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Abstract. In this paper we show that the tensor bundles T p
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1. Introduction

Let Mn be a differentiable manifold of class C∞ and finite dimension n. Then the set
T p

q (Mn) =
⋃

P∈Mn
T p

q (P ) is, by definition, the tensor bundle of type (p, q) over Mn, where⋃
denotes the disjoint union of the tensor spaces T p

q (P ) for all P ∈ Mn. For any point P̃ of
T p

q (Mn) such that P̃ ∈ T p
q (Mn), the surjective correspondence P̃ → P determines the natural

projection π : T p
q (Mn) → Mn. The projection π defines the natural differentiable manifold

structure of T p
q (Mn), that is, T p

q (Mn) is a C∞-manifold of dimension n + np+q. If xj are lo-
cal coordinates in a neighborhood U of P ∈ Mn, then a tensor t at P which is an element of
T p

q (Mn) is expressible in the form (xj , t
i1...ip
j1...jq

), where t
i1...ip
j1...jq

are components of t with respect to

natural base. We may consider (xj , t
i1...ip
j1...jq

) = (xj , xj̄) = xJ , j = 1, ..., n, j̄ = n + 1, ..., n + np+q,
J = 1, ..., n + np+q as local coordinates in a neighborhood π−1(U).

We denote by =r
s(Mn) the F (Mn) module of all tensor fields of class C∞ and of type (r, s)

on Mn, where F (Mn) is the ring of C∞-functions on Mn. If α ∈ =q
p(Mn), it is regarded, by

contraction, as a function in T p
q (Mn), which we denote by ıα. If α has the local expression

α = α
j1...jq

i1...ip
∂j1 ⊗ ...⊗ ∂jq ⊗ dxi1 ⊗ ...⊗ dxip

in a coordinate neighborhood U(xj) ⊂ Mn, then ıα = α(t) has the local expression

ıα = α
j1...jq

i1...ip
t
i1...ip
j1...jq

with respect to the coordinates (xj , xj̄) in π−1(U).
Suppose that A ∈ =p

q(Mn). Then there is a unique vector field V A ∈ =1
0(T

p
q (Mn)) (vertical lift

of A) such that for all α ∈ =q
p(Mn) [4]

V A(ıα) = α(A) ◦ π = V (α(A)),

where V (α(A)) is the vertical lift of the function α(A) ∈ =0
0(Mn). We call V A the vertical lift

of A ∈ =p
q(Mn) to T p

q (Mn).The vertical lift V A has components of the form
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V A =
(

V Aj , V Aj̄
)

=
(

0, A
i1...ip
j1...jq

)
(1)

with respect to the coordinates (xj , xj̄) in T p
q (Mn).

We define the complete lift CV of V to T p
q (Mn) (see [4]) by CV (ıα) = ı(LV α), for all α ∈ =q

p(Mn).
The complete lift CV of V ∈ =1

0(Mn) to T p
q (Mn) has components of the form

CV =
(

V j ,
∑P

λ=1 t
i1...m...ip
j1...jq

∂mV iλ −∑q
µ=1 t

i1...ip
j1...m...jq

∂jµV m
)

(2)

with respect to the coordinates (xj , xj̄) in T p
q (Mn), where Γk

ij are local components of ∇ in Mn.

2. Cross-section in the tensor bundle

Suppose that there is given a tensor field ξ ∈ =p
q(Mn). Then the correspondence x → ξx,

ξx being the value of ξ at x ∈ Mn, determines a mapping σξ : Mn → T p
q (Mn), such that

π ◦ σξ = idMn , and the n dimensional submanifold σξ(Mn) of T p
q (Mn) is called the cross-section

determined by ξ. If the tensor field ξ has the local component ξ
h1...hp

k1...kq
(xk), the cross-section

σξ(Mn) is locally expressed by {
xk = xk

xk̄ = ξ
h1...hp

k1...kq
(xk)

(3)

with respect to the coordinates (xk, xk̄) in T p
q (Mn). Differentiating (3) by xj , we see that n

tangent vector fields Bj to σξ(Mn) have components

(BK
j ) = (

∂xK

∂xj
) =

(
δk
j , ∂jξ

h1...hp

k1...kq

)
(4)

with respect to the natural frame {∂k, ∂k̄} in T p
q (Mn).

