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ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE METHOD FOR
MAXWELL’S EQUATIONS

LARISA BEILINA1, MARCUS J. GROTE2

Abstract. An explicit, adaptive, hybrid finite element/finite difference method is proposed for
the numerical solution of Maxwell’s equations in the time domain. The method is hybrid in the
sense that different numerical methods, finite elements and finite differences, are used in different
parts of the computational domain. Thus, we combine the flexibility of finite elements with the
efficiency of finite differences. Furthermore, an a posteriori error estimate is derived for local
adaptivity and error control inside the subregion, where finite elements are used. Numerical
experiments illustrate the usefulness of computational adaptive error control of proposed new
method.
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1. Introduction

The development of new more sophisticated algorithms for the numerical solution of Maxwell’s
equations is dictated by increasingly complex applications in electromagnetics. In 1966 Yee [40]
introduced the first and probably most popular method, the Finite Difference Time Domain
(FDTD) scheme, which is simple and efficient. However, the FDTD scheme can only be applied
on structured (Cartesian) grids and suffers from the inaccurate representation of the solution on
curved boundaries (staircase approximation) [7]. In contrast, Finite Element Methods (FEMs)
can handle complex boundaries and unstructured grids. They also provide rigorous a posteriori
error estimates which are useful for local adaptivity and error control. Yet FEMs are usually
more expensive than the FDTD method, both in computer time and in memory requirement.

In many applications small scale features, such as geometric singularities or jumps in material
coefficients, only occupy a small part of the computational domain, Ω. While the FDTD cannot
be used in general in those regions where local refinement is needed, the use of a FEM everywhere
throughout Ω, because of a few isolated regions, can be quite high a price to pay. Instead, hybrid
schemes attempt to combine the advantages of the above two methods in a manner that retains
the advantages of both, by using finite elements only where needed and employing the FDTD
method everywhere else. In doing so, the computational domain Ω is divided into two subregions,
ΩFDM and ΩFEM , corresponding to the FD and the FE regions, respectively, such that Ω =
ΩFDM ∪ ΩFEM . These two regions are meshed using structured and triangular/tetrahedral
meshes, respectively, with common nodes shared at the interface. Typically the unstructured
region ΩFEM is much smaller than ΩFDM . It may consist of several disjoint components, where
computations are independent of one another and easily performed in parallel; in particular,
different finite elements can be used in different subdomains.
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The FDTD method in ΩFDM is standard. For the FE discretization of Maxwell’s equations
in ΩFEM , however, different formulations are available. Examples are the edge elements of
Nédélec [31], the node-based first-order formulation of Lee and Madsen [24, 27, 34], the Cartesian
elements of Mur [30], the node-based curl-curl formulation with divergence condition of Paulsen
and Lynch [32], and the node-based least-squares FEM by Jiang, Wu, and Povinelli [20] and
also by Bergstrm [5]. Edge elements are probably the most satisfactory from a theoretical
point of view [25]; in particular, they correctly represent singular behavior at reentrant corners.
However, they are less attractive for time dependent computations, because the solution of a
linear system is required at every time iteration. Indeed, in the case of triangular or tetrahedral
edge elements, the entries of the diagonal matrix resulting from mass-lumping are not necessarily
strictly positive [11]; therefore, explicit time stepping cannot be used in general. In contrast,
nodal elements naturally lead to a fully explicit scheme when mass-lumping is applied [11, 23].

Even when the individual finite difference and finite element algorithms are stable, some
instabilities can occur when the two methods are hybridized [28]. In early hybrid FEM/FDM
schemes [39, 38] the inherent symmetry of the operators was lost at the interface between ΩFDM

and ΩFEM , which indeed led to time instabilities; these instabilities were later treated by a
combination of temporal filtering and frequency shifting [18]. Rylander and Bondeson [35, 36]
and also Edelvik, Andersson and Ledfelt [9, 10] devised the first stable time-domain hybrid
method, which combined FDTD on the structured part of the mesh with tetrahedral edge
elements on the unstructured part – here the FDTD method is viewed as a FEM with edge
elements on a hexahedral mesh, lumped through trapezoidal integration. By coupling hexahedra
and tetrahedra with a layer of pyramids, an H(curl)-conforming discretization of the electric
field is obtained. To achieve stability in time, implicit time-stepping is nevertheless required
inside ΩFEM .

Various techniques are available to correctly represent field singularities at reentrant corners.
Clearly, edge elements on a locally refined mesh can be used; alternatively, the singular field
method [8] or the related singular complement method [1, 2] can be applied, too. Away from such
isolated, well-defined, and predictable singularities, we seek a fully explicit hybrid FEM/FDM
method for Maxwell’s equations, where the FDTD method is used in the structured part and
finite elements are used in the unstructured part of the mesh. Therefore we opt for node-based
finite elements, which enable the use of mass-lumping in space and hence lead to in a fully
explicit time integration scheme [23].

It is well known that numerical solutions of Maxwell’s equations using nodal finite elements
may contain spurious solutions [26, 32], and various techniques are available to remove them
[19, 20, 21, 29, 32]. Following Paulsen and Lynch [32], we shall add a penalty term to enforce
the divergence condition, which eliminates spurious solutions when combined with local mesh
refinement.

The FEM not only handles unstructured grids for local refinement, but also offers the possi-
bility for a posteriori error estimation, which enable automatic grid refinement, precisely where
needed. Following Johnson et al. [14, 13, 15, 16, 22], we shall derive an a posteriori error
estimate for the time dependent Maxwell equations, where the error is represented in terms of
space-time integrals of the residuals of the computed solution multiplied by weights related to
the solution of the dual problem. Inside ΩFEM the finite element is then iteratively refined with
feed-back from the a posteriori error estimation.

The outline of our work is as follows. In Section 2 we briefly recall Maxwell’s equations.
Then, in Section 3, we formulate the finite element method and discuss the problem of spurious
solutions. The FDTD scheme is summarized in Section 4. Next, we formulate the hybrid
FEM/FDM method in Section 5 and derive a posteriori error estimates. Finally, in Section 7
we present two- and three-dimensional time-dependent computations which demonstrate the
effectiveness of our adaptive hybrid FEM/FDM solver.
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2. Maxwell’s equations

We consider Maxwell’s equations in an inhomogeneous isotropic medium in a bounded domain
Ω ⊂ Rd, d = 2, 3 with boundary Γ:

∂D

∂t
−∇×H = −J, in Ω× (0, T ),

∂B

∂t
+∇× E = 0, in Ω× (0, T ),

D = εE,

B = µH,

E(x, 0) = E0(x),

H(x, 0) = H0(x).

