
TWMS J. Pure Appl. Math. V.1, N.1, 2010, pp.24-40

OPTIMAL REAL-TIME CONTROL
OF NONDETERMINISTIC MODELS ON IMPERFECT MEASUREMENTS

OF INPUT AND OUTPUT SIGNALS

R. GABASOV 1, F.M. KIRILLOVA 2, E.I. POYASOK 2 �

Abstract. In the paper optimal guaranteed control problems for linear nonstationary dynam-
ical systems under set-membership uncertainties are considered. It is supposed that in the
course of control process states of control object are unknown and signals of two measurement
devices are only available for use. The �rst of them implements incomplete and inexact mea-
surements of input signals, the second one makes imperfect measurements of control object
states (output signals).By preposterior analysis an optimal output (combined) closable loop is
de�ned. Realization of this loop (forming current values of control actions) is carried out by
optimal estimators and optimal regulator. According to the separation principle of control and
observation processes, optimal estimators generate in real time estimates of uncertainty using
signals of measurement devices. By obtained estimates the optimal regulator produces current
values of optimal loop in the same mode. Results are illustrated by examples.

Keywords: optimal observation and control, set-membership uncertainty, preposterior analysis,
closable loop, real-time control, width of distribution, preposterior initial and current distribu-
tions, positional solution, optimal estimator, optimal regulator.

AMS Subject Classi�cation: 49N05, 93C05.

Introduction

Control is a process in which purposeful control actions to a control object are formed at each
current moment depending on available by this moment information about the object behavior
and disturbances acting on it. Human deals with control all his conscious life. To ensure
constantly desirable course of any processes he either undertakes appropriate actions and makes
necessary decisions by himself or charges with part of them to create automatic control systems.
He realizes his actions and decisions according to existing situation and changes it in the same
rate in which the situation changes, that is in real time mode. With occurrence and rapid progress
of computer technology a possibility is appeared to consruct control systems functioning on the
real time control principle.

There are two approaches to control: programmed and positional. Programmed control is
realized by means of open-loop control systems (Fig. 1). Their control actions u(t), t ≥ 0, are
formed by means of programs composed on a priori information before control process stating
and is not corrected in the process course. The positional control u(τ, yτ (·)) (τ - current moment,
yτ (·) - available by moment τ current information, (τ, yτ (·)) - position of the problem) is realized
by means of closed loops or real-time control. To control by closed-loop principle following
loops are used: feedforward (Fig. 2), feedback (Fig. 3), combined (Fig. 4) loops. Feedforward

1 Belarussian State University,
e-mail: kirill@nsys.by,

2 Institute of Mathematics, Belarussian Academy of Sciences,
e-mail: elena_pojasok@mail.ru

�Manuscript received 9 November 2009.
24



R.GABASOV, F.M.KIRILLOVA, E.I.POYASOK: OPTIMAL REAL-TIME CONTROL... 25

loop u(τ, ywτ (·)) transforms information ywτ (·) about input signals (disturbances) into control
actions, feedback loop u(τ, yxτ (·)) transforms information yxτ (·) about output signals. Combined
loops u(τ, yτ (·)), yτ (·) = (ywτ (·), yxτ (·)), are integration of feedforward and feedback loops. By
real-time control the mentioned loops are not created beforehand but their values necessary for
control are obtained with help of computer techniques during control process.
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Fig. 1: Open-loop control. Fig. 2: Feedforward loop.
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Fig. 3: Feedback loop. Fig. 4: Combined loop.

In the part of optimal control theory in which direct (geometric) constraints on control actions
are considered, the greatest successes are achieved at analysis of optimal programs [6]. But as
is known, the construction of positional solutions by classical closed-loop principle encountered
serious di�culties [2]. Up to now only individual examples of successful construction of optimal
feedback for stationary small order systems are known. In such situation (in the light of rapid
computer technology development) attempts of optimal system synthesis according to the real-
time control principle are natural and timely.

This work is closely related to researches [1, 3, 4, 5], where some results of authors on op-
timal real-time control for nonstationary linear nondeterministic models with set-membership
uncertainties and inexact measurements of input and output signals are given.

