
TWMS J. Pure Appl. Math., V.2, N.1, 2011, pp.74-96

INTRODUCTION TO A FEW METRIC ASPECTS OF FOLIATION
THEORY

RÉMI LANGEVIN1

Abstract. Foliations can be studied from a dynamical viewpoint, folowing holonomy maps.

Here we focus on the geometry of the leaves of codimension one foliations of surfaces of 3-

manifolds of constant curvature. The fact that the ambient space is of constant curvature

allows us to play the integral geometry games, that is slice with lines, planes etc. We can also

consider globally contact points with families of lines, planes etc. That way we obtain theorems

about curvature functions defined by the leaves of our foliations.
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1. Introduction

The name “feuilletage” in French recalls leaves piled up on the ground in autumn. The idea
is to fill a manifold with submanifolds which locally look like piled plates (foliation people call
them plaques).

The notion was invented in the 1940’s by by Ch. Ehreshman (see [8] and [9]) (according
Reeb), and soon basic theorems were proved by Ehreshman and Reeb (see [8], Ehresmann [9])
and G. Reeb (see [22]); the notion was also known by Chevalley [5] p. 68 in the context of Lie
groups). After Poincaré, Painlevé and Dulac, an earlier work of Kaplan ([11]) already considers
families of curves filling the plane out of the context of solutions of differential equations.

Our goal will be to study foliations of codimension 1 of the Euclidean plane, the Euclidean
3-dimensional space or open domains contained in these Euclidean spaces, flat tori of dimension
2 or 3 and spheres of dimension 2 or 3 endowed with the standard metric (that is the metric of
constant curvature 1). Hyperbolic spaces will be just mentioned.

We will be interested mainly in the geometry of the leaves. For an introduction to the
transverse viewpoint see for example [6].

2. Codimension 1 foliations of the plane or of the torus

2.1. Before foliations. Let us first give a few ways of filling regions of the plane or the entire
plane by curves.
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Figure 1. Graph of solutions of y′ = f(x) and trajectories of a pendulum in the phase space

Levels of a smooth function F : R2 → R. Let Crit be the set of critical points of F . Then the
levels of F foliate R2 \ Crit.
- Graphs of solutions of differential equations

A very simple example is the equation y′ = f(x) (a particular case of y′ = f(x, t)), then the
solutions are {y = F (x) + c} where F ′(x) = f(x).
- Orbits of a smooth vector field

ẋ = f1(x, y)
ẏ = f2(x, y).

Many examples come from physics, for example, trajectories of the movement of a pendulum
in R2, a covering of the phase space S1 × R. These trajectories define a foliation of R2 with
isolated punctures. These special points, corresponding to equilibria of the movement of the
pendulum, are also called singular points of the foliation.

Recall the existence and unicity of solution implies that orbits of a smooth vector field with
no zero in the domain W ⊂ R2 form a family of disjoint curve filling the domain W . This proves
that a non-zero vector field X defined on an open subset W ⊂ R2 provides a foliation of W .
Moreover, both vector fields X and Y = f ·X, f 6= 0, provide the same foliation.

Notice that if we change the vector field multiplying it by a strictly positive function, the
integral curves do not change, only their parametrization does.
- Instead of a vector field we may start from a line field: to each point m of the ambient space
W ⊂ R2 corresponds a direction `(m) of TmW ' R2.

2.2. General definitions. In order to give a formal definition of a foliation of a manifold, we
need to start, as for the definition of a manifold, from a covering V = {Vi} of a Hausdorff
topological space M , and homeomorphisms

φi : Vi → Ui; Ui ']0, 1[n⊂ Rn.

The previous line says that the model of an n-dimensional manifold is the open cube ]0, 1[n.
The definition of a manifolds uses gluing maps hij : Ui → Uj defined each time Vi ∩ Vj 6= ∅.

For those who love indices, we can define chart maps φi : Ui → Vi and φj : Uj → Vj and
hij = φj ◦ φ−1

i where it makes sense, that is from (φi)(Vi ∩ Vj) to (φj)(Vi ∩ Vj).
In order to get a differentiable, smooth or analytic manifold, it is enough to impose that the

maps hij are differentiable, smooth or analytic respectively . In order to define a foliation of
dimension p of a differentiable manifold Mn of dimension n (we will not here consider topological
foliations), we need to split the model open cube ]0, 1[n into ]0, 1[n = ]0, 1[p×]0, 1[q, p + q = n,
and impose that the diffeomorphisms hij send horizontal levels (]0, 1[p×y, (y ∈]0, 1[q)) of Ui to
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horizontal levels of Uj . We can give a formula, using x1 ∈]0, 1[p and y1 ∈]0, 1[q in the source Ui

and x2 ∈]0, 1[p and y2 ∈]0, 1[q in the target Uj of the map hij

x2 = h1
ij(x1, y1), y2 = h2

ij(y1).

Let us insist: saying that y2 does not depend on x1 but only on y1 means that the map hij send
an horizontal level ]0, 1[p×y1 of U1 to the horizontal level ]0, 1[p×y2, y2 = h2

ij(y1) of U2.

Figure 2. Charts defining a foliation (n = 2, p = q = 1)

Another way to think of charts is to equip the open sets Vi with submersions pi to segments (the
vertical segment in the model). We leaves the compatibility conditions to the reader. A plaque
of a foliation associated to a chart (Vi, Ui, φi) is an image φi(]0, 1[p×y) of an horizontal level of
the model Ui =]0, 1[p×]0, 1[q.

Example 2.1. Parallel lines in R2 and the quotient foliation in T2 = R2/(1, 0) · Z ⊕ (0, 1) · Z.
Charts can be obtained from rectangles choosing the sides small enough.

Example 2.2. Let A be the annulus of the Euclidean plane of boundary the circles of center
the origin, and radii respectively 1 and 2. The leaves of the foliation spiral towards the two
boundary components, but an orientation of a leaf provide orientations of the boundary circles
which “turn” in different directions (see Figure 3).

