TWMS Jour. Pure Appl. Math., V.2, N.2, 2011, pp.194-202

LIFTS OF (1,1)-TENSOR FIELDS ON PURE CROSS-SECTIONS OF
(p,q) -TENSOR BUNDLES
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ABSTRACT. In this paper we show that the tensor bundles 77 (M,) admit an almost algebraic
II-structure if the base manifold M, admits an integrable almost algebraic II-structure.
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1. INTRODUCTION

Let M, be a differentiable manifold of class C°° and finite dimension n. Then the set
T3 (M) = Upenr, T¢ (P) is, by definition, the tensor bundle of type (p,q) over M,, where
U denotes the disjoint union of the tensor spaces Ty (P) for all P € M,. For any point P of
TP(M,) such that P € TP(M,,), the surjective correspondence P — P determines the natural
projection 7 : T¥(M,) — M,. The projection 7 defines the natural differentiable manifold
structure of T4 (M,,), that is, Ty (My,) is a C°°-manifold of dimension n + nP*4. If 27 are lo-
cal coordinates in a neighborhood U of P € M,, then a tensor ¢ at P which is an element of
Ty (M) is expressible in the form (27,7 "), where ;""" are components of ¢ with respect to

R €ty i,
natural base. We may consider (mj,t;i;’;) = (2, 2)) =27, j=1,...,n,j=n+1,.,n+nPT,

J =1,...,n+nP" as local coordinates in a neighborhood 7~1(U).

We denote by S7%(M,,) the F(M,,) module of all tensor fields of class C* and of type (r,s)
on M,, where F(M,) is the ring of C®-functions on M,. If a € SL(M,), it is regarded, by
contraction, as a function in T (M,,), which we denote by 1a. If o has the local expression

a=al"1"0;, ®.. 00, ®d" ®..0ds"
in a coordinate neighborhood U (z7) C M, then 1o = a(t) has the local expression
1edg yit-eeip

=g it g

with respect to the coordinates (z7,27) in 7= (U).
Suppose that A € (M,,). Then there is a unique vector field VA € IY(T7(M,,)) (vertical lift
of A) such that for all « € SE(M,,) [4]

VAGa) = a(A) o =V (a(A)),
where V' (a(A)) is the vertical lift of the function a(A4) € SY(M,,). We call V A the vertical lift
of A € SH(M,) to T (M,).The vertical lift V' A has components of the form
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VA:<VA]‘7 VAE) (0 At lp) (1)

J1---Jq
with respect to the coordinates (z7,z7) in TP (M,y,).
We define the complete lift “V of V to T7 (M,,) (see [4]) by “V (1) = «(Ly ), for all o« € SE(M,,).
The complete lift “V of V € S}(M,,) to T¥ (M,) has components of the form
CV - ( Vj, Z)\ 1 741~~-m-'~7fpa Vl/\ - /" ltéll...zri...]qajuvm ) (2)

with respect to the coordinates (27, zd ) in TZ (M,,), where F,’fj are local components of V in M,,.
2. CROSS-SECTION IN THE TENSOR BUNDLE

Suppose that there is given a tensor field £ € 3%(M,,). Then the correspondence z — &,
& being the value of & at © € M, determines a mapping o¢ : M, — Ty (M,), such that
T oog = idp,, and the n dimensional submanifold o¢(M,) of T§ (M,) is called the cross-section

determined by &. If the tensor field £ has the local component 521125 (x%), the cross-section
o¢(My,) is locally expressed by

$k _ xk
R hih (3)
ak = fkll k: («*)
with respect to the coordinates (z¥,zF) in TP(M,). Differentiating (3) by z7, we see that n

tangent vector fields B; to o¢(M,,) have components

.TK
(B) = (%) = (o5, agelte) (@)

with respect to the natural frame {9, %} in 70 (M,,).
On the other hand, the fibre is locally expressed by

zF = const,
hi.hp _ ,hi..hy

tkl kq - tkl...k‘q’

where tk p belng considered as parameters. Thus, on differentiating with respect to 2l =

tjll e We see that n?™4 tangent vector fields C; to the fibre have components
Fo ; h
(€)= (57 = ( 0, o708l 5 ) (5)

with respect to the natural frame {9, 93} in TF(M,,), where § is the Kronecker symbol.