On the other hand, the fibre is locally expressed by
{

xk = const,

t
h1...hp

k1...kq
= t

h1...hp

k1...kq
,

where t
h1...hp

k1...kq
being considered as parameters. Thus, on differentiating with respect to xj̄ =

t
i1....ip
j1...jq

, we see that np+q tangent vector fields Cj̄ to the fibre have components

(CK
j̄ ) = (

∂xK

∂xj̄
) =

(
0, δj1

k1
...δ

jq

kq
δh1
i1

...δ
hp

ip

)
(5)

with respect to the natural frame {∂k, ∂k̄} in T p
q (Mn), where δ is the Kronecker symbol.

Definition 2.1. A vector field X along a cross-section σξ : Mn → T p
q (Mn) is mapping X :

Mn → T (T p
q (Mn)) (T (T p

q (Mn))- tangent bundle over the manifold T p
q (Mn)) such that π̃ ◦ x =

σξ, where π̃ is the projection π̃ : T (T p
q (Mn)) → T p

q (Mn).

The vector field X assigns to each point x ∈ Mn a tangent vector to T p
q (Mn) at σξ (x) and

therefore n + np+q local vector fields Bj and Cj̄ in π̃−1 (U) ⊂ T p
q (Mn) are vector fields along

σξ (Mn). They form a local family of frames
{
Bj , Cj̄

}
along σξ(Mn), which is called the adapted

(B, C)- frame of σξ(Mn) in π−1(U). From CV = CV h∂h + CV h̄∂h̄ and CV = CV jBj + CV j̄Cj̄ ,
We easily obtain CV k = CV jBk

j + CV j̄Ck
j̄
, cV k̄ = CV jBk̄

j + CV j̄C k̄
j̄
. Now, taking account of

(2) on the cross-section σξ(Mn), and also (4) and (5), we have C Ṽ k = V k, C Ṽ k̄ = −LV ξ
h1...hp

k1...kq
.

Thus, the complete lift CV has along σξ(Mn) components of the form
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CV =
(

V k, −LV ξ
h1...hp

k1...kq

)
(6)

with respect to the adapted (B,C)- frame. From (1), (4) and (5), by using similar way the
vertical lift V A also has components of the form

V A =
(

0, A
h1...hp

k1...kq

)
(7)

with respect to the adapted (B, C)- frame.

3. The vertical-vector lift of a tensor field of type (1,1)

Let ϕ ∈ =1
1(Mn). Using the Jacobian matrix of the coordinate transformation in T p

q (Mn)

{
xj′ = xj′(xj),

xj̄′ = t
i′1...i′p
j′1...j′q

= A
i′1
i1

...A
i′p
ip

Aj1
j′1

...A
jq

j′q
t
i1...ip
j1...jq

= A
(i′)
(i) A

(j)
(j′)x

j̄ ,

where A
(i′)
(i) A

(j)
(j′) = A

i′1
i1

...A
i′p
ip

Aj1
j′1

...A
jq

j′q
, A

i′1
i1

= ∂xi′

∂xi , Aj1
j′1

= ∂xj

∂xj′ we can define a vector field γϕ ∈
=1

0(T
p
q (Mn)), p ≥ 1, q ≥ 0[1]:

γϕ = ((γϕ)J) =
(

0, t
li2...ip
j1...jq

ϕi1
l

)
,

where ϕi1
l are local components of ϕ in Mn. Clearly, we have γϕ(V f) = 0 for any f ∈ F (Mn).

Thus γϕ is a vertical-vector lift of the tensor field ϕ ∈ =1
1(Mn) to T p

q (Mn). We can easily verify
that the vertical-vector lift γϕ has along σξ(Mn) components

γϕ = ((
∼
γϕ)K) =

(
0, ξ

lh2...hp

k1...kq
ϕh1

l

)
(8)

with respect to the adapted (B, C)-frame, where ξ
h1...hp

k1...kq
are local components of ξ in Mn.

