −→ K such that the principal normal lines of γand γ̃ at s ∈ I are equal. In this case γ̃ is
called a Bertrand mate of γ.

Theorem 5.1. Let γ : I −→ Kbe a Bertrand curve parametrized by arc length. A Bertrand
mate of γ is as follows:

γ̃ (s) = γ (s) + λN (s) , ∀s ∈ I, (43)

where λ is constant.

Theorem 5.2. Let γ : I −→ Kbe a biharmonic curve parametrized by arc length. If γ̃ is a
Bertrand mate of γ, then the parametric equations of γ̃ are

x̃1(s) = C2 − C1 sin3 ϕ

κ2
e− cos ϕs(cos [s + C]− cosϕ sin [s + C]) +

+
λ

κ
(sinϕ cos [s + C] + cosϕ sinϕ sin [s + C]) (C̄1e

sin ϕs + C̄2e
− sin ϕs),

x̃2(s) = C3 − C1 sin3 ϕ

κ2
e− cos ϕs(− cosϕ cos [s + C] + sin [s + C]) + (44)

+
λ

κ
(− sinϕ sin [s + C] + cosϕ sinϕ cos [s + C]) (C̄1e

sin ϕs + C̄2e
− sin ϕs),

x̃3(s) = C1e
− cos ϕs +

λ

κ
(C̄1e

sin ϕs + C̄2e
− sin ϕs),

where C, C1, C2, C1, C2, C3 are constants of integration and =
√
− cos2 ϕ + κ2

sin2 ϕ
.

Proof. Using first equation of (28), we have

∇TT =
(
T ′1 + T1T3

)
e1 +

(
T ′2 + T2T3

)
e2 +

(
T ′3 − T 2

2 − T 2
1

)
e3. (45)

From (20) and (41), we get

∇TT = sinϕ (cos [s + C] + cosϕ sin [s + C]) e1 + (46)

+ sin ϕ (− sin [s + C] + cosϕ cos [s + C]) e2 − sin2 ϕe3,

where =
√
− cos2 ϕ + κ2

sin2 ϕ
.

By the use of Frenet formulas (27), we get

N =
1
κ
∇TT =

=
1
κ

[(sinϕ cos [s + C] + cosϕ sinϕ sin [s + C]) e1 + (47)

+ (− sinϕ sin [s + C] + cosϕ sinϕ cos [s + C]) e2 − sin2 ϕe3].

Substituting (20) in (47), we have

N =
1
κ

((sinϕ cos [s + C] + cosϕ sinϕ sin [s + C]) (C̄1e
sin ϕs + C̄2e

− sin ϕs),

(− sinϕ sin [s + C] + cosϕ sinϕ cos [s + C]) (C̄1e
sin ϕs + C̄2e

− sin ϕs),

(C̄1e
sin ϕs + C̄2e

− sin ϕs)). (48)

Next, we substitute (33) and (48) into (43), we get (44). The proof is completed. ¤

Similarly, we can use Mathematica in above theorem, yields.
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Figure 2. cos ϕ = sin ϕ =
√

2
2

, C̄1 = C̄2 = C = C1 = C2 = C3 = λ = κ = 1.

6. Summary

Biharmonic curves are utilized in many physical situations, particularly in fluid dynamics
and elasticity problems. Most important applications of the theory of functions of a complex
variable were obtained in the plane theory of elasticity and in the approximate theory of plates
subject to normal loading.

Therefore, we study biharmonic curves in the special three-dimensional Kenmotsu manifold K
with η-parallel Ricci tensor. We characterize the biharmonic curves in terms of their curvature
and torsion. Moreover, we construct parametric equations of Bertrand mate of biharmonic
curves in the special three-dimensional Kenmotsu manifold K with η-parallel Ricci tensor.
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