(1)

Here E(x, t) and H(x, t) are the (unknown) electric and magnetic fields, whereas D(x, t) and
B(x, t) are the electric and magnetic inductions, respectively. The dielectric permittivity, ε(x) >
0, and magnetic permeability, µ(x) > 0, together with the current density, J(x, t) ∈ Rd, are
given and assumed piecewise smooth. Moreover, the electric and magnetic inductions satisfy
the relations

∇ ·D = ρ, ∇ ·B = 0 in Ω× (0, T ), (2)

where ρ(x, t) is a given charge density. For simplicity, we restrict ourselves to perfectly conduct-
ing boundary conditions

E × n = 0, on Γ× (0, T ),

H · n = 0, on Γ× (0, T ),
(3)

where n is the outward normal on Γ. By eliminating B and D from (1) we obtain the two
independent second order systems of partial differential equations

ε
∂2E

∂t2
+∇× (µ−1∇× E) = −j, (4)

µ
∂2H

∂t2
+∇× (ε−1∇×H) = ∇× (ε−1J), (5)

where j = ∂J
∂t . The initial conditions are

E(x, 0) = E0, (6)
H(x, 0) = H0, (7)

∂E

∂t
(x, 0) = (∇×H0(x)− J(x, 0))/ε(x), (8)

∂H

∂t
(x, 0) = −∇× E0/µ(x). (9)

From (4)-(9) we immediately infer that both E and H remain divergence-free for all time, if
∇ · E0 = ∇ ·H0 = ∇ · J(., t) = 0.

3. The finite element method

We shall use a hybrid finite element/finite difference method for the numerical solution of (4),
(6) and (8). The method is hybrid in the sense that we shall use different numerical methods
in different parts of the computational domain Ω. Let Ω separate into a finite element domain
ΩFEM and a finite difference domain ΩFDM . We assume that ΩFEM lies strictly inside Ω, that
is away from the physical boundary Γ. It may consist of one or more subdomains and typically
covers only a small part of Ω.
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In ΩFDM we shall use the finite difference Yee scheme [40] on a Cartesian equidistant mesh,
which is based on the first order formulation of Maxwell’s equations (1). In ΩFEM , however, we
shall use finite elements on a sequence of nondegenerate unstructured meshes Kh = {K}, with
elements K consisting of triangles in R2 and tetrahedra in R3 [6]. Efficiency of the resulting
scheme in Ω is obtained by using mass lumping in both space and time in ΩFEM , which makes the
scheme fully explicit [17]. In ΩFEM we associate with Kh a (continuous) mesh function h = h(x),
which represents the diameter of the element K that contains x. For the time discretization we
let Jτ = {J} be a partition of the time interval I = [0, T ], where 0 = t0 < t1 < ... < tN = T is a
sequence of discrete time steps with associated time intervals J = (tk−1, tk] of constant length
τ = tk − tk−1.

3.1. Finite element spaces. When using standard, piecewise continuous [H1(Ω)]3-conforming
FE for the numerical solution of Maxwell’s equations, one faces two difficulties. First, in general
the solution of (4) lies in the space H0(curl, Ω) ∩H(div, Ω) with

H0(curl, Ω) := {u ∈ [L2(Ω)]3 : ∇× u ∈ L2(Ω), u× n = 0}, (10)

and
H(div, Ω) := {u ∈ [L2(Ω)]3 : ∇ · u ∈ L2(Ω)}; (11)

here n is the unit outward normal to ∂Ω. This space is strictly larger than [H1(Ω)]3 when Ω
has reentrant corners ([25], p.191). However, this restriction is of no concern here, because the
FEM is used only in ΩFEM , which lies strictly inside Ω; hence, corner singularities are excluded.
Second, because the bilinear form a(u, v) = (∇×u,∇×v) is not coercive without some (at least
weak) restriction to divergence-free functions, direct application of the finite element method to
the numerical solution of Maxwell’s equations using [H1(Ω)]3-conforming nodal finite elements
can result in spurious solutions (the finite element solution does not satisfy the divergence
condition (2)). To remove these spurious solutions from the finite element solution, we shall add
a Coulomb-type gauge condition to enforce the divergence condition [3, 29, 32]. This approach
is discussed in detail below.

3.2. The problem of spurious solutions. To remove spurious solutions from the finite ele-
ment solution, we modify equations (4) - (5) following Paulsen and Lynch [32] as

ε
∂2E

∂t2
+∇× (µ−1∇× E)− s∇(µ−1∇ · E)− s∇(∇ · (−j)) = −j, (12)

and

µ
∂2H

∂t2
+∇× (ε−1∇×H)− s∇(ε−1∇ ·H) = ∇× (ε−1J), (13)

respectively, where s > 0 denotes the penalty factor. Since the (modified) bilinear form a(u, v) =
(∇ × u,∇ × v) + s(∇ · u,∇ · v) is coercive on [H1(Ω)]3 for any s > 0, both initial-boundary
value problems (12) and (13), with initial conditions (6) - (9), are now well-posed; hence, in
the continuous setting value of s > 0 is irrelevant. The addition of the term s(∇ · u,∇ · v)
does not change either solution of (12), (13), but only provides a stabilization of the variational
formulation - see also ([25], p.191). However, on a fixed mesh with given parameters µ, ε, the
value of s determines the emphasis one places on the gauge condition. Too small a value of s
can give rise of spurious solutions, which will vanish as h → 0. In practice, a good choice is
s = 1 [21, 32].