Definition 2.1. A wvector field X along a cross-section o¢ : M, — TP (M) is mapping X :
M, — T (T} (M,,)) (T (T} (M,))- tangent bundle over the manifold T} (M,,)) such that 7o x =
o¢, where T is the projection @ : T (T4 (M,)) — Ty (My,).

The vector field X assigns to each point € M, a tangent vector to T0 (M,,) at o¢ (z) and
therefore n + n?*? local vector fields B;j and C; in 7~ (U) C T7 (M,) are vector fields along
o¢ (My,). They form a local family of frames {Bj, Cj} along o¢(M,,), which is called the adapted
(B,C)- frame of o¢(My) in 7=H(U). From OV = CVho, + “V"g; and ©V = “VIB; + CViCy,
We easily obtain ¢V* = CVjB]’-C + CVjC'jl.“, vk = CVjB]-“ + CVjC'l€ Now, taking account of
(2) on the cross-section a¢(M,), and also (4) and (5), we have V¥ = Vk, Cyk = LVEZEZ:
Thus, the complete lift “V has along o¢(M,,) components of the form
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hi...h
V= (v —Lvgi) (6)
with respect to the adapted (B,C)- frame. From (1), (4) and (5), by using similar way the
vertical lift V' A also has components of the form

Ya= (o A ) 7
with respect to the adapted (B, C)- frame.

3. THE VERTICAL-VECTOR LIFT OF A TENSOR FIELD OF TYPE (1,1)

Let ¢ € 31(M,,). Using the Jacobian matrix of the coordinate transformation in T (M,,)

{ i = mj’(xj)
iy iy 4j Jagitip 4 (@) 4(5)
£U‘7 = t]11 ]q A 1 AiA ! A]thl ]p A(Z) A(j/)l'],

where AU AU — A% AT a0t pln 4T =
W AGn = Aa A Ay Ay Ay

STT (M), p>1,q > 0[1]:

mz , AJ1 = gfj, we can define a vector field vy €

lig...ip
o = ((ve)’) = ( 0, ;g >
where golil are local components of ¢ in M,. Clearly, we have yo(V f) = 0 for any f € F(M,,).

Thus 7 is a vertical-vector lift of the tensor field ¢ € I1(M,,) to T¥ (M,,). We can easily verify
that the vertical-vector lift ¢ has along o¢(M,,) components

o= (7)) = (0, girire ) (8)

with respect to the adapted (B, C)-frame, where §k k” are local components of € in M,,.

4. TACHIBANA OPERATOR AND COMPLETE LIFTS OF AFFINOR FIELDS ON A PURE
CROSS-SECTION

A tensor field ¢ € SH(M,,) is called pure with respect to ¢ € I1(M,,), if [8-11]:

S(QOXlaX27 "'an7a17a27 "'aap) = §(X17¢X27 "'7Xqva17a27 "'7ap) = e =
= g(XlaXQ) "'790XQaalaOé25 "'7ap) = f(X17X27 "'7an ¢/a17a27 "'7ap) — (9)

= f(Xl, XQ, ceey Xq, aq, QO/OQ, PN ap) = ... = f(Xl, XQ, ceey Xq, 1,2, ..., gplap)
for any X1, Xo,..., X, € S3(My), a1,a2,...,ap € SV(M,), where (¢'a)(X) = a(pX) X €
S3(M,,), a € SY(M,,). In particular, vector and covector fields will be considered to be pure.
We shall now derive explicit expressions for ¢,-operator (or Tachibana operator) which applied to
an arbitrary pure tensor field of type (p, ¢). Explicit formulae of ¢ -operator for pure tensor fields
of types (1,¢) and (0,¢) are given in [9]. Also in [9] derives relations between the geometry of
hyperholomorphic B-manifolds (Norden manifolds) and ¢ -operator. We note that, ¢ -operator
is extension of the operator of Lie derivation Lx, X € S} (M,,) to affinor fields p € S (M,,).

We denote by S7%(M) the module of all pure tensor fields of type (r,s) on M with respect to
the (1,1)-tensor field . We now fix a positive integer A\. If K and L are pure tensor fields
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of types (p1,q1) and (p2,q2) respectively, then the tensor product of K and L with contraction

C 11...M ). 0p 1.7
B M eipy 7T 1Ty .
K®L = (Kjl...qu Ls1...m)\...sq2) is also a pure tensor field.