We will call such a foliated annulus a Poincaré component we keep the name “Reeb component”
for the foliation of the solid torus of Fig.18.

A leaf of a foliation is obtained starting from a plaque, gluing to it the adjacent plaques etc...
More formally, one can define a topology on the ambient manifold with a basis of open sets the
open sets of the plaques of the foliation. A leaf is now a connected component for this topology.
It is convenient to accept a few exceptional points that we call singular points.
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Figure 3. A foliated annulus: a Poincaré component

2.3. Foliations with isolated singularities.

Figure 4. Center, sink or source and saddle

We say that we have a foliation of manifold with singularities if we have a foliation of a
manifold, deprived of a lower dimensional set of points like a finite union of smooth hypersurfaces
maybe with boundary. When the ambient manifold is of dimension 2, we suppose that the
singular points are isolated.

Figure 5. A foliation of a surface of genus 2 with 6 singularities

Using vector fields in the plane, one can define some particular singularities.
- X1(x, y) = (−x,−y) has a sink at the origin.
- X2(x, y) = (x, y) has a source at the origin.
- X3(x, y) = (x,−y) has a saddle at the origin.
- X4(x, y) = (−y, x) has a center at the origin.

Example 2.3. A surface of genus 2, Σ2, can be obtained from a regular octagon identifying the
sides as indicated on Figure 5. We can draw the orbits of a vector field on the octagon which has
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a source at the center of symmetry of the octagon, two saddle-like sectors touching the middle of
each side, and a sink-like sector at each edge. After the identifications we get on Σ2 one source,
one sink and four saddles.

2.3.1. Non-orientable singularities.

Figure 6. Non-orientable singularities: sunset, thorn and a 3-prongs saddle

A foliation can always be oriented in a neighbourhood of a regular point. This is not the case
in the neigbourhood of a singular point as one can see on Figure 2.3.1. The examples comme
from a line-field, that is the assignment of a line at each point of the foliated domain. Following
a small circle around the singular point, we see that it is impossible on our examples to define
an orientation of the lines on a neighbourhood of the singular point.

2.4. Exchange theorem. We consider now a smooth foliation of a domain U ⊂ R2. We will
study globally the “amount of curvature” allowed by the shape of the domain when the boundary
of the domain is supposed to be a union of leaves.

Through a point x ∈ U goes a leaf L. If we orient the leaf L, it has a curvature k(x) at the
point x. The total curvature of the foliation F is the integral

∫
W |k|dv. Notice that we need not

to orient simultaneously in a compatible way all the leaves, as we consider only |k|. Notice also
that we do not integrate the curvature leaf by leaf, we consider the integral of the function |k|
on the whole domain U , endowed with the (2-dimensional) Lebesgue measure. We will denote
by TmF the line tangent at m to the leaf Lm of F .

Figure 7. Oriented directions

The space of affine lines of the Euclidean plane is a 2-dimensional manifold endowed with
a natural measure. An exhaustive reference is Santaló’s book, chapter 3 [23]. Given an origin
of the Euclidean plane, an oriented line is defined by an angle θ ∈ S1 and the coordinate of a
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point in the oriented line through the origin making the angle θ with the x-axis (see figure 7).
The density we will use on the set of oriented affine line A+(2, 1) is then dθ ⊗ dt. Notice that
this measure is invariant by the action of the group of affine isometries. The measure on the set
A(2, 1) of non-oriented lines is essentially the same. Usually one takes half of the image measure
of dθ⊗ dt by the 2 to 1 map from A+(2, 1) to A(2, 1) obtained forgetting the orientation of the
line.

An “exchange theorem” relates the number |µ|(F ,H) of contact of a foliation with affine lines
H ∈ A(2, 1) and the total curvature of F .

Theorem 2.1. (Foliated exchange theorem).
∫

W
|k|dv =

∫

A(2,1)
|µ|(F ,H).

To prove this theorem, we will define the polar curves of the foliation and a foliated Gauss
map.

Polar curves. The critical points of the orthogonal projection of a leaf L of F on a line ` are
in general isolated on the leaf L.

Proposition 2.1. The polar set, closure of the union of these critical points for all the leaves
of the foliation

Γ(F , `) =
⋃

L

crit(p`|L)

is generically almost everywhere a smooth curve (it may have singular points). We will call it
then a polar curve of the foliation F .

Remark 2.1. Notice that we can also define the polar set Γ(F , `) as the closure of the set where
the foliation F is tangent to the foliation of the plane by the affine lines orthogonal to `, that is
the set of points m where TmF is a line orthogonal to `, see Figure 2.4.

Proof. Using the theorem of Sard-Brown we see that the map γ : W → P1 which to a point
m ∈ W associates the tangent direction at m to the leaf through m has, when the foliation is
smooth enough, a set of critical values of measure zero. Therefore, for a regular value ` of γ, Γ`

is a smooth curve.
We include a singularity of the foliation in a curve Γ` if it belongs to the closure of the set

of points m ∈ W such that ` is the tangent direction at m to the leaf through m. When the
dimension of the ambient space is 2, we will suppose that the singular points of the foliation are
isolated. ¤

Notice that on the set Cγ of critical points of γ : W → P1, one has k = 0. Therefore
γ−1(critical values of γ) is the union of a set of measure zero and a set where k = 0.

Remark 2.2. When Γ(F , TmF⊥) is tangent to TmF the Gauss curvature of the leaf Lm is zero,
as, in that case, the differential of the Gauss map of the leaf Lm restricted to TmΓ(F , TmF⊥) is
zero.

To prove the foliated exchange theorem we need also to introduce a foliated Gauss map with
values in A(2, 1).