3.3. The finite element method. For simplicity, we now restrict ourselves to the finite ele-
ment formulation of (12) together with the initial conditions

∂E

∂t
(x, 0) = E(x, 0) = 0, (14)
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and perfectly conducting boundary condition

E × n = 0. (15)

To formulate a finite element method for (12), (14), and (15) we introduce the finite element
trial space WE

h , defined by

WE
h := {w ∈ WE : w|K×J ∈ [P1(K)× P1(J)]3,∀K ∈ Kh, ∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J, respectively, and

WE := {w ∈ [H1(Ω× I)]3 : w(·, 0) = 0, w × n|Γ = 0}.
Hence, the finite element space WE

h consists of continuous piecewise linear functions in space
and time, which satisfy certain homogeneous initial and boundary conditions. We also define
the following L2 inner products and norms

((p, q)) =
∫

Ω

∫ T

0
pq dx dt, ‖p‖2 = ((p, p)),

(α, β) =
∫

Ω
αβ dx, |α|2 = (α, α).

The finite element method for (12) now reads: Find Eh ∈ WE
h such that ∀ϕ̄ ∈ WE

h ,

− ((ε
∂Ek

h

∂t
,
∂ϕ̄

∂t
)) + ((jk, ϕ̄))+

+ ((
1
µ
∇× Ek

h,∇× ϕ̄)) + s((
1
µ
∇ ·Ek

h,∇ · ϕ̄))− s((
1
µ
∇ · jk,∇ · ϕ̄)) = 0.

(16)

Here, the initial condition ∂E
∂t (x, 0) = 0 and the perfectly conducting boundary condition (15)

are imposed weakly through the variational formulation.

3.4. The explicit scheme for the electric field. We expand E in terms of the standard
continuous piecewise linear functions in space and in time and substitute E in (16). This yields
the linear system of equations:

M(Ek+1 − 2Ek + Ek−1) = −τ2F k + sτ2Cjk − τ2KEk − sτ2CEk, (17)

with initial conditions E0 and E1 set to zero because of (14). Here, M is the block mass matrix
in space, K is the block stiffness matrix corresponding to the curl term, C is the stiffness matrix
corresponding to the divergence term, F k is the load vector at time level tk corresponding to
j(·, ·), whereas Ek and jk denote the nodal values of E(·, tk) and j(·, tk), respectively.

At the element level the matrix entries in (17) are explicitly given by:

M e
i,j = (ε ϕi, ϕj)e, (18)

Ke
i,j = (

1
µ
∇× ϕi,∇× ϕj)e, (19)

Ce
i,j = (

1
µ
∇ · ϕi,∇ · ϕj)e, (20)

F e
j,m = ((j, ϕjψm))e×J . (21)

To obtain an explicit scheme we approximate M by the lumped mass matrix ML, i.e., the
diagonal approximation obtained by taking the row sum of M [17, 23]. By multiplying (17) with
(ML)−1, we obtain the following fully explicit time stepping method:

Ek+1 = − τ2(ML)−1F k + 2Ek − τ2(ML)−1KEk − (22)

− sτ2(ML)−1CEk + sτ2(ML)−1Cjk −Ek−1.
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4. The finite difference method

4.1. Finite difference formulation. Here we briefly recall the Yee scheme [40] for the finite
difference discretization of the time-dependent Maxwell equations (1) in three dimensions. The
FDTD method is based on centered finite difference approximations of the first order derivatives
in (1) on staggered grids, both in time and space, which results in a second order scheme. A
typical update for the first components of the magnetic and electric fields - ε, µ are assumed
constant for simplicity - takes the form

H
n+ 1

2
1

p,q+1
2 ,r+1

2

= H
n− 1

2
1

p,q+1
2 ,r+1

2

−

− τ

µ

(En
3

p,q+1,r+1
2

− En
3

p,q,r+1
2

4y
−

En
2

p,q+1
2 ,r+1

− En
2

p,q+1
2 ,r

4z

)
,

(23)

En+1
1

p+1
2 ,q,r

= En
1

p+1
2 ,q,r

− τ

ε
J

n+ 1
2

1
p+1

2 ,q,r
+

+
τ

ε

(H
n+ 1

2
3

p+1
2 ,q+1

2 ,r
−H

n+ 1
2

3
p+1

2 ,q− 1
2 ,r

4y
−

H
n+ 1

2
2

p+1
2 ,q,r+1

2

−H
n+ 1

2
2

p+1
2 ,q,r− 1

2

4z

)
.

(24)

Here4x,4y, and4z denote the spatial mesh sizes underlying the finite difference discretization.
The corresponding equations for E2, E3,H2 and H3 are obtained by cyclic permutation of the
indices for the various electromagnetic field components Ei and Hi, i = 1, 2, 3 - see [37] or [40]
for further details.

4.2. Dispersion relation and stability. We now recall the dispersion relation for the Yee
scheme, when applied to (1), with j = 0. Thus, we look for discrete plane wave solutions of (23)
- (24) in the form

E(x, y, z, t) = E0e
i(ωt+k14x+k24y+k34z), E0 ∈ R3,

H(x, y, z, t) = H0e
i(ωt+k14x+k24y+k34z), H0 ∈ R3.

(25)

For instance, by substituting (25) into (24) for E1, we obtain:

ε

τ
E01(ei((n+1)ωτ+(p+ 1

2
)k14x+qk24y+rk34z)−

− ei(nωτ+(p+ 1
2
)k14x+qk24y+rk34z))+

+
H02

4z
(ei((n+ 1

2
)ωτ+(p+ 1

2
)k14x+qk24y+(r+ 1

2
)k34z)−

− ei((n+ 1
2
)ωτ+(p+ 1

2
)k14x+qk24y+(r− 1

2
)k34z))−

− H03

4y
(ei((n+ 1

2
)ωτ+(p+ 1

2
)k14x+(q+ 1

2
)k24y+rk34z)−

− ei((n+ 1
2
)ωτ+(p+ 1

2
)k14x+(q− 1

2
)k24y+rk34z)) = 0.

(26)

Next, we divide (26) by ei((n+ 1
2
)ωτ+(p+ 1

2
)k14x+qk24y+rk34z) and iterate this process for the other

components of the electric and magnetic fields. These calculations yield the following linear
system:

sin
ωτ

2
E0 = C1H0,

sin
ωτ

2
H0 = C2E0,

(27)
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(a) (b) (c)

Figure 1. Domain decomposition. The hybrid mesh (c) is a combination of the
structured mesh ΩFDM (a) and the unstructured mesh ΩFEM (b), with a thin
overlap of structured elements. Here the unstructured grid is constructed so that
the grid contains edges approximating an ellipse.

where both C1 = τ
ε C and C2 = τ

µC are 3× 3 matrices with

C =




0 − sin(k34z/2)/4z − sin(k24y/2)/4y
sin(k34z/2)/4z 0 − sin(k14x/2)/4x
− sin(k24y/2)/4y sin(k14x/2)/4x 0


 .