We shall now make the direct sum %(M ) =D =0 S5(M) into the algebra over the real number

C * *
R by defining the pure product (denoted by ® or ” o”) of K € 341 (M) and L € S42(M) as
follows:

(K,L) — (K& L) =

K;i:::;z;"'lplLg:::%iu,s% for A < p1,q2 (X is a fixed positive integer),

®Q

Kzl...zpl T1..My

=2 for < p2,q1 (uis a fixed positive integer),

= J1eMysefqy 7 81-+Saz
O fOI'pl :O7 pQZO,
0 for dQ = 07 q2 = 0.

C
In particular, let K = X € $3(M), and L € Ay(M) be a g—form. Then the pure product X @ L
coincides with the interior product ¢tx L.

Definition 4.1. [8,9] Let ¢ € SH(M), and S(M) = Y2 _, 7 (M) be a tensor algebra over R.

r,s=0 s
*
A map ¢y (M) — (M) is called a Tachibana operator or ¢p,—operator on M if
(a) ¢y is linear with respect to constant coefficients,

(b) ¢y : SLUM) — S, (M) for all v, s,

c C C *
(¢) ppo(K @ L) = (9 K)® L+ K ®pyL for all K,L € J(M).
(d) ppxY = —(Ly @)X for all X,Y € S{(M), where Ly is the Lie derivation with respect to'Y .
(¢) pox (tyw) = (dyw))(¢X) — (d(y (w0 9)))(X) = (¢X)(yw) — X (1pyw) for allw € IY(M)
c
and X,Y € SY(M), where tyw =w (YY) =w®Y.

Theorem 4.1. Let w € SY(M). Then

Pox (w(Y1,...,Ys)) = (pX) (w (Y1, ..., ¥5)) = X (w (pY1, ..., Y5)) -
Proof. (see [8]). O

*

Let t € SG(M), r > 1, s > 1. We now define a pure tensor field of type (0,5) te1 g2 ¢r € SU(M)
by ter g2 e (Y1,Y2,..,Ys) =t (Yl,Yg, LY, €L €2 ...,{T) , where t¢1¢2 ¢ has components of
the form:

til...ir

_ 1 ¢2
(t£17£27"~:gr)j1j2,,,j5 - 3115511522€:r

According to Theorem 4.1, we find

boxt (Y1,..,Ys, &1, 6,8 =
Poxter, er (Y1,...,Y5) =
= (X))t _er (Y1,..,Ys) = Xta e (oY1, Y5) =
= (pX)t(V1,.... Y5, &', €7) — Xt (oY1, .., Vs, €, E7).
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Then, using ¢px&" = Lox&H — Lx (€% 0 ¢), we see that ¢t for t € SL(M), r>1, s> 1,is by
definition, a tensor field of type (r, s + 1) given by
(Pot) (X, Y1, ..., Y, & €)= (10)
= (¢4pXt) (Yla"'v}/svgla“'agr) =

= d)gOXt (}/17'”7}/?9751)'”757‘) _Zt(}/lw"?gb(pXY)\?”' 7§ ’ 7§T‘)
A=1
_Z Y17"' 7 ) 7¢30X§ 5 . '7§T) -

—Z (Y1, Yo, & ooty Lox € — Lx (€% 0 ), .., E7)

By setting X = O, Y\ = 0},, {# = deiv, X =1,...,5; p=1,...,7 in the equation (10), we see
that the components ((ﬁ@t)gll'.:'_zjz of ¢t with respect to local coordinate system z!, ..., 2" may be
expressed as follows:

(Pt = @R Omty " = O (to @)t ’J+Z D)t i+ (11)

7«
+ 3 (Ot = ne) 65"
pn=1

110 .te om t“ zrgo _mu i1 — 4i1..m i

where (t o So)jl'.....js =t 3sPjs Js 31 JsPm i P

Let %5’ (M,,) denotes a module of all the tensor fields £ € 3%(M,,) which are pure with respect

*
to ¢. Now, we consider a pure cross-section o (M,) determined by § € S§(My,), p > 1, ¢ > 0.
We observe that the local vector fields

