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LC SLANT HELIX ON HYPERSURFACES IN MINKOWSKI SPACE En+1
1
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Abstract. In this paper we give the definition of a LC slant helix for a non-null curve lying
on a hypersurface in En+1

1 by using the Levi Civita’s notion of parallel vector field. Also we
define a vector field D which we called Darboux vector field of LC slant helix on a hypersurface
in En+1

1 . Morever we give some basic properties and characterization of LC slant helices.
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1. Introduction

A curve of constant slope or general helix in Euclidean 3−space E3, is defined by the property
that the tangent makes a constant angle with a fixed straight line (the axis of the general helix).
A classical result stated by Lancret in 1802 and first proved by de Saint Venant in 1845 ([15]) is:
A necessary and sufficient condition that a curve be a general helix is that the ratio of curvature
to torsion be constant. If both of k1 and k2 are non-zero constants it is, of course, a general
helix. It is known that straight line and circle are degenerate helix examples. (k1 = 0, if the
curve is straight line and k2 = 0, if the curve is a circle)([8]).

The notion of a generalized helix can be generalized to higher dimensions in many ways. In[13]
the same definition is proposed but in En. In [5] the definition which was defined by Hayden is
more restrictive: the fixed direction makes a constant angle with all the vectors of the Frenet
frame. This definition only works in the odd dimensional case. Moreover, in the same reference,
it is proved that the definition is equivalent to the fact that the ratios kn−1

kn−2
, kn−3

kn−4
, ..., k2

k1
being the

curvatures, are constant. This statement is related with the Lancret Theorem for generalized
helices in E3 (the ratio of torsion to curvature is constant). In [10] the curves in En for which
all the ratios kn−1

kn−2
, kn−3

kn−4
, ..., k2

k1
are constant which was called ccr curves. In the same reference,

it is shown that in the even dimensional case, a curve has constant curvature ratios if and only
if its tangent indicatrix is a geodesic in the flat torus.

Izumiya and Takeuchi defined a new kind of helix which is called slant helix([7]) and they gave
a characterization of slant helices in Euclidean 3−space E3.Then Kula and Yaylı investigated
spherical images the tangent indicatrix and binormal indicatrix of a slant helix ([9]). Morever,
they gave a characterization for slant helices in E3 : “For involute of a curve γ, γ is a slant
helix if and only if its involute is a general helix”. In 2008, Önder et al. defined a new kind
of slant helix in Euclidean 4−space E4 which they called B2−slant helix and they gave some
characterizations of this slant helix in Euclidean 4−space E4([11]).

In this paper, we give the definition of a LC slant helix for a non-null curve lying on a
hypersurface in En+1

1 by using the Levi Civita’s notion of parallel vector field, as follows:

〈Vn, X〉 = constant,
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where Vn is n−th Frenet vector field of the curve and X is Levi Civita’s notion of parallel vector
field. Also we give a definition of harmonic curvatures functions in terms of Vn, and we define
a new vector field D which we called Darboux vector field of LC slant helix on a hypersurface
in En+1

1 Morever we give some basic properties and characterization of LC slant helices.

2. Preliminaries

Let En+1
1 be the (n + 1) dimensional pseudo-Euclidean space with index 1 endowed with the

indefinite inner product given by

g(x, y) = −x1y1 +
n+1∑

i=2

xiyi,

where x = (x1, x2, · · · , xn+1), y = (y1, y2, · · · , yn+1) is the usual coordinate system. Let M be
a hypersurface in En+1

1 and p be a point on M and v ∈ TpM a tangent vector. Then v is
said to be spacelike, timelike or null according to g(v, v) > 0, g(v, v) < 0, or g(v, v) = 0 and
v 6= 0, respectively. Notice that the vector v = 0 is spacelike. The category into which a given
tangent vector falls is called its causal character. These definitions can be generalized for curves
as follows. A curve α on M is said to be spacelike if all of its velocity vectors α′are spacelike,
similarly for timelike and null([1]).

Let us recall from [14, 6] the definition of the Frenet frame and curvatures.
Let M be a hypersurface in En+1

1 and α : I ⊂ R → M be non-null curve on M . A non-null
curve α(s) is said to be a unit speed curve if g (α′(s), α′(s)) = ε0, (ε0 being +1 or -1 according
to α is spacelike or timelike respectively). Let {V1, V2, ..., Vn} be the moving Frenet frame along
the unit speed curve α, where Vi (i = 1, 2, ..., n) denote ith Frenet vector fields and ki be ith
curvature functions of the curve (i = 1, 2, ..., n− 1). Then the Frenet formulas are given by

∇V1V1 = k1V2, (1)
∇V1Vi = −εi−2εi−1ki−1Vi−1 + kiVi+1, 1 < i < n

∇V1Vn = −εn−2εn−1kn−1Vn−1

where g (Vi, Vi) = εi−1 , and ∇ is the Levi-Civita connection of M.
Let M be a hypersurface in En+1

1 with the Levi-Civita connection∇ and suppose α : I ⊂ R→
M is non-null curve on M . For any tangent vector X at α (s) is said to be a Levi Civita’s
notion of parallel vector field on M of a direction along a curve if ∇V1X = 0. Also, the Levi
Civita’s notion of parallel vector field has constant lenght([4]).