Next, we eliminate H0 from (27) by inserting the second equation into the first, which yields
the following 3× 3 eigenvalue problem

sin2 ωτ

2
E0 = C1C2E0, (28)

with eigenvalue sin2 ωτ
2 and eigenvector E0. Finally, from (28) we derive the dispersion relation

sin2 ωτ

2
=

τ2

εµ

(
sin2(k14x/2)/4x2 + sin2(k24y/2)/4y2 + sin2(k34z/2)/4z2

)
. (29)

We apply a standard von Neumann stability analysis to determine the largest time step τ , for
which the finite difference scheme remains stable. Thus, we require | sin ωτ

2 | ≤ 1 for all discrete
Fourier modes resolved on the grid and, in particular, for the highest spatial frequencies given
by k14x = k24y = k34z = π. This yields the stability condition

τ ≤
√

εµ√
1

4x2 + 1
4y2 + 1

4z2

. (30)

5. The hybrid method

We now describe the data communication between the finite element method on the unstruc-
tured part of the mesh, ΩFEM , and the finite difference method on the structured part, ΩFDM .
In practice, the communication is achieved by mesh overlapping across a two-element thick layer
around ΩFEM - see Fig. 2.

Next, we will formulate the hybrid method, which uses a hybrid discretization of the computa-
tional domain, as shown in Fig. 2. First, we observe that the interior nodes of the computational
domain belong to either of the following sets:

ωo: Nodes ’o’ interior to ΩFDM that lie on the boundary of ΩFEM ,
ω×: Nodes ’×’ interior to ΩFEM that lie on the boundary of ΩFDM ,
ω∗: Nodes ’∗’ interior to ΩFEM that are not contained in ΩFDM ,
ωD: Nodes ’D’ interior to ΩFDM that are not contained in ΩFEM .
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Figure 2. Coupling between FEM and FDM in one dimension. The interior
nodes of the unstructured FEM grid are denoted by stars, while circles and
crosses denote nodes, which are shared between the FEM and FDM grids. The
circles are interior nodes of the FDM grid, while the crosses are interior nodes
of the FEM grid. At each time iteration, FDM solution values at circles are
copied to the corresponding FEM solution values, while simultaneously the FEM
solution values are copied to the corresponding FDM solution values at cross
nodes.

Algorithm. In our algorithm, nodes belonging to ωo and ω× are stored twice, as nodes
belonging to both ΩFEM and ΩFDM . At every time step we perform the following operations:

(1) On the structured part of the mesh ΩFDM compute Hn+ 1
2 , with Hn− 1

2 known, and then
compute En+1 from (24), with En known and Hn+ 1

2 given by (23).
(2) On the unstructured part of the mesh ΩFEM compute En+1 by using the explicit finite

element scheme (22).
(3) Use the values of the electric field E at nodes ω× as a boundary condition for the finite

difference method in ΩFDM . To get the values of E1 at nodes ω× for the finite difference
method, we use the following approximation:

E1FDM (p +
1
2
, q, r) =

E1FEM (p + 1, q, r) + E1FEM (p, q, r)
2

. (31)

All other components of the electric field are obtained similarly.
(4) Use the values of the electric field E at nodes ωo as a boundary condition for the finite

element method in ΩFEM . The following approximation is used to get the values of E1

at nodes ωo:

E1FEM (p, q, r) =
E1FDM (p + 1

2 , q, r) + E1FDM (p− 1
2 , q, r)

2
. (32)

The remaing components E2FEM , E3FEM are obtained similarly.

6. A posteriori error analysis

Following previous works of Johnson and co-workers [13, 15, 16], we now present the main
steps leading to an adaptive error control strategy, which is based on representing the error in
terms of the solution of the adjoint, or dual problem. We shall first recall the general strategy
for deriving a posteriori error estimates in an abstract framework. A posteriori error bounds for
(12) are then derived in detail in Section 6.1.

Let us rewrite equation (12) as an error equation for the error e = E − Eh

Ae := ε
∂2e

∂t2
+∇× (µ−1∇× e)− s∇(µ−1∇ · e)− s∇(∇ · (−j)) = −j,

e× n = 0 on Γ,

e(·, T ) = 0 in Ω,

∂e

∂t
(·, T ) = 0 in Ω.

(33)
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Then we define the adjoint operator A∗ to the operator A as

A∗ϕ := ε
∂2ϕ

∂t2
+∇× (µ−1∇× ϕ)− s∇(µ−1∇ · ϕ) = e in Ω× (0, T ),

ϕ× n = 0 on Γ,

ϕ(·, T ) = 0 in Ω,

∂ϕ

∂t
(·, T ) = 0 in Ω.

(34)

We have now following error representation formula

||e||2L2
= (e,A∗ϕ) = (Ae, ϕ) = (R, ϕ),

where R = −j −Ae is the residual.
Next, we use the splitting

ϕ− ϕh = (ϕ− ϕI
h) + (ϕI

h − ϕh),

where ϕI
h ∈ Uh denotes an interpolant of ϕ, together with Galerkin orthogonality

(R, ϕI
h − ϕh) = 0 ∀ϕI

h − ϕh ∈ Uh.

This finally yields the following error representation:

||e||2L2
≤ (R, ϕ− ϕI

h), (35)

with ϕ− ϕI
h appearing as a weight. Then we combine the standard interpolation estimates

||ϕ− ϕI
h||L2 ≤ (h2 + τ2)Ci||D2ϕ||L2 (36)

with interpolation constant Ci, together with strong stability estimate for the dual problem

||D2ϕ||L2 ≤ Cs||e||L2 (37)

with stability constant Cs and get following a posteriori error estimate

||e||L2 ≤ CiCs(h2 + τ2)||R||. (38)

We now explicitly apply this general approach to the time dependent Maxwell equations.