Definition 2.1.
γF (m) = the affine line tangent at m to F .
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Proof of the theorem 2.1 : The previous remark implies that, excluding points where k = 0,
which do not contribute to the integral

∫
W |k(m)|dm, we exclude the points where Γ` is tangent

to L at m.
To compute the Jacobian determinant of the foliated Gauss map γF at a point m ∈ (W \

{m|k(m) = 0} we will use, as then Γ(F , TmF⊥) is transverse to TmF in the domain, the frame
u1, u2, where u1 is an orthogonal basis of TmF , and u2 is the unit vector tangent at m to
Γ(F , TmF⊥). In A(2, 1) we use at γF (m) the frame v1, v2, v3, where v1 form an orthogonal basis
of the horizontal space at γF (m) of the Riemannian fiber bundle A(2, 1) → P1 (the projection
map associates to an affine line its parallel through the origin), and where v2 is a unit vector
tangent to the fiber of A(2, 1) → P1. In these bases, the matrix of dγF is

(
dγF |Lm 0
∗ | cosφ|

)
,

where φ is the angle between TmΓF and TmF⊥.

Figure 8. Computation of the Jacobian determinant of γF in dimension 2

As the volume of the parallelogram determined by the frame u1, u2 is also | cosφ|, and as the
map dγF |Lm is just the Gauss-Kronecker map of the leaf Lm, the Jacobian determinant we are
looking for is |k|. Notice that the previous computation implies that critical points of γF are
contained in the set k = 0.

We can neglect the points of Cγ , union of a measure zero set and a set where k = 0, and the
points of γ−1

F (critical values of γF ), which is also a union of a measure zero set (regular points
of γF of image a critical value of γF ), and a set (containing Cγ) where k = 0. Avoiding all the
points where k = 0, we can use a frame split between TmF and TmF⊥. We can now divide the
complement of this set of “bad” points into an enumerable union of open sets Ui where γfol is
a diffeomorphism, throwing away if necessary another measure zero subset of W . The exchange
theorem on one of the sets Ui reduces to the change of variable theorem. Counting the points
of γ−1

fol(L), L ∈ A(2, 1), L ∈ γfol(
⋃

Ui), we recognize |µ|(F , L). Summing
∫
Ui
|k| we get

∫
W |k|

and, as the difference between W and
⋃

Ui is the union of a set where k = 0 and a measure zero
set, we get the statement of Theorem 2.1.

2.5. Integral geometry of foliations of the Euclidean plane or of a flat torus. We now
give some applications of the foliated exchange theorem in planar domains. We let |k|(m) denote
the absolute value of the curvature of the leaf Lm of F through m.
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Theorem 2.2. [15] Let D ∈ R2 be the unit disc and F be an orientable foliation with isolated
singularities, tangent to ∂D. Then

K(F) =
∫

D
|k| ≥ 2π − 4,

and the minimal value is achieved by the foliation (a) of Figure 9.

Proof. Let us choose an orientation of F ; this induces an orientation of ∂D \ sing(F). Among
the singularities of F on ∂D, let A be the set of those where the orientation of ∂D changes. The
set A = a1, a2, . . . , a2n is finite and has an even number of points. Let Ge be the set of lines
which meet D, do not meet A, and split A in two subsets containing an even number of points.
Let Go be the similar set of lines splitting A in two subsets of odd cardinality.

Recall the formula of Cauchy and Crofton (see [23])

Theorem 2.3. Let C be a smooth plane curve, then

2 · length of C =
∫

A(2,1)
#(C ∩ L)dL

(a) K(F) = 2π − 4 ' 2.28, (b) K(F) = 2π ' 6, 28 (c) K(F) = 2π + 8−√2 ' 2.97

Figure 9. 3 examples of foliations of the disc

The formula of Cauchy and Crofton implies that the sum of the measures of Ge and Go is
2π (the length of ∂D). If a line L is in Ge, then, if it contains no singularity of F , we have
|µ|(F , L) ≥ 1 (see Figure 10).

Figure 10. Forced contact and number of contact points of a line L and the foliation

Using the exchange theorem, we get the inequality∫

D
|k| ≥ measure(Ge) = 2π −measure(Go).
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In order to finish the proof we need a lemma:

Lemma 2.1. For any finite even subset A of the unit circle ∂D the measure of the set Go of
lines cutting A in two odd subsets satisfies

measure(Go) ≤ 4.

¤

Remark 2.3. When A = {a,−a} is made of two opposite points, measure(Go) = 4. When
A = ∅, then measure(Go) = 0. When A is the union of the vertices of a regular 2n-gon, then
measure(Go) goes to π when n goes to infinity.

The proof of the lemma is elementary but technical and can be found in [15].
Now let D ⊂ R2 be a domain homeomorphic to a disc and with a piecewise C2 boundary ∂D.

Definition 2.2. The internal distance d(m1,m2) of two points m1 and m2 is d(m1,m2) =

inf{length(γ)|γ : [a, b] → D a regular curve, γ(a) = m1, γ(b) = m2}
where length(γ) is the length of the curve γ.

In this way, we get a metric on D. In fact the assumptions made on D imply that given the
two end points, there exists exactly one minimizing curve joining them. Such a curve will be
called a geodesic of D.

Definition 2.3. The diameter of D is defined by

d = sup{d(m1,m2)|m1 ∈ D, m2 ∈ D}.

Figure 11. Diameter of a topological disc

Theorem 2.4. [16] Let F be a foliation (by curves) of D, tangent to ∂D, with isolated singu-
larities of positive index, not necessarily orientable. Then∫

D
|k| ≥ length(∂D)− 2d.

Definition 2.4. The index of an isolated singularity m of a non-orientable foliation of the plane
is a half integer ι(m) ∈ 1

2Z, which is half of the degree of the map

Φε : Sε(m) → P1

associating with a point q of a small enough circle centered at m the direction of the line TqF
(if the singularity is orientable, the index is the usual one).
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Notice that a Poincaré-Hopf theorem for non-orientable foliations of the disc is valid (see the
appendix of [13]).