3. LC slant helix on hypersurfaces in Minkowski space

In this section we define LC slant helices on hypersurfaces in Minkowski space and we give
some characterizations for LC slant helices on hypersurfaces in the same space.

Definition 3.1. Let M be a hypersurface in En+1
1 and α : I ⊂ R → M be non-null curve on

M. A non-null curve α(s) is said to be a LC slant helix if there exists a Levi Civita’s notion of
parallel vector field X on M such that g(Vn, X) is a constant function. Any line parallel this
direction X is called the axis of the LC slant helix.

Definition 3.2. Let M be a hypersurface in En+1
1 and α : I ⊂ R → M be a unit speed on M.

Harmonic curvatures of α is defined by

Hi : I ⊂ R→ R,
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H0 = 0, (2)

H1 = εn−3εn−2
kn−1

kn−2
,

Hi = (kn−iHi−2 −∇V1Hi−1)
εn−(i+2)εn−(i+1)

kn−(i+1)
, 2 ≤ i ≤ n− 2,

where k1, k2, ..., kn−1 are curvatures functions of the curve α which are not necessarily constant.

Theorem 3.3. Let M be a hypersurface in En+1
1 and α : I ⊂ R→ M be a unit speed LC slant

helix. Let {V1, V2, ..., Vn}, {H1,H2, ...,Hn−2} be denote the Frenet frame and the higher ordered
harmonic curvatures of the curve, respectively. Then the following equation is holds

g(Vn−(i+1), X) = Hi g(Vn, X), 1 ≤ i ≤ n− 2, (3)

where X is axis of the LC slant helix.

Proof.We use mathematical induction on i. Since X is axis of the LC slant helix α, we get

X = λ1V1 + λ2V2 + ... + λnVn.

From the definition of LC slant helix we have

g(Vn, X) = λnεn−1 (4)

By taking the derivative of (4) and applying the Frenet formulas twice we obtain

g(Vn−1, X) = 0, (5)

g(Vn−2, X) = H1 g(Vn, X).

respectively. Hence it is shown that (3) is true for i = 1. We now assume (3) is true for the first
i− 1. Then we have

g(Vn−i, X) = Hi−1 g(Vn, X). (6)

By taking the derivative of (6) and applying the Frenet formulas, we get

−εn−i−2εn−i−1kn−i−1 g(Vn−i−1, X) + kn−i g(Vn−i+1, X) = ∇V1Hi−1 g(Vn, X).

By using the our induction hypothesis, g(Vn−i+1, X) = Hi−2 g(Vn, X), we have

(kn−iHi−2 −∇V1Hi−1)
εn−(i+2)εn−(i+1)

kn−(i+1)
g(Vn, X) = g(Vn−(i+1), X),

it follows that
g(Vn−(i+1), X) = Hi g(Vn, X).

Theorem 3.4. Let M be a hypersurface in En+1
1 and non-null curve α : I ⊂ R → M be

a unit speed LC slant helix with Frenet vector fields {V1, V2, ..., Vn}, and harmonic curvatures
{H1,H2, ..., Hn−2}. If X is axis of the LC slant helix α on M, then

X = g(Vn, X)




n−2∑

j=1

HjVn−(j+1)εn−(j+2) + εn−1Vn


 .

Proof.If the axis of the LC slant helix α on M is X, then we can write

X =
n∑

i=1

λiVi.
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By using the Theorem(3.3) we have

λ1 = ε0 Hn−2g(Vn, X), (7)
λ2 = ε1 Hn−3g(Vn, X),

...
λn−2 = εn−3H1 g(Vn, X),
λn−1 = 0,

λn = εn−1 g(Vn, X).

Thus we can easily obtain

X = g(Vn, X)




n−2∑

j=1

HjVn−(j+1)εn−(i+2) + εn−1Vn


 .

Corollary 3.5. Let M be a hypersurface in En+1
1 and non-null curve α : I ⊂ R → M be

a unit speed LC slant helix with Frenet vector fields {V1, V2, ..., Vn}, and harmonic curvatures

{H1,H2, ..., Hn−2}. If α LC slant helix, then
n−2∑
i=1

εn−(i+2)H
2
i = c, where c is any constant.