6.1. A posteriori error estimation for Maxwell’s equations. The a posteriori error anal-
ysis is based on representing the error in terms of the solution ϕ of the adjoint, or dual problem,
related to (12). Thus, we wish to control the quantity ((e, ψ)) with e = E − Eh in Ω × (0, T ),
where ψ ∈ [H1(Ω× I)]3 is given.

For the dual solution we introduce the finite element test space Wϕ
h defined by:

Wϕ
h := {w ∈ Wϕ : w|K×J ∈ P1(K)× P1(J), ∀K ∈ Kh,∀J ∈ Jτ},

where
Wϕ := {w ∈ H1(Ω× I) : w(·, T ) = 0, w × n|Γ = 0}.

The dual problem for (12) reads: find ϕ ∈ Wϕ
h such that

ε
∂2ϕ

∂t2
+∇× (µ−1∇× ϕ)− s∇(µ−1∇ · ϕ) = ψ in Ω× (0, T ),

ϕ× n = 0 on Γ,

ϕ(·, T ) = 0 in Ω,

∂ϕ

∂t
(·, T ) = 0 in Ω.

(39)
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To begin we write the equation for the error as
∫ T

0

∫

Ω
eψ dx dt =

∫ T

0

∫

Ω
eψ dxdt+

+
∫ T

0

∫

Ω
e(ε

∂2ϕ

∂t2
+∇× (µ−1∇× ϕ)− s∇(µ−1∇ · ϕ)− ψ) dx dt =

=
∫ T

0

∫

Ω
e(ε

∂2ϕ

∂t2
+∇× (µ−1∇× ϕ)− s∇(µ−1∇ · ϕ)) dx dt.

(40)

Next, we integrate by parts twice the last term in (40), using that ϕ(·, T ) = ∂ϕ
∂t (·, T ) =

0, E(·, 0) = ∂E
∂t (·, 0) = 0 and ϕ× n = E × n = 0 on Γ. This yields:

−
∫ T

0

∫

Ω
ε
∂e

∂t

∂ϕ

∂t
dx dt +

∫ T

0

∫

Ω
(µ−1∇× ϕ) (∇× e) dx dt+

+ s

∫ T

0

∫

Ω
(µ−1∇ · ϕ) (∇ · e) dx dt +

∑

k

∫

Ω
ε
[∂ϕ

∂t
(tk)

]
e(tk) dx+

+
∑

K

∫ T

0

∫

∂K
(
1
µ
∇× ϕ) (e× nK) dsdt + s

∑

K

∫ T

0

∫

∂K
(
1
µ
∇ · ϕ) (e · nK) dsdt =

=
∫ T

0

∫

Ω

(
ε
∂2e

∂t2
+∇× (µ−1∇× e)− s∇(µ−1∇ · e)

)
ϕ dx dt+

+
∑

k

∫

Ω
ε
[∂ϕ

∂t
(tk)

]
e(tk) dx +

∑

K

∫ T

0

∫

∂K
(
1
µ
∇× ϕ) (e× nK) dsdt+

+ s
∑

K

∫ T

0

∫

∂K
(
1
µ
∇ · ϕ) (e · nK) dsdt−

∑

k

∫

Ω
ε
[∂e

∂t
(tk)

]
ϕ(tk) dx−

−
∑

K

∫ T

0

∫

∂K
µ−1

(
nK ×∇× e

)
ϕ dsdt + s

∑

K

∫ T

0

∫

∂K
(µ−1∇ · e) (nK · ϕ) ds dt =

= I1 + I2 + I3 + I4 + I5 + I6 + I7,

(41)

where Ii, i = 1, ..., 7 denote the seven integrals that appear on the right of (41). In particular,
I3, I4, I6 and I7 result from integration by parts in space, whereas

[
∂e
∂t

]
and

[
∂ϕ
∂t

]
, the jumps in

time of ∂e
∂t and ∂ϕ

∂t , respectively, at time tk which result from integration by parts in time.
In I3 we sum over the element boundaries, where each internal side S ∈ Sh occurs twice. Let

es denote the function e in one of the normal directions of each side S. Then we can write I3 as
∑

K

∫

∂K
(
1
µ

e× nK) (∇× ϕ) ds =
∑

S

∫

S

1
µ

[
es × n

]
∇× ϕ ds, (42)

where
[
es × n

]
denotes the jump in e across the two elements sharing S. We distribute each

jump equally between the two neighboring elements and rewrite the sum over all element edges
∂K as : ∑

S

∫

S

1
µ

[
es × n

]
∇× ϕ ds =

∑

K

1
2
h−1

K

∫

∂K

1
µ

[
es × n

]
∇× ϕ hK ds. (43)

Next, we formally set dx = hKds and replace the integrals over the element boundaries ∂K by
integrals over the elements K. Thus, we find:

∣∣∣∣∣
∑

K

1
2
h−1

K

∫

∂K

1
µ

[
es × n

]
∇× ϕ hK ds

∣∣∣∣∣ ≤ C

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
es × n

]∣∣∣ ·
∣∣∣∇× ϕ

∣∣∣ dx, (44)
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with
[
es × n

]∣∣∣
K

= maxS⊂∂K

[
es × n

]∣∣∣
S
. Here and below we denote by C various positive

constants of moderate size. In a similar way we estimate the jump in time in I2 and I5 by

f−(tk)

ttk−1 tk+1
J− J+

tk

[

f(tk)
]

[

f(tk+1)
]

[

f(tk−1)
]

f+(tk)

Figure 3. The jump in time of a function f .

multiplying and dividing by step size in time τ . More precisely, for estimation I2 we have
∣∣∣∣∣
∑

k

∫

Ω
ε

[
∂ϕ

∂t
(tk)

]
e(tk) dx

∣∣∣∣∣ ≤
∑

k

∫

Ω
ετ−1

∣∣∣
[
∂ϕ

∂t
(tk)

] ∣∣∣
∣∣∣e(tk)

∣∣∣ τdx ≤

≤C
∑

k

∫

Jk

∫

Ω
ετ−1

∣∣∣
[
∂tkϕ

]∣∣∣
∣∣∣e(tk)

∣∣∣ dxdt = Cετ−1

∫ T

0

∫

Ω

∣∣∣
[
∂tkϕ

]∣∣∣ ·
∣∣∣e(tk)

∣∣∣dxdt.