Proof. First, let us show that we can eliminate the case when F has a singularity of index one,
studying only the case where F has two singularities of index 1

2 which are of sunset type (see
Figure 12, on the right).

All singularities of positive index can be substituted by a source/sink or a sunset singularity
without increasing the total curvature of the foliation by more than a given ε. This can be done
by considering on the boundary of a small disc Dr of radius r an homotopy between the “angle”
function determined by F and the “angle” function of one of the models of Figure 12.

A source/sink can be replaced by two sunsets using the modification indicated in Figure 12.
A center can be replaced by a sink (see Figure 13).

A singularity of positive index with m petals can be split first in m center-singularities and a
saddle with m separatrices (see Figure 14).

A four-separatrices saddle can be replaced by two 3-separatrices saddles by a Whitehead
transformation (see Figure 15). The same construction allows us to replace a saddle with n

separatrices by one with (n− 1) separatrices and one with 3 separatrices.
By induction we can, by a perturbation in a neighborhood of the singularities which do

not perturb the total curvature very much, eliminate all the previously met singularities which
are not sunsets or saddles. We can now use a perturbation in a small annulus contained in
a neighborhood of a singular point to get in restriction to the inner circle a line field turning
with constant speed. We can now extend the latter foliation to the concentric circles of a disc
neighborhood of the singularity using homotheties. This construction provides a foliation of the
previous list.

Figure 12. Transformation of a source/sink into two sunsets

Figure 13. Center and sink or source
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Figure 14. A 4-petals singularity and its modification

Eventually we obtain a foliation the singularities of which are only sunsets and 3-separatrices
saddles.

Figure 15. A Whitehead transformation

Let P and Q be two sunsets of F , and γ be a geodesic of D joining P to Q. We need to
estimate the number of contact points of F with an affine line L. All lines, except a set of
measure zero, meet the disc D in a finite number of segments.

Let [a, b] be a connected component of L ∩D such that [a, b] ∩ γ = ∅. Then [a, b] divides D

into two discs, one of them containing P and Q. In the other disc, F is orientable, and therefore
there is at least one point of contact between F and the segment [a, b] (see Figure 10).

Let n(L) be the number of segments of L ∩D in which L meets γ, and c(L) the number of
segments of D ∩ L which do not. Then we have

|µ|(F , L) ≥ c(L).

Cauchy-Crofton formula yields
∫

A(2,1)
#{components of L ∩D} =

1
2

∫

A(2,1)
#{L ∩ ∂D} = length(∂D).

Applying the Cauchy-Crofton formula to the arc γ, we get length (γ) = 1
2

∫
A(2,1) #(L ∩ γ).

Then we obtain

length(∂D) =
∫

A(2,1)
n(L) + c(L) =

∫

A(2,1)
#(L ∩ γ) +

∫

A(2,1)
c(L).

Using the exchange theorem and the inequality on |µ|(F , L) we get
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length(∂D) ≤ 2 · length(γ) +
∫

A(2,1)
|µ|(F , L) = 2 · length(γ) +

∫

D
|k|.

¤

With the same techniques, one can obtain inequalities for foliations of a compact flat annulus,
and for foliations of a disc extending a given line field defined on the boundary. In the second
case, a sort of “length” of the envelope of the one-parameter family of affine lines defined by the
boundary condition will play a role (see [16]).

2.6. Tight foliations in dimension 2. When a foliation achieves equality in the inequality of
Theorem (2.4), we call it tight.

When the disc D is not convex, we can show there does not exist tight foliations tangent to
∂D with singularities of positive index. This comes from the fact that if P ∈ ∂D is a point
of inflexion, and a regular point of F , then there is an open set of affine lines that have more
than one contact point with F in a neighborhood of P . But we can exhibit a sequence Fn of
foliations of D satisfying the hypothesis of our theorem such that

lim
n→∞

∫

D
|k| = length(∂D)− 2d.

We can think of the limit of this sequence of foliations as a foliation all leaves of which have
corners along ∂D, in order to force on ∂D all the critical points of the orthogonal projections of
the leaves on lines; see Figure 16.

Figure 16. A tight singular foliation F ; a non-singular foliation Fn close to F

We have seen that the foliated exchange theorem and some topological analysis of the foliation
provide inequalities. Do there exist foliations achieving the equality case? We have called such
foliations “tight”. An example of a positive result is the following:

Theorem 2.5. Let A be a plane annulus limited by two convex curves C1 of length δ1 and C2

of length δ2. We suppose that C2 is the “inner” one (the Cauchy-Crofton formula then implies
that δ1 > δ2). Then the leaves of the tight foliation of the annulus (tangent to the boundary)
are either closed convex curves isotopic in A to C1 (and C2) or locally convex curves spiraling
towards convex curves isotopic to C1 (see the figure below). The total curvature of the foliation
is, in that case ∫

A
|k| = δ1 − δ2.
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Proof. Using the Cauchy-Crofton formula, we know that the set B of affine lines intersecting C1

and not intersecting C2 has measure δ1 − δ2. Such a line L intersects the annulus in a segment
I. The foliation F is not transverse to the interior of I, otherwise the boundary of C1 and I

would form a Whitehead disc for F , which is impossible as F has no singularity. Then

|µ|(F , L) ≥ 1,

so the total curvature of F is greater than or equal to the measure of B. The equality is achieved
for the foliations described in the theorem, as they satisfy

L ∈ B ⇒ |µ|(F , L) = 1;

L /∈ B ⇒ |µ|(F , L) = 0.

¤

Figure 17. Tight foliation of a plane annulus with convex boundary curves

In [14], the reader will find a study of tight (in their isotopy class) foliations of the torus T 2.

2.7. Foliations by geodesics or by curves of constant curvature. Clearly the only folia-
tion by geodesics of R2 are families of parallel line. In a domain of R2, a disc for example, there
are many more.