4. Tachibana operator and complete lifts of affinor fields on a pure

cross-section

A tensor field ξ ∈ =p
q(Mn) is called pure with respect to ϕ ∈ =1

1(Mn), if [8-11]:

ξ(ϕX1, X2, ..., Xq, α1, α2, ..., αp) = ξ(X1, ϕX2, ..., Xq, α1, α2, ..., αp) = ... =

= ξ(X1, X2, ..., ϕXq, α1, α2, ..., αp) = ξ(X1, X2, ..., Xq, ϕ
′α1, α2, ..., αp) = (9)

= ξ(X1, X2, ..., Xq, α1, ϕ
′α2, ..., αp) = ... = ξ(X1, X2, ..., Xq, α1, α2, ..., ϕ

′αp)

for any X1, X2, ..., Xq ∈ =1
0(Mn), α1, α2, ..., αp ∈ =0

1(Mn), where (ϕ′α)(X) = α(ϕX) X ∈
=1

0(Mn), α ∈ =0
1(Mn). In particular, vector and covector fields will be considered to be pure.

We shall now derive explicit expressions for φϕ-operator (or Tachibana operator) which applied to
an arbitrary pure tensor field of type (p, q). Explicit formulae of φϕ-operator for pure tensor fields
of types (1, q) and (0, q) are given in [9]. Also in [9] derives relations between the geometry of
hyperholomorphic B-manifolds (Norden manifolds) and φϕ-operator. We note that, φϕ-operator
is extension of the operator of Lie derivation LX , X ∈ =1

0 (Mn) to affinor fields ϕ ∈ =1
1 (Mn).

We denote by
∗
=r

s(M) the module of all pure tensor fields of type (r, s) on M with respect to
the (1, 1)-tensor field ϕ. We now fix a positive integer λ. If K and L are pure tensor fields
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of types (p1, q1) and (p2, q2) respectively, then the tensor product of K and L with contraction

K
C⊗L = (Ki1...mλ...ip1

j1...jq1
L

r1...rp2
s1...mλ...sq2

) is also a pure tensor field.

We shall now make the direct sum
∗
=(M) =

∑∞
r,s=0

∗
=r

s(M) into the algebra over the real number

R by defining the pure product (denoted by
C⊗ or ” ◦ ”) of K ∈

∗
=p1

q1 (M) and L ∈
∗
=p2

q2 (M) as
follows:

C⊗ : (K,L) → (K
C⊗L) =

=





K
i1...mλ...ip1

j1...jq1
L

r1...rp2
s1...mλ...sq2

for λ ≤ p1, q2 (λ is a fixed positive integer),

K
i1...ip1

j1...mµ...jq1
L

r1...mµ...rp2
s1...sq2

for µ ≤ p2, q1 (µ is a fixed positive integer),
0 for p1 = 0, p2 = 0,

0 for q1 = 0, q2 = 0.

In particular, let K = X ∈ =1
0(M), and L ∈ Λq(M) be a q−form. Then the pure product X

C⊗L

coincides with the interior product ιXL.

Definition 4.1. [8,9] Let ϕ ∈ =1
1(M), and =(M) =

∑∞
r,s=0=r

s(M) be a tensor algebra over R.

A map φϕ :
∗
=(M) → =(M) is called a Tachibana operator or φϕ−operator on M if

(a) φϕ is linear with respect to constant coefficients,

(b) φϕ :
∗
=r

s(M) → =r
s+1(M) for all r, s,

(c) φϕ(K
C⊗L) = (ϕφK)

C⊗L + K
C⊗ϕφL for all K, L ∈ ∗

=(M).
(d) φϕXY = −(LY ϕ)X for all X, Y ∈ =1

0(M), where LY is the Lie derivation with respect to Y .
(e) φϕX(ιY ω) = (d(ıY ω))(ϕX)− (d(ıY (ω ◦ϕ)))(X) = (ϕX)(ιY ω)−X(ιϕY ω) for all ω ∈ =0

1(M)

and X, Y ∈ =1
0(M), where ιY ω = ω (Y ) = ω

C⊗Y .

Theorem 4.1. Let ω ∈
∗
=0

s(M). Then

φϕX (ω (Y1, ..., Ys)) = (ϕX) (ω (Y1, ..., Ys))−X (ω (ϕY1, ..., Ys)) .

Proof. (see [8]). ¤

Let t ∈
∗
=r

s(M), r > 1, s ≥ 1. We now define a pure tensor field of type (0,s) tξ1,ξ2,...,ξr ∈
∗
=0

s(M)
by tξ1,ξ2,...,ξr (Y1, Y2, ..., Ys) = t

(
Y1, Y2, ..., Ys, ξ

1, ξ2, ..., ξr
)
, where tξ1,ξ2,...,ξr has components of

the form:
(
tξ1,ξ2,...,ξr

)
j1j2...js

= ti1...ir
j1...js

ξ1
i1ξ

2
i2 ...ξ

r
ir .