(45)

Here, we have defined [∂tkϕ] as the greatest of the two jumps on the interval Jk = (tk, tk+1]:

[∂tkϕ] = max
Jk

([
∂ϕ

∂t
(tk)

]
,

[
∂ϕ

∂t
(tk+1)

])
,

where [∂ϕ

∂t
(tk)

]
=

∂ϕ

∂t

+

(tk)− ∂ϕ

∂t

−
(tk).

The time jumps are illustrated in Figure 3.
Using Galerkin orthogonality (16) we substitute the above expressions into (41) with e =

E −Eh, where we recognize −j − s∇(∇ · j) = ε∂2E
∂t2

+∇× (µ−1∇×E)− s∇(µ−1∇ ·E), to get:
∫ T

0

∫

Ω

∣∣∣e
∣∣∣
∣∣∣ψ

∣∣∣ dx dt ≤
∫ T

0

∫

Ω

∣∣∣− j − s∇(∇ · j)− ε
∂2Eh

∂t2
−∇× (µ−1∇× Eh)+

+ s∇(µ−1∇ ·Eh)
∣∣∣ ·

∣∣∣ϕ
∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
ε ·

∣∣∣
[
∂tkϕ

]∣∣∣ ·
∣∣∣Eh

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh × n

]∣∣∣ ·
∣∣∣∇× ϕ

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh · n

]∣∣∣ ·
∣∣∣∇ · ϕ

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
ε ·

∣∣∣
[
∂tkEh

]∣∣∣ ·
∣∣∣ϕ

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n×∇× Eh

]∣∣∣ ·
∣∣∣ϕ

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n · ϕ

]∣∣∣ ·
∣∣∣∇ · Eh

∣∣∣ dx dt.

(46)
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We then introduce the splitting ϕ − ϕh = (ϕ − ϕI
h) + (ϕI

h − ϕh) in (46), where ϕI
h denotes an

interpolant of ϕ ∈ Wϕ
h , to obtain

∫ T

0

∫

Ω

∣∣∣e
∣∣∣
∣∣∣ψ

∣∣∣ dx dt ≤ C

∫ T

0

∫

Ω

∣∣∣ε∂2Eh

∂t2
+∇× (µ−1∇× Eh)−

− s∇(µ−1∇ · Eh) + j + s∇(∇ · j))
∣∣∣ ·

∣∣∣ϕ− ϕI
h

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
ε ·

∣∣∣
[
∂tk(ϕ− ϕI

h)
]∣∣∣ ·

∣∣∣Eh

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh × n

]∣∣∣ ·
∣∣∣∇× (ϕ− ϕI

h)
∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh · n

]∣∣∣ ·
∣∣∣∇ · (ϕ− ϕI

h)
∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
ε ·

∣∣∣
[
∂tkEh

]∣∣∣ ·
∣∣∣ϕ− ϕI

h

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n×∇×Eh

]∣∣∣ ·
∣∣∣ϕ− ϕI

h

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n · (ϕ− ϕI

h)
]∣∣∣ ·

∣∣∣∇ · Eh

∣∣∣ dx dt.

(47)

By using standard interpolation estimates (36) for ϕ− ϕI
h we conclude that:

∫ T

0

∫

Ω

∣∣∣e
∣∣∣
∣∣∣ψ

∣∣∣ dx dt ≤ C

∫ T

0

∫

Ω

∣∣∣ε∂2Eh

∂t2
+∇× (µ−1∇× Eh)−

− s∇(µ−1∇ · Eh) + j + s∇(∇ · j)
∣∣∣ ·

(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
)

dx dt+

+ C

∫ T

0

∫

Ω
ε ·

[
∂
(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
)

t

]
·
∣∣∣Eh

∣∣∣ dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh × n

]∣∣∣ ·
(
∇×

(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
))

dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh · n

]∣∣∣ ·
(
∇ ·

(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
))

dx dt+

+ C

∫ T

0

∫

Ω
ε ·

∣∣∣
[
∂tkEh

]∣∣∣ ·
(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
)

dx dt+

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n×∇×Eh

]∣∣∣ ·
(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
)

dx dt+

+ s C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1
µ

[
n ·

(
τ2

∣∣∣∂
2ϕ

∂t2

∣∣∣ + h2
∣∣∣D2

xϕ
∣∣∣
)]
·
∣∣∣∇ ·Eh

∣∣∣ dx dt.

(48)

In (48) the terms ∂2Eh
∂t2

,∇× (µ−1∇× Eh),∇(µ−1∇ · Eh) vanish because (Eh is continuous and

piecewise linear). Finally, we use the estimates ∂2ϕ
∂t2

≈
h

∂ϕh
∂t

i

τ and D2
xϕ ≈

h
∂ϕh
∂n

i

h to get the
following a posteriori error representation formula:
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Theorem 6.1. Let ϕ be the solution to (39), E the solution of (12), and Eh the FEM approxi-
mation of E. Then the following error representation formula holds:

∫ T

0

∫

Ω

∣∣∣e
∣∣∣
∣∣∣ψ

∣∣∣ dx dt ≤
∫ T

0

∫

Ω
R1σ1 dx dt+

+
∑

k

∫

Ω
R2σ2 dx +

∫ T

0

∫

Ω
R3σ3 dx dt+

+
∫ T

0

∫

Ω
R4σ4 dx dt +

∑

k

∫

Ω
R5σ1 dx+

+
∫ T

0

∫

Ω
R6σ1 dx dt +

∫ T

0

∫

Ω
R7σ5 dx dt,

(49)

where the residuals are defined by

R1 =
∣∣∣j + s∇(∇ · j)