0 0
C _C __Cyrsh _
X = (g =g = (& 0)
and
VXD = V9, ®..008;,d" @ ...® dz't) =

= V(008 00k, @ @ O, @ 2™ © @ date) =

- (o, 5L 5;q5f;.5’?p),

Jp

j=1,..,n,5=n+1,...,n+nP span the module of vector fields in 7~ 1(U). Hence any tensor
ﬁeld is determined in 7—!(U) by its action of CX(]-) and VX0U). Then we define a tensor field
Cp € SHTP(M,)) along the pure cross-section Jf(Mn) by

{ Co(CV) = C(p(V)) ~1(Lve) + ¥ (Lvg) o€), YV € SH(My), () )
Co(VA) = V(p(4)), YA € S(M,), (ii)

where ©(A) € SH(M,), (Lve)ol)(Xq, ..., Xgi a1, ..y ap) = E(X, ... q, (Lve) o, ..., ap) and
call ¢ the complete lift of ¢ € 31 (M,,) to TF (M, ) p > > 1,¢>0 along ¢ £(My,)[4]. In particular,
if we assume that p =1, ¢ > 0 then we get

Y(Lye) =V ((Lye) o),
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substituting this into (12), we find (see [6])

(V) = (V) “e(VA) ="V (p(4)).

Remark 4.1. The equation (12) is useful extension of the equation ©L(1a) = 1(Lya), a €
SE(M,,) (see [4]) to affinor fields along the pure cross-section of Z(My,).

Let C«ﬁf be components of €y with respect to the adapted (B, C)- frame of the pure cross-
section o (My). Then, from (7) and (12) we have

LIV = C(eV)E = ((Lve)) 4V (Lyve) 0O, (1) (13)
GBIV AL = V()X (i)

where (Y (p{4))%) = (0, hiAp"=" )7V((LV;)O§)K:(O’ (vt ),

fy(L\N/go)K = ( 0, ((ngp)hl)ggth ), Ly are local component of Ly ¢ in M,.

Straightforward computations using the local expression (11) of Tachibana operator and the
expressions (13), (6), (8), we obtain that the complete lift “ € S1(TF(M,,)) of ¢ has along the
pure cross-section Jf(Mn) components

C~k _ k C~k_ C~k _ hi..h
{ Y1 =% 7=0, "¢ = —(¢w§>lk11...kz;a (14)

7 h
“or = w?ﬁ?ﬁ G5y Oy -0
with respect to the adapted (B, C)- frame of U?(Mn), where ¢,£ is the Tachibana operator and

ok = tleZ;’, ol = P (for details, see [2]).

Remark 4.2. ©y in the form (14) is a unique solution of (13). Therefore, if an ;2 is element
of SHT(My)), such that P(CV) = Cp(CV) = C(p(V)) = 4(Lve) + Y ((Lyg) 0 €), o(VA) =
“p(VA) =V(p(A)), then ¢ = .

Remark 4.3. Taking into account the formula (14), and specializing to the case p =1, ¢ =0,
one has the formula of the complete lift of affinor fields to tangent bundle along the cross-section
oe(My) (for details, see [12, p.126]).

Remark 4.4. In the case of amg,ﬁ k = 0, (B,C)—frame is considered as a natural frame
{Oh, 05} of U?(Mn). Then, from (14) we obtain components of € along the pure cross-section

090;6 = gOf, Cgpéﬁ: 0, (15)
k h
Cof = Gl s by,

q
CSOl = (8190 )gthkq Z( )gkl...m.‘.kq

pn=1
- h h
h o
= (O = Omep Viiky
A=1

with respect to the natural frame {0y, 05} of ag’(Mn) in 7= Y(U) [7].
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5. ALGEBRAIC II— STRUCTURES ON A PURE CROSS-SECTION IN 77 (M,,)

Let 2, be an associative commutative unital algebra of finite dimension m over the field R
of real numbers. An algebraic IT—structure in M, is a collection II = {90} , a=1,....m of
e

tensor fields of type (1,1) such that ¥ o9 = C7 3¢, where C] ; are the structure constants of the
a g v
algebra .