According to Theorem 4.1, we find

φϕXt
(
Y1, ..., Ys, ξ

1, ξ2, ..., ξr
)

=

= φϕXtξ1,...,ξr (Y1, ..., Ys) =

= (ϕX) tξ1,...,ξr (Y1, ..., Ys)−Xtξ1,...,ξr (ϕY1, ..., Ys) =

= (ϕX) t
(
Y1, ..., Ys, ξ

1, ..., ξr
)−Xt

(
ϕY1, ..., Ys, ξ

1, ..., ξr
)
.
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Then, using φϕXξµ = LϕXξµ − LX (ξµ ◦ ϕ), we see that φϕt for t ∈
∗
=r

s(M), r > 1, s ≥ 1, is by
definition, a tensor field of type (r, s + 1) given by

(φϕt)
(
X,Y1, ..., Ys, ξ

1, ..., ξr
)

= (10)

= (φϕXt)
(
Y1, ..., Ys, ξ

1, ..., ξr
)

=

= φϕXt
(
Y1, ..., Ys, ξ

1, ..., ξr
)−

s∑

λ=1

t
(
Y1, ..., φϕXYλ, ..., Ys, ξ

1, ..., ξr
)−

−
r∑

µ=1

t
(
Y1, ..., Ys, ξ

1, ..., φϕXξµ, ..., ξr
)−

−
r∑

µ=1

t
(
Y1, ..., Ys, ξ

1, ..., LϕXξµ − LX (ξµ ◦ ϕ) , ..., ξr
)
.

By setting X = ∂k, Yλ = ∂jλ
, ξµ = dxiµ , λ = 1, ..., s; µ = 1, ..., r in the equation (10), we see

that the components (φϕt)i1...ir
j1...js

of φϕt with respect to local coordinate system x1, ..., xn may be
expressed as follows:

(φϕt)i1...ir
kj1...js

= ϕm
k ∂mti1...ir

j1...js
− ∂k (t ◦ ϕ)i1...ir

j1...js
+

s∑

λ=1

(∂jλ
ϕm

k ) ti1...ir
j1...m...js

+ (11)

+
r∑

µ=1

(
∂kϕ

iµ
m − ∂mϕ

iµ
k

)
ti1...m...ir
j1...js

,

where (t ◦ ϕ)i1...ir
j1...js

= ti1...ir
m...js

ϕm
js

= ... = ti1...ir
j1...mϕm

js
= tm...ir

j1...js
ϕi1

m = ... = ti1...m
j1...js

ϕir
m.

Let
∗
= p

q(Mn) denotes a module of all the tensor fields ξ ∈ =p
q(Mn) which are pure with respect

to ϕ. Now, we consider a pure cross-section σϕ
ξ (Mn) determined by ξ ∈ ∗

= p
q(Mn), p ≥ 1, q ≥ 0.

We observe that the local vector fields

CX(j) = C(
∂

∂xj
) = C(δh

j

∂

∂xh
) =

(
δh
j , 0

)

and

V X(j̄) = V (∂j1 ⊗ ...⊗ ∂jpdxi1 ⊗ ...⊗ dxiq) =

= V (δi1
h1

...δ
iq
hq

δk1
j1

...δ
kp

jp
∂k1 ⊗ ...⊗ ∂kp ⊗ dxh1 ⊗ ...⊗ dxhq) =

=
(

0, δi1
h1

...δ
iq
hq

δk1
j1

...δ
kp

jp

)
,

j = 1, ..., n, j̄ = n+1, ..., n+np+q span the module of vector fields in π−1(U). Hence any tensor
field is determined in π−1(U) by its action of CX(j) and V X(j̄). Then we define a tensor field
Cϕ ∈ =1

1(T
p
q (Mn)) along the pure cross-section σϕ

ξ (Mn) by
{

Cϕ(CV ) = C(ϕ(V ))− γ(LV ϕ) + V ((LV ϕ) ◦ ξ), ∀V ∈ =1
0(Mn), (i)

Cϕ(V A) = V (ϕ(A)), ∀A ∈ =p
q(Mn), (ii)

(12)

where ϕ(A) ∈ =p
q(Mn), ((LV ϕ)oξ)(X1, ..., Xq; α1, ..., αp) = ξ(X1, ..., Xq; (LV ϕ)′α1, ..., αp) and

call Cϕ the complete lift of ϕ ∈ =1
1(Mn) to T p

q (Mn), p ≥ 1, q ≥ 0 along σϕ
ξ (Mn)[4]. In particular,

if we assume that p = 1, q > 0 then we get

γ(LV ϕ) = V ((LV ϕ) ◦ ξ),
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substituting this into (12), we find (see [6])

Cϕ(CV ) = C(ϕ(V )), Cϕ(V A) = V (ϕ(A)).