∣∣∣, R2 = ε
∣∣∣Eh

∣∣∣, R3 = max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh × n

]∣∣∣,

R4 = max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
Eh · n

]∣∣∣, R5 = ε
∣∣∣
[
∂tkEh

]∣∣∣,

R6 = max
S⊂∂K

h−1
K

1
µ

∣∣∣
[
n×∇×Eh

]∣∣∣, R7 = max
S⊂∂K

h−1
K

1
µ

∣∣∣∇ · Eh

∣∣∣,
(50)

and the interpolation errors are

σ1 = Cτ

∣∣∣∣
[
∂ϕh

∂t

]∣∣∣∣ + Ch

∣∣∣∣
[
∂ϕh

∂n

]∣∣∣∣ ,

σ2 = C
[
∂
(
τ

∣∣∣∣
[
∂ϕh

∂t

]∣∣∣∣ + h

∣∣∣∣
[
∂ϕh

∂n

]∣∣∣∣
)

t

]
,

σ3 = C ∇×
(
τ

∣∣∣∣
[
∂ϕh

∂t

]∣∣∣∣ + h

∣∣∣∣
[
∂ϕh

∂n

]∣∣∣∣
)
,

σ4 = C ∇ ·
(
τ

∣∣∣∣
[
∂ϕh

∂t

]∣∣∣∣ + h

∣∣∣∣
[
∂ϕh

∂n

]∣∣∣∣
)
,

σ5 = C

[
n ·

(
τ

∣∣∣∣
[
∂ϕh

∂t

]∣∣∣∣ + h

∣∣∣∣
[
∂ϕh

∂n

]∣∣∣∣
)]

.

(51)

6.2. Adaptive algorithm. The main goal in adaptive error control is to find a mesh Kh with
as few number of nodes as possible, such that ||E−Eh|| < tol. Clearly, we cannot find E analyt-
ically. Instead, using the a posteriori error estimate in Theorem 1, we shall find a triangulation
Kh, such that the corresponding finite element approximation Eh satisfies

R1 · σ1 + R2 · σ2 + R3 · σ3 + R4 · σ4 + R5 · σ1 + R6 · σ1 + R7 · σ5 < tol. (52)

The solution is found by an iterative process, where we start with a coarse mesh and successively
refine the mesh by using the stopping criterion (52) with as few number of elements as possible.
More precisely, in the computations below we shall use the following

Adaptive algorithm
1. Choose an initial mesh Kh and an initial time partition Jτ of the time interval [0, T ].
2. Compute the solution En of (12) on Kh and Jτ .
3. Compute the solution ϕn of the adjoint problem (39) on Kh and Jτ .
5. Construct a new mesh Kh and a new time partition Jk of the time interval (0, T ) using

a posteriori error estimate of Theorem 1. More precisely, refine all elements, where
R1 · σ1 + R2 · σ2 + R3 · σ3 + R4 · σ4 + R5 · σ1 + R6 · σ1 + R7 · σ5 > tol. Here tol is a
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tolerance chosen by the user. Return to 1. On Jk the new time step τ should satisfy
CFL condition.

Remark During the refinement procedure we do not allow the appearance of new nodes
inside the overlapping layers. In the case of the presence of parameters ε and µ in equation
(12) we interpolate them after every refinement on a new refined mesh. We also need impose
compatibility conditions for these coefficients in the case of non-smooth material interfaces to
avoid discontinuities for these coefficients. In this case ε and µ should be replaced with smooth
functions ε1 and µ1.

7. Numerical examples

We have implemented our adaptive hybrid FEM/FDM method in C++, with different mod-
ules handling the finite elements, the finite differences, and the communication required for the
coupling. The software packages PETSc [4] and MV++ [33] are used for matrix-vector compu-
tations. All our computations (2D and 3D) were performed on a standard high-end workstation
(3.2 GHz Intel XeonTM processor, 2Gb RAM and 2Mb L3 cache). We shall now evaluate the
performance of our hybrid FEM/FDM method in two and three dimensions.

7.1. Two dimensional examples. The computational domain is Ω = [0.2, 0.8]2; it separates
into a finite element domain, ΩFEM = [0.4, 0.6]2, and a surrounding finite difference domain
ΩFDM . In all computations we choose the time step τ according to the CFL condition (30),
while the penalty factor in (16) is always set to s = 1.

In the following examples we consider a plane wave E = (0, E2), given by

E2(x, y, t) |y=0= (sin (5 (t− 2π/5)− π/2) + 1)/10, 0 ≤ t ≤ 2π

5
, (53)

which initiates at the lower boundary of ΩFDM and propagates upwards.
To validate the implementation and show the convergence of our hybrid method, we first

consider (12) with ε = µ = 1.0 and j = 0. Hence, the electromagnetic field consists of the plane
wave given as in (53). At the lateral boundaries we use periodic boundary conditions, and at the
top boundary first-order absorbing boundary conditions [11], which is exact in this particular
case. We compute the maximal error e = max[0,T ]

∣∣∣Eref −Eh

∣∣∣, where Eref denotes the reference
solution computed on the finest mesh with 25921 nodes and 51200 elements, and Eh denotes the
solution computed on the sequence of adaptively refined meshes shown in Table 1. All integrals
are computed over the inner domain ΩFEM , which remains fixed during the entire computation
and at all refinement steps. Note that every node on any intermediate mesh coincides with some
node on the finest mesh; hence, we never need to interpolate Eref on coarser meshes.

Table 2 and Figure 5 illustrates the convergence behavior of the FEM-solution in the hybrid
method compared with Yee scheme as the mesh is refined. Both the error in the FEM-solution
and that obtained by using the Yee scheme everywhere in Ω on an equidistant mesh are shown.
As expected, both methods are second-order convergent, with the Yee scheme slightly more
accurate than the FE scheme for a comparable mesh size.

Next, we shall demonstrate the continuity of the numerical solution across the FD/FE mesh
in the presence of material discontinuities. To do so, we consider the same problem as above,
with ε = µ = 1.0 outside the ellipse shown in Fig. 4, and either ε = 20, µ = 1.0 or ε = µ = 20
inside. As shown in Fig. 6, the isolines of the solutions remain smooth both across the FE/FD
interface and material jumps.