Proof. Let α be generalized LC slant helix with the arc length parameter s .Since X is a unit
Levi Civita’s notion of parallel vector field and from Theorem(3.3) we obtain

(g(Vn, X))2


εn−1 +

n−2∑

j=1

εn−(j+2)H
2
j


 = 1. (8)

Thus we get
n−2∑

j=1

εn−(j+2)H
2
j =

1− εn−1λ
2
n

λ2
n

.

for some non zero constant λn.

Definition 3.6. Let M be a hypersurface in En+1
1 and non-null curve α : I ⊂ R→ M be a unit

speed non- degenerate curve with Frenet vector fields {V1, V2, ..., Vn}, and harmonic curvatures
{H1,H2, ..., Hn−2}. The vector

D =
n−2∑

j=1

HjVn−(j+1)εn−(j+2) + εn−1Vn

is called the Darboux vector of the curve α.

Theorem 3.7. Let M be a hypersurface in En+1
1 and non-null curve α : I ⊂ R→ M be a unit

speed curve with Frenet vector fields {V1, V2, ..., Vn}, and harmonic curvatures {H1,H2, ..., Hn−2}.
Then α is a LC slant helix if and only if

D =
n−2∑

j=1

HjVn−(j+1)εn−(j+2) + εn−1Vn

is Levi Civita’s notion of parallel vector field.

Proof. Suppose that α is LC slant helix on M and X is axis of α. From Corollary(3.5), we
get

X = g(Vn, X)




n−2∑

j=1

HjVn−(j+1)εn−(j+2) + εn−1Vn


 (9)
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By taking the derivative of (9), and using the definition of the Levi Civita’s notion of parallel
vector field we can easily obtain

∇V1D = 0.

Thus D is Levi Civita’s notion of parallel vector field.
Conversely, since D is Levi Civita’s notion of parallel vector field then ‖D‖ = constant. We

consider the normalisation of the Levi Civita’s notion of parallel vector field as follows

X =
1
‖D‖D.

Therefore we have
g(Vn, X) =

1
‖D‖ = constant.

Thus α is a LC slant helix.
From now, let us consider M is a hypersurface in E4

1 and α : I ⊂ R→ M be a non-null curve
with Frenet vector fields {V1, V2, V3} and curvatures {k1, k2} .

Theorem 3.8. Let M be a hypersurface in E4
1 , and α be a regular curve on M. Then α is a LC

slant helix if and only if k2
k1

is constant.

Proof. Let M be a hypersurface in E4
1 , and α is a generalized LC helix on M. Without loss of

generality, assume α has unit speed. By the definition of LC helix, there exists a Levi Civita’s
notion of parallel vector field X such that

g(V3, X) = λ3ε2 (10)

for some non zero constant λ3. By taking the derivative of (10) and applying the Frenet formulas

g(∇V1V3, X) = 0,

g(−ε1ε2k2V2, X) = 0.

Since k2 6= 0, then we get
g(V2, X) = 0.

Now, X is perpendicular to V2, so
X = aV1 + bV3, (11)

for some non zero function a, b. Because X is a unit Levi Civita’s notion of parallel vector field,
∇V1X = 0. By taking the derivative of (11), and applying the Frenet formulas we have

0 = a′ V1 + (ak1 − ε1ε2k2b) V2 + b′ V3.

Since {V1, V2, V3} are linearly independent we have

a′ = 0,

ak1 − ε1ε2k2b = 0,

b′ = 0.

Hence
k1

k2
= ε1ε2

b

a
= constant.

Now suppose that k1
k2

is constant. We can choose k1
k2

= ε1ε2c, for some non zero constant c and
define

X =
1
c
V1 + V3

to get

∇V1X =
1
c
k1V2 − ε1ε2k2V2 = 0.
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Hence, X is a Levi Civita’s notion of parallel vector field and clearly g(X, V3) = ε2 is constant.
Thus α is a generalized LC slant helix.

Corollary 3.9. Let M be a hypersurface in E4
1 , and α be a non- degenerate curve on M. From

the Definition(3.2) and Definition(3.6) we can write

D = ε1
k2

k1
V1 + ε2V3. (12)

where k1 and k2 are curvatures of the curve. By taking the derivative of (12) we have

∇V1D = ε1

(
k2

k1

)′
V1. (13)

If all curvatures of the curve are constants, i.e., the curve is a W−curve, take the derivative
of D we get

∇V1D = 0.

So, from Theorem (3.7) the curve α is LC slant helix.