Remark 4.1. The equation (12) is useful extension of the equation CL(ıα) = ı(LV α), α ∈
=q

p(Mn) (see [4]) to affinor fields along the pure cross-section σϕ
ξ (Mn).

Let Cϕ̃K
L be components of Cϕ with respect to the adapted (B,C)- frame of the pure cross-

section σϕ
ξ (Mn). Then, from (7) and (12) we have

{
Cϕ̃K

L
C Ṽ L = C(ϕ(̃V ))K − (γ(L̃V ϕ))K + V ((LV ϕ)̃ ◦ ξ)K , (i)

Cϕ̃K
L

V ÃL = V (ϕ(̃A))K , (ii)
(13)

where (V (ϕ(̃A))K) =
(

0, ϕh1
m A

mh2...hp

k1...kq

)
, V (

∼
(LV ϕ) ◦ ξ)K =

(
0, (LV ϕhλ

m )ξh1...m...hp

k1...kq

)
,

γ(
∼

LV ϕ)K =
(

0, ((LV ϕ)h1
m )ξmh2...hp

k1...kq

)
, LV ϕhλ

m are local component of LV ϕ in Mn.
Straightforward computations using the local expression (11) of Tachibana operator and the

expressions (13), (6), (8), we obtain that the complete lift Cϕ ∈ =1
1(T

p
q (Mn)) of ϕ has along the

pure cross-section σϕ
ξ (Mn) components

{
Cϕ̃k

l = ϕk
l ,

Cϕ̃k
l̄

= 0, Cϕ̃k̄
l = −(φϕξ)h1...hp

lk1...kq
,

Cϕ̃k̄
l̄

= ϕh1
s1

δh2
s2

...δ
hp
sp δr1

k1
...δ

rq

kq

(14)

with respect to the adapted (B, C)- frame of σϕ
ξ (Mn), where φϕξ is the Tachibana operator and

xk̄ = t
h1...hp

k1...kq
, xl̄ = t

s1...sp
r1...rq (for details, see [2]).

Remark 4.2. Cϕ in the form (14) is a unique solution of (13). Therefore, if an
∗
ϕ is element

of =1
1(T

p
q (Mn)), such that

∗
ϕ(CV ) = Cϕ(CV ) = C(ϕ(V )) − γ(LV ϕ) + V ((LV ϕ) ◦ ξ),

∗
ϕ(V A) =

Cϕ(V A) = V (ϕ(A)), then
∗
ϕ = Cϕ.

Remark 4.3. Taking into account the formula (14), and specializing to the case p = 1, q = 0,
one has the formula of the complete lift of affinor fields to tangent bundle along the cross-section
σξ(Mn)(for details, see [12, p.126]).

Remark 4.4. In the case of ∂mξ
h1...hp

k1...kq
= 0, (B,C)−frame is considered as a natural frame

{∂h, ∂h̄} of σϕ
ξ (Mn). Then, from (14) we obtain components of Cϕ along the pure cross-section

Cϕk
l = ϕk

l ,
Cϕk

l̄ = 0, (15)
Cϕk̄

l̄ = ϕh1
s1

δh2
s2

...δ
hp
sp δr1

k1
...δ

rq

kq
,

Cϕk̄
l = (∂lϕ

h1
m )ξmh2...hp

k1...kq
−

q∑

µ=1

(∂kµϕm
l )ξh1...hp

k1...m...kq
−

−
p∑

λ=1

(∂lϕ
hλ
m − ∂mϕhλ

l )ξh1...m...hp

k1...kq

with respect to the natural frame {∂h, ∂h̄} of σϕ
ξ (Mn) in π−1(U) [7].
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5. Algebraic Π− structures on a pure cross-section in T p
q (Mn)

Let Am be an associative commutative unital algebra of finite dimension m over the field R

of real numbers. An algebraic Π−structure in Mn is a collection Π =
{

ϕ
α

}
, α = 1, ..., m of

tensor fields of type (1, 1) such that ϕ
α
◦ϕ

β
= Cγ

αβ
ϕ
γ
, where Cγ

αβ are the structure constants of the

algebra Am.