In a torus T2 = R2/Λ, Λ = {u1Z⊕u2Z} ⊂ R2, the only totally geodesic foliations are quotient
of foliations of R2 by parallel lines. Leaves maybe all closed or all dense depending on the slope
of the line (using the basis u1, u2 of R2). All the leaves of a foliation of T 2 cannot be circles, as
then the foliation should have singularities of positive index.
Exercise. Prove that even if we accept isolated singularities, it is impossible to construct a
foliation of a torus T2 = R2/Λ by circles.

A sphere S2 cannot admit a foliation with geodesic leaves.
Exercise. Find two proofs of this statement.

Nevertheless, a pencil of geodesic circles provides a geodesic foliation of the sphere with two
singular points.
Exercise. Prove that there exists no totally geodesic foliation of a compact hyperbolic surface
(of constant curvature −1). Using the fact a singular foliation, with a finite number of singular
points, of an hyperbolic surface should admit singularities of negative index, explain why singular
(with a finite number of singular points) geodesic foliations of hyperbolic surface do not exist.
To simplify the proofs, the reader may suppose that the foliations are orientable.
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3. Codimension one foliations of manifolds of dimension 3 of constant curvature

For sake of simplicity, we suppose that the ambient 3-manifold is oriented. We suppose
that the foliation is also oriented (the leaves have compatible orientations); it is therefore also
transversely oriented.
Examples:

- parallel planes in R3 and the quotient foliations of T3 = R3/Λ. In the later case, leaves can
be dense planes, dense cylinders, (closed) tori.

- Pencils of spheres in S3.
- Reeb foliation of S3 (see [22]). This is a very important example, as Novikov ([21]) proved

that any foliation of S3 should contain a Reeb component (see [6] for an introduction to this
difficult theorem).

The first object we need is the model Reeb foliation of the solid torus D2 × S1. To obtain it
we will construct a foliation of D2 × R invariant under unit translations in R (we can visualize
D2×R as a vertical solid cylinder). In the vertical band [−1, 1]×R of the (x, z)-plane, consider a
convex curve asymptotic to both sides of the band. By revolution around the z-axis we obtain a
convex surface asymptotic to the boundary of the cylinder (on the z → +∞ side). Translating it
vertically, we foliate the solid cylinder. By construction the foliation is invariant under vertical
translation and then gives a foliation of the solid torus T = (D2 × R/(2π · Z); see Figure 18.

We need now to recall that the sphere S3 can be obtained as the union of two solid tori
intersecting along their common boundaries.

For that, visualize S3 as the unit sphere of C2. It is defined by the equation |z1|2 + |z2|2 = 1
it contains the torus of equations |z1|2 = 1

2 ; |z2|2 = 1
2 . The solid tori T1 and T2 are given by the

inequalities T1 = {|z1|2 ≥ 1
2 , |z2|2 = 1− |z1|2} and T2 = {|z2|2 ≥ 1

2 , |z1|2 = 1− |z2|2}.

Figure 18. Reeb component

The core of the two tori are respectively the circle C1 of equation z1 = 0, and the circle C2 of
equation z2 = 0. We now want to plug a Reeb component in each solid torus. Using again the
fact that the unit sphere is embedded in C2, we can do that directly in S3.

We demand that the traces of the foliation are Poincaré component on the annuli of the spheres
of the pencils of base circles respectively C1 and C2 obtained by taking away respectively the
trace of the solid torus T2 or the trace of the solid torus T1. We may even chose one Poincar
component on one anulus of one sphere of the pencil of base circle C1 and rotate it by the maps
(z1, z2) 7→ (z1, e

iθz2), and similarily rotate one Poincar component on a sphere of the second
pencil by maps (z1, z2) 7→ (eiθz1, e

iθz2).
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3.1. General results in dimension 3. - Integrability: Frobenius’ theorem.
To a foliation of a 3-dimensional manifold is associated a plane field on the manifold: P =

{P (m) = Tm(L(m)} where L(m) is the leaf of the foliation F which goes through the point m.
It is not true that to every plane field P is associated a foliation F such that P = {P (m) =
Tm(L(m)} where L(m). The plane field should satisfy an integrability condition called the
Frobenius condition. One way to express it is using a differentiable 1-form ω such that at each
point ker(ω(m)) = P (m). Then it writes

ω ∧ dω = 0. (1)

Example 3.1. A non-integrable plane field
Let us consider on R3, (basis (e1, e2, e3) ) an horizontal vector field which twists at the same

speed it goes up

X(x, y, z) = (eiz, 0),

where (eiz, 0) = (cos z, sin z, 0). The form ω satisfies ω(X) ≡ 0, ω(m)(v) = 0∀m∀v ∈ P (m).
Therefore ω(x, y, z) = cos zdx+sin zdy. We can first check that dω = sin zdx∧dz− cos zdy∧dz

and therefore that ω ∧ dω = −cos2zdx ∧ dy ∧ dz − sin2 zdx ∧ dy ∧ dz = −dx ∧ dy ∧ dz.
One geometrical way to see that the plane field is non-integrable is to check that the horizontal

lines twisting at speed z along any vertical lines are tangent to the plane field P. The surface
they generate, an helicoid with axis the vertical line should therefore be a leaf. But two such
helicoids would intersect, which is impossible for leaves of a foliation.

Another way to see that the plane field P cannot be integrable is using the Gauss map γ

of the plane field, that is the map which, to (m, P (m)) associates the (a choice of orientation
is necessary) vector N(m) normal to P (m) at m. We need to compute the derivative of this
Gauss map in the direction of P (m). In view the symmetries of the construction it is enough to
perform the computation at the origin (0, 0, 0, 0). Of course we chose N(m) = X(m). We get,
using e2, e3 as basis of P ((0, 0, 0))

dγ =
(

0 − sin z

0 cos z

)
.