Corollary 3.10. Let M be a hypersurface in E5
1 , and α be a non- degenerate curve on M. From

the Definition(3.2) and Definition(3.6) we can write

D = −ε1
1
k1

(
k3

k2

)′
+ ε2

k3

k2
V2 + ε3V4.

where k1, k2 and k3 are curvatures of the curve. If all curvatures of the curve are constants,
i.e., the curve is a W−curve, then we get

D = ε2
k3

k2
V2 + ε3V4.

If we take the derivative of D we get

∇V1D = −ε0ε1ε2
k1k3

k2
V1

Since α is non-degenerate curve, we obtain that ∇V1D 6= 0 or D is not Levi Civita’s notion of
parallel vector field. So, from Theorem (3.7) the curve is not LC slant helix.

Corollary 3.11. Let M be a hypersurface in E5
1 , and α be a non- degenerate curve on M. If α

is a LC slant helix then,
[

1
k1

(
k3

k2

)′]′
+ ε0ε1k1

k3

k2
= 0.

Proof. Let α be LC slant helix . From Corollary(3.5) for n = 4, we have ε1H
2
1+ε0H

2
2 =constant.

By using the Definition(3.2)

ε1

(
k3

k2

)2

+ ε0

[
1
k1

(
k3

k2

)′]2

= constant. (14)

By taking the derivative of Eq.(14) we obtain
[

1
k1

(
k3

k2

)′]′
+ ε0ε1k1

k3

k2
= 0. (15)
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Theorem 3.12. Let M be a hypersurface in E2m
1 , and α be a non- degenerate curve on M.

and {H1, H2, ..., H2m−3} be the harmonic curvature functions of the curve α. If the ratios
k2
k1

, k4
k3

, k6
k5

...k2m−2

k2m−3
are constant, then we have for 2 ≤ i ≤ m

H2i−2 = 0, (16)

H2i−3 =
k2m−2

k2m−3
.
k2m−4

k2m−5
...

k2m+1−(2i−3)

k2m+1−(2i−2)
ε2m−3ε2m−4...ε2m−(2i−2).

Proof. We apply the induction method for the proof.
The case of i = 2 :
From the definition of harmonic curvature functions of α we can write

H2 = −
(

k2m−2

k2m−3

)′ ε2m−3ε2m−5

k2m−4
.

By using the hypothesis we have
H2 = 0.

Again from Definition(3.2) we have

H1 = εn−3εn−2
kn−1

kn−2
.

Hence it is shown that (16) is true for i = 2.
We now assume that Theorem (3.12) is truth for the case i = p. Then

H2p−2 = 0,

and

H2p−3 =
k2m−2

k2m−3
.
k2m−4

k2m−5
...

k2m+1−(2p−3)

k2m+1−(2p−2)
ε2m−3ε2m−4...ε2m−(2p−2).

are satisfied. From Definition (3.2) we have

H2p−1 = (k2m−2pH2p−3 −∇V1H2p−2)
ε2m−2p−2ε2m−2p−1

k2m−2p−1

.

By using of Definition (3.2) and hypothesis we have

H2p−1 =
k2m−2

k2m−3
.
k2m−4

k2m−5
...

k2m+1−(2p+1)

k2m+1−(2p+2)
ε2m−3ε2m−4...ε2m−2p,

which completes the proof.

Definition 3.13. Let M be a hypersurface in E2m
1 , and α be a non- degenerate curve on

M. and {H1,H2, ..., H2m−3} be the harmonic curvature functions of the curve α. If the ra-
tios k2

k1
, k4

k3
, k6

k5
...k2m−2

k2m−3
are constant, then we have for 2 ≤ i ≤ m then the curve α is called LC

slant helix in the sense of Hayden .

So, we can give the following results:

Corollary 3.14. Let M be a hypersurface in E2m
1 , and α be a non- degenerate curve on M

and {H1, H2, ..., H2m−3} be the harmonic curvature functions of the curve α. If the ratios
k2
k1

, k4
k3

, k6
k5

, ..., k2m−2

k2m−3
, k2m−2

k2m−3
are constant, then from Theorem (3.7) and Theorem(3.12) we can

easily see that the axis of a LC slant helix α is

D = ε0H2m−3V1 + ε2H2m−5V3 + ... + ε2m−4H1V2m−3 + ε2m−2V2m−1.

Corollary 3.15. Let M be a hypersurface in E2m
1 , and α be a non-degenerate W-curve on M.

By using Definition (3.13) and Corollary(3.14) α is a V2m−1−LC slant helix in the sense of
Hayden.
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[11] Önder, M., Kazaz M., Kocayiugit, H. and Kılıç, O., (2008), B2−slant helix in Euclidean 4-space, E4,Int. J.

Cont. Math. Sci., 3(29), pp. 1433-1440.
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