Theorem 5.1. If Π =
{

ϕ
α

}
is an integrable almost algebraic Π−structure in Mn, then the

complete lift CΠ =
{

C ϕ
α

}
of Π to T p

q (Mn) along the pure cross-section σΠ
ξ (Mn) is an almost

algebraic CΠ−structure in T p
q (Mn).

Proof. Let ϕ
α
, ϕ

β
∈ Π (ϕ

α
◦ϕ

β
= ϕ

β
◦ϕ

α
) and S ∈ =1

2(Mn). Then using (6), (8) and (12), we have

γ(ϕ
α
±ϕ

β
) = γ ϕ

α
±γ ϕ

β
, C ϕ

α
(γ ϕ

β
) = γ(ϕ

β
◦ϕ

α
), (16)

C ϕ
α
(V (ϕ

β
◦ξ)) = V ((ϕ

β
◦ϕ

α
) ◦ ξ),

(γS)CV = γSV , V (S ◦ ξ)(CV ) = V (SV ◦ ξ),

where SV is the tensor field of type (1.1) in Mn defined by SV (W ) = S(V, W ), for any W ∈
=1

0(Mn). If V ∈ =1
0(Mn), from (12) and (16), we have

(C ϕ
α
◦ Cϕ

β
)CV = C ϕ

α
(Cϕ

β
(CV )) =C ϕ

α
(C(ϕ

β
(V ))− γ(LV ϕ

β
) + V ((LV ϕ

β
) ◦ ξ))) =

= C ϕ
α
(C(ϕ

β
(V )))− C ϕ

α
(γ(LV ϕ

β
)) +C ϕ

α
(V ((LV ϕ

β
) ◦ ξ)) =

= C(ϕ
α
(ϕ
β
(V )))− γ(Lϕ

β
(V ) ϕ

α
) + V ((Lϕ

β
(V ) ϕ

α
) ◦ ξ)− (γ(LV ϕ

β
) ◦ ϕ

α
) + V (((LV ϕ β) ◦ ϕ

α
) ◦ ξ)) =

= C((ϕ
α
◦ϕ

β
)(V ))− γ(Lϕ

β
(V ) ϕ

α
)− γ((LV ϕ

β
) ◦ ϕ

α
)) + V (((LV ϕ

β
) ◦ ϕ

α
+(Lϕ

β
(V ) ϕ

α
)) ◦ ξ) =

= C((ϕ
α
◦ϕ

β
)(V ))− γ((Lϕ

β
(V ) ϕ

α
) + LV (ϕ

β
◦ϕ

α
)− ϕ

β
◦(LV ϕ

α
))+

+V ((LV (ϕ
β
◦ϕ

α
)− ϕ

β
◦(LV ϕ

α
) + (Lϕ

β
(V ) ϕ

α
)) ◦ ξ) =

= C((ϕ
α
◦ϕ

β
)(V ))− γ(LV (ϕ

β
◦ϕ

α
)) + V ((LV (ϕ

β
◦ϕ

α
)) ◦ ξ)α)−

−γ((Lϕ
β
(V ) ϕ−ϕ

β
◦(LV ϕ

α
)) + V (((Lϕ

β
(V ) ϕ

α
)− ϕ

β
◦(LV ϕ

α
)) ◦ ξ) =

= C((ϕ
α
◦ϕ

β
)(V ))− γ(LV (ϕ

α
◦ϕ

β
)) + V ((LV (ϕ

α
◦ϕ

β
)) ◦ ξ)α)− ϕ

β
◦(LV ϕ

α
))−

−γ((Lϕ
β
(V ) ϕ+V (((Lϕ

β
(V ) ϕ

α
)− ϕ

β
◦(LV ϕ

α
)) ◦ ξ) =

= C(ϕ
α
◦ϕ

β
)(CV )− γ(N

α,β
V ) + V (N

α,β
V ◦ ξ) = C(ϕ

α
◦ϕ

β
)(CV )− γ(N

α,β
)(CV ) + V (N

α,β
◦ξ)(CV ) =

= C((ϕ
α
◦ϕ

β
)− γ(N

α,β
) + V (N

α,β
◦ξ))(CV ), (17)