This matrix is not symmetric as it should be if the plane field would have been integrable.
Recall that performing the same computation of the plane tangent to the leaf of a foliation would
provide the derivative of the Gauss map of the leaf of the foliation through the point which has
a symmetric matrix when using an orthonormal basis of the tangent space to the leaf at the
point.

Figure 19. Sections of the Reeb foliation by a sphere of the pencil P1 and by a sphere of the pencil P2. The

traces of the solid torus T1 on the spheres are shadowed
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3.2. Integral geometry of codimension 1 foliations of space-forms of dimension 3.
The leaves are now surfaces. Let us start with the simplest case: F is a foliation of a domain
W ⊂ R3. Let L be a leaf of F . At each point m of the oriented surface L is associated a unit
vector: N(m). This defines a map γ : L → S2. The differential dγ(m) maps TmL to itself.
Using an orthonormal basis of TmL, its matrix is symetrical. The eigenvalues of dγ are called
the principal curvatures of L at m. We note them k1(m) and k2(m). The Gauss curvature at
m is K(m) = k1(m) · k2(m) and the mean curvature of L at m is H(m) = (k1 + k2)/2. The
eigen-directions of dγ are called principal directions. When k1(m) = k2(m), the point m is an
umbilic (at an umbilic, all directions are principal). As, through any point of W goes a leaf of
F , we can now consider K(m), the Gauss curvature at m of the leaf through m, and H(M) the
mean curvature at m of the leaf through m, as functions on W .

3.2.1. The easiest example: T3. To a foliation F we can associate a one-parameter family of
maps Φt : T3 → T3:

Φt(m) = m + t ·N(m),

where N(m) is the normal vector at m to the leaf of F which passes through m.
Let us compute, using an orthonormal basis of TmT3 with the first two vector contained in

principal directions, the jacobian determinant det(dΦt(m)):

det




1 + tk1 0 0
0 1 + tk2 0
∗ ∗ 1


 = 1 + t(k1 + k2) + t2K.

The integral of this jacobian determinant, volT3 + t
∫
T3(k1 + k2) + t2

∫
T3 K is the volume of T3.

Moreover, when t is small enough, Φt is a diffeomorphism.
We get therefore Asimov’s theorem [1]:

Theorem 3.1. Let F be an orientable codimension 1 foliation of T3. Then
∫

T3

Hdv = 0 and
∫

T3

Kdv = 0.

In [1] D. Asimov1 then considered foliations of manifolds of constant sectional curvature; in
dimension 3 these are quotients of S3 or H3.

We will prove this result when the 3-manifold is S3 using an idea of Asimov that Milnor (see
[19]) used to prove that any vector field on S2 has to have a zero.

The unit vector N(m0) is now in Tm0S3. Viewing S3 = S3
1 as the unit sphere of R4 we can

also see N(m0) as a vector in R4. The map Φt now maps the unit sphere to the sphere S3√
1+t2

of

radius
√

1 + t2. Let us consider an auxiliary field N0 defined in a neighbourhood of m: restricted
to the totally geodesic sphere Σ tangent to L at m0 it is constant and coincide with N(m0),
then extend it by parallel transport on meridians orthogonal to Σ.

The jacobian matrix at m0 of the map

Tm0S3
1 → Tm0+tN0S3√

1+t2

m 7→ m + N0

1D. Asimov was the first to consider integrals of the Gauss curvature of the leaves of a codimension 1 foliation.

He considered first foliations of compact 3-manifolds of constant curvature. Higher dimensional results where then

independently proved in by Asimov [1] and, after reading a manuscript by Asimov dealing with the 3-dimensional

case, by Brito Langevin and Rosenberg [2], [3].
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is 


1 0 O

0 1 0
0 0

√
1 + t2


 .

The jacobian matrix of the map at m0 is, provided the source and target basis start with two
unit vectors contained in the principal direction at m0,




1 + tk1 0 O

0 1 + tk2 0
0 0

√
1 + t2


 ,

where k1 and k2 are the eigenvalues of the second fundamental form of L ⊂ S3. The determinant
of this matrix is =

√
1 + t2 · [1+ t(k1 +k2)+ t2k1k2. The volume of S3√

1+t2
is
√

1 + t2]3 ·vol(S3
1).

Integrating on S3
1 the jacobian determinant of Φt and using the fact that, for t small enough, Φt

is a diffeomorphism, we get:
∫

S3
Hdv = 0 and

∫

S3
Kedv = vol(S3) = 2π2,

where H is the mean extrinsic curvature of L, and Ke its extrinsic Gauss curvature.
Using Klein model of the hyperboloid in Lorentz space, the same proof works also in hyperbolic

manifolds; in this case:
∫

M
Hdv = 0 and

∫

M
Kedv = −vol(M).

Formulas when the constant curvature is c are:

Theorem 3.2. [1] Let F be a codimension 1 foliation of a 3-manifold of constant curvature c,
then ∫

M
Hdv = 0 and

∫

M
Kedv = c · vol(M),

where H is the mean extrinsic curvature of L, and Ke its extrinsic Gauss curvature.

3.2.2. Total curvature. Integral geometry provides new proofs of Asimov’s theorems, and deals
also with the total curvature of the foliation, that is the integral

∫
M |K|dv.

3.2.3. Contacts with affine planes and the exchange theorem. We will repeat, adding one dimen-
sion, what we did for foliations of domains of R2.

Let H be an affine hyperplane of R3. The trace F|H of F on H is generically a foliation of
W ∩H with only isolated singularities. We call this finite set of singular points Σ(F|H).

In fact, generically these singularities are non-degenerate, and are of one of the two following
types: center or saddle. We attribute signs to these singular points of the trace foliation F|H
on H:

ε(saddle) = −1 and ε(center) = +1.