7.2. Three dimensional examples. Next, we consider (12) in Ω = [0, 5.1]× [0, 2.5]× [0, 2.5],
which is divided into a finite element domain ΩFEM = [0.3, 4.7] × [0.3, 2.3] × [0.3, 2.3], with
an unstructured tetrahedral mesh, and a surrounding finite difference domain ΩFDM , with a
structured hexahedral mesh with mesh size h = 0.2. First order absorbing boundary conditions
are imposed at all boundaries of ΩFDM and the final time is T = 3.0. Here, the electromagnetic
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a) b)

Figure 4. Computational mesh in two dimensions. The hybrid mesh (c) is a
combination of the structured mesh ΩFDM (a) and the unstructured mesh ΩFEM

(b) with a thin overlap of structured elements.
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Figure 5. Convergence of L2 error in space and time for Yee scheme and hybrid method.

field consists of a spherical wave, generated at the point x0 = (2.05, 2.2, 1.25) in ΩFEM by the
source term

f1(x, x0) =
{

103 sin2 πt if 0 ≤ t ≤ 0.1 and |x− x0| < 0.1,
0 otherwise. (54)

The material parameters are ε = 2.0 and µ = 1.0 inside the cube, and ε = µ = 1.0 everywhere
else. In Fig. 7 we show the isosurfaces of the numerical solutions inside ΩFEM at different times.

We now use the results from the a posteriori error analysis in Section 6 to estimate the error in
the numerical solution of (12). According to Theorem 1 the error bound consists of space-time
integrals of different residuals multiplied by the solution of the dual problem. The residuals
indicate how well the numerical solution satisfies the differential equation, whereas the solution
of the dual problem determines how the error propagates through space and time. Thus, to
estimate the error in the numerical solution, we need to compute an approximate solution of the
dual problem together with the residuals. Since the residuals R1, R2, R5 and weights dominate,
we neglect the terms I3, I4, I6, I7 in the a posteriori error estimator.
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h
Nonodes in
ΩFEM

Noelements in
ΩFEM

Nonodes in Ω Noelements in
Ω

0.025 81 128 625 640
0.02 121 200 961 1000
0.01 441 800 3721 4000
0.005 1681 3200 14641 16000
0.0025 6561 12800 58081 64000
0.00125 25921 51200 231361 256000

Table 1. Computational meshes in two dimensions.

h max[0,T ]

∣∣∣Eref − Eh

∣∣∣ max[0,T ]

∣∣∣Eref − Eh

∣∣∣
0.01 1.19879 1.16128
0.005 0.449274 0.341658
0.0025 0.113817 0.0794665

Table 2. Error in time over the time interval [0; 2.0]: hybrid method (left) and
Yee scheme (right).

Different choices for ψ as data in the dual problem yield a posteriori error estimates in different
quantities of interest. Since we wish to control the error only in the finite element domain, we
choose ψ = 0 in ΩFDM and ψ = 1 in ΩFEM which acts during the time interval [1.55, 3.0], and
ψ = 0 everywhere else and at all remaining times. To evaluate the effectiveness of the error
estimator we now solve the dual problem (39) backward in time, that is from T = 3.0 down to
T = 0.0, with ε = 20, µ = 1 inside the cube, and ε = µ = 1 elsewhere. In Fig. 8-a we show the
L2-norms in space of the solutions to the dual problem versus time for a sequence of adaptively
refined meshes.

To compare the behavior of the solution to the dual problem at different times, we show in
Fig. 8-b L2-norms in space of ϕ when we solve problem (39) from T = 6.0 down to T = 0.0.
We observe, that the solution of the dual problem grows backward in time through the action
of ψ, but is reduced as the mesh is adaptively refined. In Fig. 9-a), one of the main components
of the interpolation errors (51) in the a posteriori error estimator,

∣∣∣
[

∂ϕh
∂t

]∣∣∣
L2

, is shown on the

time interval [0.0, 2.0]. We note that the jump in time of the dual solution is reduced on the
adaptively refined meshes, as expected. The L2-norm in space of the residual R2, shown during
the time interval [0.0, 2.0] in Fig. 9-b), does not grow with time. Therefore, here the main error
indicator is provided by the solution of the dual problem.

In Fig. 10 the highest value isosurfaces of the solution to the dual problem on a locally refined
mesh is shown. We observe that isosurfaces are concentrated around the cube where the main
error is located, precisely where local refinement is required. Then we construct a new mesh as
described in Section (6.2), choose a new time step that satisfies the CFL condition, and return
to step 1 in algorithm (6.2).

8. Conclusions

We have devised an explicit, adaptive, hybrid FEM/FDM method for the time dependent
Maxwell equations. The method is hybrid in the sense that different numerical methods, finite
elements and finite differences, are used in different parts of the computational domain. Inside
the FE part of the computational domain, the adaptivity is based on a posteriori error estimates
in the form of space-time integrals of residuals multiplied by dual weights. Their usefulness for
adaptive error control is illustrated in three-dimensional numerical examples, where we solve
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both the direct and the dual problems and compute the corresponding residuals and weights.
In particular, our numerical examples show that by combining a divergence penalty term with
adaptive mesh refinement, we eliminate spurious eigenmodes in time dependent calculations and
achieve an accuracy close to that of the FDTD scheme on a comparable mesh.

The adaptive hybrid method combines the simplicity and speed of the FDTD scheme [40] on
the structured part of the mesh with the flexibility of a FEM on the unstructured part of the
mesh. Efficiency is obtained by using a fully explicit hybrid FEM/FDM method with optimized
numerical linear algebra and adaptivity. Thus, we have developed a fast solver, which can be
applied to the solution of computationally demanding problems, such as inverse electromagnetic
problems in the time domain.
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a) t = 1.3 b) t = 1.3

c) t = 2.3 d) t = 2.3

e) t = 2.9 f) t = 2.9

g) t = 3.2 h) t = 3.2

Figure 6. Isolines of the computed solution in hybrid method for geometry,
presented in Fig. 4, with different values of the parameters ε, µ: in a), c), e), g)
ε = 20, µ = 1 inside the ellipse, whereas in b), d), f), h) ε = µ = 20 inside the
ellipse. In both cases ε = µ = 1 everywhere else in Ω.
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a) t = 0.3 b) t = 1.2

c) t = 0.7 d) t = 1.5

e) t = 0.9 f) t = 2.0

Figure 7. Solution of problem (12) in ΩFEM with one spherical pulse. We
present isosurfaces at different time moments. Values ε = 2.0, µ = 1.0 are inside
the cube, and ε = 1.0, µ = 1.0 everywhere else in Ω.
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Figure 8. |ϕ|L2 for problem (39) on adaptively refined meshes during the time
interval [0, 3.0] (a) and [0, 6.0] (b).
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Figure 10. The highest value isosurface of the dual solution ϕ.
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