Theorem 5.1. If Il = {90} is an integrable almost algebraic 11—structure in M,, then the

6
complete lift “TI = {CSO} of II to TY(M,) along the pure cross-section U?(Mn) is an almost
[e%
algebraic CTI—structure in Ty (M,,).

Proof. Let ¥, sg ell (@ocg = goso) and S € S$3(M,,). Then using (6), (8) and (12), we have

Wp£9) = yoEr9 Co(re) =q(g09), (16)
Col(9o0) = "((gog)e0),

(¥8)°V = 48y, V(S0 &) (“V) =" (Sv o),

where Sy is the tensor field of type (1.1) in M,, defined by Sy (W) = S(V,W), for any W €
SH(M,,). If V€ (M), from (12) and (16), we have

(o) V = 2(CoOV)) =T £C(a(V)) ~2(Lv ) + T ((Lv §) 0 1)) =

= Ce(Clpv)) = elr(Ly )+ eV (Ly §) 0 ) =
= V) = WL 9) + ¥ (L) £) 0 ) = (v ) 0 9) + V(Ly £ 0) 0)) =

=“((po V) = (Lo 2) = 7(Lv £) 0 £)) + Y(((Ly #) 0P+ (Lo) £)) 0 &) =
)

a g a g a B @
(L) £+ (L) ©) = 2o(Ly 9)) 0 €) =
= o) V) =N V) + (N v o) = Ueep) (V) —v(N)(EV) + (N o) (V) =
= C((fog) —(N) +V(C{\g °€))(“V), (17)

B
where N v =L —@o(Ly ). Since pop = @
Nov=Leny=gelvd) o B B

[0}

erator or the Nijenhuis-Shirokov tensor N (V, W) € $3(M,,) constructed from ¢ and <g [2].

a,B o
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Similarly, if A € 3%(M,,), then by (12), we have
(CooCe) A="e(CelA) = Ce((e(A) = (18)

«

_ VvV — V(oo —Cloop\VA
= V(e =V (goR)) = “(po) A

Suppose now that V is linear connection (with zero torsion) on M,. If II = {90} is an almost
«

integrable algebraic II—structure with respect to V, iie. V¢ =0, a =1,....m, then N =0
(0%

a,8
[2]. If we take N = 0, then by the Remark 4.1 made in §4, (17), (18) and the linearity of the
a’ﬁ
complete lift, we have

CpoCo=Cpop) =00 = CL ¢
e 15 o vy ¥

O

Let M, and N, be two manifolds with algebraic structures II = < ¢ ¢ and O=<¢y,

o o]
a =1, ...,m determined by the same associative commutative unital algebra 2,,. A differentiable

mapping f : M,, — N,, is called a quasi-2-holomorphic mapping with respect to (II,II) (see
[5]), if at each point P € M,

dfp o <,0 p= w f) © fp, a=1,...,m. (19)

As the mapping f : M,, — Np(m = n + nPT?) we take a cross-section UE M, — TF(M,)
determined by the pure tensor field & € $H(M,,) with respect to II—structure. The pure cross-
section 05 . M,, — TP(M,) can be locally expressed by (3). In (19), if IT = {w} is the

(e
almost algebraic “II—structure (see Theorem 5.1), the condition that the pure cross-section

O’? : M,, — T¥(M,,) be quasi-2-holomorphic tensor field with respect to (IT, “TI) is locally given
by
<P lm@m:UK:CSD EoxM a=1,..,m, (20)
[}

where ¢ SD M are components of ¢ 90 along the pure cross-section ¢ W(M,,) with respect to the

natural frame {0k, 0z }. In the case K = k, by virtue of (3) and (15) we get the identity ¢ = (.
When K = k, by virtue of (3), (9) and ( 5), (20) reduces to

(G = GOty — A E N 4 Y0, (D) el 4

(21)
9 ) hi..m..hp -0,
+23 8 8k1 kg

where ¢,¢ is the Tachibana operator. Thus, a quasi-2-holomorphic tensor field with respect to
(I1, °“II) is given by (21). The equation o€ = 0 is the equation characterizing the usual almost
holomorphic tensor field [3], [10]. Thus, if II-structure is almost integrable, then our quasi-2-
holomorphic tensor field with respect to (II,“II) coincides with the usual almost holomorphic
tensor field.
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