(see Milnor’s book [20] for a definition of the index of a singular point of a vector field). When
the leaves of the foliation are locally the levels of a function with a non-degenerated critical
point at m, of index ι(m) (see Milnor’s book [18]), this sign is also the index of the gradient of
f at m: indexgrad(f)(m) = (−1)ι(m).

Definition 3.1. The number |µ|(F ,H) is the number of singular points of F|H .
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When |µ|(F , H) is finite, and the singularities are all non-degenerate, the number µ+(F , H)
is

µ+(F ,H) =
∑

m∈Σ(F|H)

ε(m).

Remark 3.1. A singular point m of F|H is a point where the leaf Lm is tangent to H. We can
also locally project Lm on the normal in m to H (and to Lm). We get a function which is in
general a Morse function (see Milnor’s book [18], for which the Morse index of m satisfies

(−1)Morse index of m = ε(m).

The sign ε(m) is, when the dimension of the leaves of F is even, the sign of the Gauss curvature
of Lm at m.

We will call the integral
∫
W |K| (or

∫
W |k| when W is of dimension 2) the total curvature of

F .

Theorem 3.3. (Foliated exchange theorem).
∫

W
|K| =

∫

A(3,2)
|µ|(F ,H).

Moreover, if one of the previous integrals is finite, then
∫

W
K =

∫

A(3,2)
µ+(F ,H).

To prove this theorem, we will define, as in R2, the polar curves of the foliation and a foliated
Gauss map.

Polar curves. Let us call p` the orthogonal projection on the line `. The critical points of the
the restriction of p` to a leaf L of F are isolated on the leaf L as soon as the curvature of the
leaf in non-zero at that point.

Definition 3.2. We will call polar set associated to the line direction ` the closure of the union
of the critical points of p` restricted to all the leaves of the foliation

Γ(F , `) = ∪LCrit(p`|L).

Defining a map γW → P1 by γ(m) = the line normal to F at m, we see that for ` out of a
measure zero set of P1, the set Γ(F , `) is a regular curve. Moreover, points of W where K 6= 0
are non-critical for γ, therefore, through such a point passes exactly one arc of a polar set.

Proposition 3.1. Near points where K 6= 0 the polar set Γ(F , `) is an arc transverse to `⊥ =
TmF .

Remark 3.2. When Γ(F , TmF⊥) is tangent to TmF the Gauss curvature of the leaf Lm is zero,
as, in that case, the differential of the Gauss map of the leaf Lm restricted to TmΓ(F , TmF⊥) is
zero.

To prove the foliated exchange theorem we need to introduce a foliated Gauss map with values
in A(3, 2):

Definition 3.3.

γF (m) = the affine plane tangent at m to F .
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Proof. To compute the Jacobian determinant of the foliated Gauss map γF at a point m ∈ W

we will use, when Γ(F , TmF⊥) is transverse to TmF in the domain, the frame u1, u2, u3, where
u1, u2 is an orthogonal basis of TmF , and u3 is the unit vector tangent at m to Γ(F , TmF⊥).
In A(3, 2) we use at γF (m) the frame v1, v2, v3, where v1, v2 form an orthogonal basis of the
horizontal space at γF (m) of the Riemannian fiber bundle A(3, 2) → P2, and where v3 is a unit
vector tangent to the fiber of A(3, 2) → P2. In these bases, the matrix of dγF is

(
dγF |Lm 0
∗ | cosφ|

)
,

where φ is the angle between TmΓF and TmF⊥.

As the volume of the parallelogram determined by the frame u1, u2, u3 is also | cosφ|, and as
the map dγF |Lm is just the Gauss-Kronecker map of the leaf Lm, the Jacobian determinant we
are looking for is |K|.

On the one hand, when Γ(F , TmF⊥) is tangent to TmF , the Gauss-Kronecker curvature K

is zero. On the other hand, using a frame split between TmF and TmF⊥, we see that at such a
point the matrix of dγF is (

dγ(m) ∗
0 1

)
,

where in the formula dγ is the Gauss map of the leaf Lm. As the rank of dγ(m) is 1, the point m

is critical for γF ; by Sard’s theorem the measure of the images by γF of these points is zero. ¤

3.3. Integral geometry for codimension one foliations of spaces of constant curvature
in dimension 3. In dimension 3, when the foliated space is a domain W contained in S3

or H3, one can also prove an exchange theorem, replacing the Gauss-Kronecker curvature by
the determinant of the second fundamental form (that we will denote by Ke, the extrinsic
Gauss-Kronecker curvature) obtained using the normal vector given by the orientation (in an
orthonormal basis). The Gauss map γ has now its values in P2, or S2 if you prefer to suppose
that the foliation is oriented. The foliated Gauss map has its values in the set of affine planes
of R3: the affine Grassmann manifold A(3, 2).

To replace the foliated Gauss map W → A(3, 2) when W is contained in S3 or H3, we need
to replace the Euclidean affine planes by totally geodesic spheres Σ ⊂ S3 or by totally geodesic
hyperbolic planes H ⊂ H3. The form of the theorem is the same for W ⊂ H3, W ⊂ R3, and
W ⊂ S3. In each case the set A of totally geodesic subspaces of dimension 2 admits a measure
invariant under the action of the isometries of the space [23, pp. 28, 307].

Theorem 3.4. The total curvature of the codimension 1 foliation of W ⊂ R3, S3 or H3 is
given by ∫

W
|K| =

∫

A
|µ|(F ,H),

where A is the set of affine planes, hyperbolic planes, or geodesic 2-dimensional spheres.

Proof. When W is contained in R3, the proof is exactly the same as in the plane (Theorem 2.1)
as again the set K = 0 contains the critical points of both γ and γF . In dimension 3, we will
only accept a finite union of smooth curves as singular set of the foliation.