where N
α,β

V = Lϕ
β
(V )−ϕ

β
◦(LV ϕ

α
). Since ϕ

α
◦ϕ

β
= ϕ

β
◦ϕ

α
, (φϕ

α

ϕ
β
)(V, W ) = (Lϕ

β
(V ) ϕ

α
−ϕ

β
◦(LV ϕ))W =

[ϕ
α

V, ϕ
β

W ] − ϕ
α
[V, ϕ

β
W ] − ϕ

β
[ϕ
α

V, W ] + ϕ
β
◦ϕ

α
[V, W ] = N

α,β
V W is nothing but the Tachibana op-

erator or the Nijenhuis-Shirokov tensor N
α,β

(V,W ) ∈ =1
2(Mn) constructed from ϕ

α
and ϕ

β
[2].
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Similarly, if A ∈ =p
q(Mn), then by (12), we have

(C ϕ
α
◦C ϕ

β
)V A = C ϕ

α
(C ϕ

β

V A) = C ϕ
α
(V (ϕ

β
(A))) = (18)

= V (ϕ
α
(ϕ
β
(A))) = V ((ϕ

α
◦ϕ

β
)(A)) = C(ϕ

α
◦ϕ

β
)V A.

Suppose now that ∇ is linear connection (with zero torsion) on Mn. If Π =
{

ϕ
α

}
is an almost

integrable algebraic Π−structure with respect to ∇, i.e. ∇ϕ
α

= 0, α = 1, ..., m, then N
α,β

= 0

[2]. If we take N
α,β

= 0, then by the Remark 4.1 made in §4, (17), (18) and the linearity of the

complete lift, we have
C ϕ

α
◦C ϕ

β
= C(ϕ

α
◦ϕ

β
) = C(Cγ

αβ
ϕ
γ
) = Cγ

αβ
C ϕ

γ
.

¤

Let Mn and Nm be two manifolds with algebraic structures Π =
{

ϕ
α

}
and Π̃ =

{
ψ
α

}
,

α = 1, ..., m determined by the same associative commutative unital algebra Am. A differentiable
mapping f : Mn → Nm is called a quasi-A-holomorphic mapping with respect to (Π, Π̃) (see
[5]), if at each point P ∈ Mn

dfp ◦ ϕ
α

p = ψ
α

f(p) ◦ dfp, α = 1, ..., m. (19)

As the mapping f : Mn → Nm(m = n + np+q) we take a cross-section σΠ
ξ : Mn → T p

q (Mn)
determined by the pure tensor field ξ ∈ =p

q(Mn) with respect to Π−structure. The pure cross-

section σΠ
ξ : Mn → T p

q (Mn) can be locally expressed by (3). In (19), if Π̃ =
{

ψ
α

}
is the

almost algebraic CΠ−structure (see Theorem 5.1), the condition that the pure cross-section
σΠ

ξ : Mn → T p
q (Mn) be quasi-A-holomorphic tensor field with respect to (Π, CΠ) is locally given

by
ϕ
α

m
l ∂mxK = c ϕ

α

K
M∂lx

M , α = 1, ..., m, (20)

where C ϕ
α

K
M are components of C ϕ

α
along the pure cross-section σΠ

ξ (Mn) with respect to the

natural frame {∂k, ∂k̄}. In the case K = k, by virtue of (3) and (15) we get the identity ϕk
l = ϕk

l .
When K = k̄, by virtue of (3), (9) and (15), (20) reduces to

(φϕξ)h1...hp

lk1...kq
= ϕm

l ∂mξ
h1...hp

k1...kq
− ∂l

∗
ξ

h1...hp

k1...kq
+

∑q
a=1 (∂kaϕ

m
l ) ξ

h1...hp

k1...m...kq
+

+2
∑p

λ=1 ∂[l ϕ
hλ

m]ξ
h1...m...hp

k1...kq
= 0,

(21)

where φϕξ is the Tachibana operator. Thus, a quasi-A-holomorphic tensor field with respect to
(Π, CΠ) is given by (21). The equation φϕξ = 0 is the equation characterizing the usual almost
holomorphic tensor field [3], [10]. Thus, if Π−structure is almost integrable, then our quasi-A-
holomorphic tensor field with respect to (Π, CΠ) coincides with the usual almost holomorphic
tensor field.
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