When W is contained in S3 or H3, we need to replace the orthogonal projections on lines used
to prove the exchange theorem for surfaces in R3. A geodesic L defines a one-parameter family,
called a pencil PL of totally geodesic hypersurfaces: those orthogonal to it. In H3 a pencil is a
foliation and defines a projection on the geodesic L. In S3 a pencil defines a foliation of S3 \ S1

and a projection of S3 \ S1 on P1.
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Definition 3.4. The polar curve ΓP is the closure of the set of points where a hypersurface of
the pencil P is tangent to the foliation.

Remark 3.3. As in the Euclidean case, ΓP is, for almost all P, almost everywhere a smooth
curve.

Definition 3.5. The foliated Gauss map γF : W → A associates with a point m ∈ W the totally
geodesic hypersurface tangent at m to the leaf Lm of F through m.

The computation of the Jacobian determinant of γF is the same as in the Euclidean case,
observing that the totally geodesic surfaces orthogonal to the geodesic L(m) through m orthog-
onal to Lm, and the totally geodesic surfaces through m, form two submanifold of A orthogonal
in A for the natural Riemannian metric of A. ¤

The following theorem is now a consequence of the fact that the intersection of a foliation of
S3 with a generic totally geodesic S2 has at least two singular points.

Theorem 3.5. Let F be a foliation of S3 having a finite number of singularities. Then
∫

S3
|Ke| ≥ 2π2.

Using the Poincaré-Hopf theorem on all the generic totally geodesic S2’s, we also prove the
following theorem:

Theorem 3.6. If one of the previous integrals is finite,then
∫

S3
Ke = 2π2.

Remark 3.4. Mean curvature. The mean curvature H of the leaves of a foliation of a
compact 3-manifold M satisfy, whatever the metric of M is,

∫
M Hdv = 0.

This can be proved computing the differential dθ of the area form θ of the leaves of the foliation.
Using an othonormal moving frame e1, e2, e3, where the first two unit vectors are contained in
the principal direction of the second fundamental form of the leaves, and forms θi such that
θi(ej) = δij we see that θ = θ1 ∧ θ2, and dθ = (k1 + k2)ω, where ω is the volume form of the
ambient manifold M . The result is a consequence of the fact that the integral of an exact form
is zero.

3.3.1. Tight foliations. A foliation of a riemannian manifold M will be called tight if its total
curvature

∫
M |Ke| achieves the lower bound infF

∫
M |Ke|.

Not all Riemannian manifolds admit tight foliation. For example:

Theorem 3.7. There does not exist any tight foliation of the sphere S3.

Proof. We have seen before that the total curvature of a foliation F of S3 satisfies
∫
S3 |Ke| ≥ 2π2,

because for a generic totally geodesic sphere Σ ⊂ S3 one has |µ|(F , Σ) ≥ 2. We have also seen
that ∫

S3
Ke = 2π2.

If a foliation F of S3 satisfies
∫
S3 |Ke| =

∫
S3 Ke, then the curvature function should satisfy

Ke ≥ 0. In S3 the intrinsic curvature Ki of an embedded surface satisfy Ki = Ke + 1 (one can
perform the computation using the exponential map (see [24]).
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Novikov’s theorem states that the foliation has a Reeb component [6] with boundary a torus
leaf L. The Gauss-Bonnet theorem applied to L states that

∫
L Ki = 0. Then

∫
L Ke = −vol(L) <

0, so the leaf has a point of negative (extrinsic) curvature Ke, contradicting the hypothesis.
The theorem will then be proved if we can show that

inf
∫

S3
|Ke| = 2π2.

Let us consider the singular foliation P of S3 defined by a pencil of geodesic 2-spheres. It has
a one dimensional singular locus: a geodesic circle C. The trace of P on a geodesic sphere Σ
transverse to C is a foliation with two singular points of index 1 (of type sink/source).

We will now shadow the foliation P by nonsingular ones, introducing a very thin Reeb com-
ponent in a tubular neighborhood of C.

Figure 20. A piece of a thin Reeb component (in a solid cylinder R1) and how the other leaves wrap around it in

the region R2 \R1; horizontal section of the foliation.

To construct the foliation in a tubular neighborhood Tub2r(C) of radius 2r of C, we will first
construct a model in the cylinder D2

2r × R, invariant under vertical translations.
In the cylinder D2

r ×R just put a Reeb component defined as above. In the annulus D2
2r \D2

r ,
seen as a subset of the (x, y)-plane, consider a curve entering, normally to the boundary, into
D2

2r and spiraling towards the circle ∂D2
r (see Figure 20).

The product of this curve by the vertical line is a surface of R3 entering normally the cylinder
D2

r×R and spiraling toward the inner cylinder D2
r×R. By rotation around the z-axis, we foliate

the set (D2
2r \D2

r)× R. So we get the desired foliation of the solid cylinder D2
r × R.

The quotient by the vertical translations by vectors of length 2π is a foliation of D2
2r × S1.

Let us now map D2
2r × S1 to the tubular neighborhood of (geodesic) radius 2r of C, mapping

S1 on C isometrically, and using the exponential map to map the discs D2
2r centered on points

(0, 0, z) ∈ S1 onto totally geodesic discs normal to C. We obtain a foliation Fr which fits with
P|S3\Tub2r(C). The reader should now believe that

- The geodesic spheres Σ satisfy |µ|(Fr, Σ) = 2 if Σ intersects C with not too small an angle;
- There exists a uniform bound, independent of r, for the number |µ|(Fr,Σ).
As the measure of the geodesic spheres that intersect C with an angle smaller than ε goes to

zero with ε, we proved, using the foliated exchange theorem, that

lim
r→0

∫

S3
|Ke| = 2π2,



R. LANGEVIN: INTRODUCTION TO A FEW METRIC ASPECTS ... 95

where |Ke| is the absolute value of curvature function defined by the leaves of Fr. ¤

Exercise. Find an alternative proof of Theorem 3.7 using the singular foliation of S3 obtained
filling the two Reeb components T1 and T2 of the beginning of Section 3 by spherical caps.
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