Structure of the paper.
In Section 1 the problem statement is given. A linear nonstationary nondeterministic model

of control system is optimized in the class of discrete bounded control actions. It is required
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to steer the system with guarantee to a terminal set at a �xed time moment and to obtain the
maximal guaranteed value of a cost function. In Section 2 an auxiliary optimal observation prob-
lem is introduced to construct maximal widthes (or the estimates) of a posteriori distributions
of terminal states for the subsystem observing to given directions. On the estimates obtained
preposteriori distribution of terminal states is de�ned. Similarly preposterior analysis that con-
siders current information about the observed subsystem is carried out and notion of a positional
solution to the optimal observation problem is introduced. In conclusion the description of work
of an optimal estimator which calculates su�cient estimates of the preposterior distribution in
real time is described. The results of an initial and current preposterior analysis are illustrated
by examples (Section 3). In Section 4 an optimal initial (current) closable program is constructed
on the basis of results of preposterior observation. An optimal output closable loop is de�ned for
the problem of optimal control. The Section contains method of constructing quasirealization of
optimal loop by an optimal regulator in real-time mode. The article comes to the end (Section 5)
with an example.

1. Problem statement

Let T = [t∗, t∗] be a time interval; Tu = {t∗, t∗ + Let, t∗− h}, h = (t∗− t∗)/N (N is a positive
integer); Tw = {θw

i ∈ Tu, i = 1, Nw}, t∗ = θw
0 < θw

1 < ... < θw
Nw

, is a set of measurement instants
of input signals; Tx = {θx

i ∈ Tu, i = 1, Nx}, t∗ = θx
0 < θx

1 < ... < θx
Nx

, is a set of measurement
instants of output signals; A(t) ∈ Rnx×nx , Aw(t) ∈ Rnz×nz , B(t) ∈ Rnx×r, M(t) ∈ Rnx×nw ,
Mw(t) ∈ Rnz×nw , t ∈ T , are piecewise continuous functions; Cw(t) ∈ Rqw×nz , Cx(t) ∈ Rqx×nx ,
t ∈ T , are continuous functions; hi ∈ Rnx , h′ihi = 1, i ∈ I = 1, m; m > nx; H ∈ Rm×nx is a
matrix with rows hi, i ∈ I; c ∈ Rnx ; g∗, g∗ ∈ Rm; u∗, u∗ ∈ Rr; x0 ∈ Rnx ; z0 ∈ Rnz ; U = {u ∈
Rr : u∗ ≤ u ≤ u∗}, Ξw = {ξ ∈ Rqw : ξ∗w ≤ ξ ≤ ξ∗w}, Ξx = {ξ ∈ Rqx : ξ∗x ≤ ξ ≤ ξ∗x} are bounded
sets; X∗ = {x ∈ Rnx : g∗i ≤ h′ix ≤ g∗i , i ∈ I} is a bounded body; u(t : t̄) = (u(t), t ≤ t < t̄).

A function u(·) = u(t∗ : t∗) is called discrete (with a quantization period h) if
u(t) ≡ u(s), t ∈ [s, s + h[, s ∈ Tu.

In the class of discrete control actions u(·) we consider the optimal control problem:
J(u) = c′x(t∗) → max; (1)

ẋ = A(t)x + B(t)u + M(t)w(t), x(t∗) = x0;
x(t∗) ∈ X∗; u(t) ∈ U ; (2)

yw(θw) = Cw(θw)z(θw) + ξw(θw), ξw(θw) ∈ Ξw, θw ∈ Tw;
ż = Aw(t)z + Mw(t)w(t), z(t∗) = z0, t ∈ T ; (3)

yx(θx
i ) =

∫ θx
i

θx
i−1

Cx(v)x(v)dv + ξx(θx
i ), ξx(θx

i ) ∈ Ξx, i = 1, Nx. (4)

Here x = x(t) ∈ Rnx is a state of mathematical model of control object (2) at time instant t;
u = u(t) ∈ Rr is a value of control action; z = z(t) ∈ Rnz is a state of mathematical model of a
measuring device for input signals (3); yw(θw), θw ∈ Tw; yx(θx), θx ∈ Tx, are signals of devices
measuring disturbance and state (3), (4); ξw(θw) ∈ Rqw , θw ∈ Tw; ξx(θx) ∈ Rqx , θx ∈ Tx, are
unknown errors of measurements (3), (4); w(t) ∈ Rnx , t ∈ T , is unknown disturbance.

Concerning disturbances w(t), t ∈ T , we assume that it is a �nite-parametric function
w(t) = L(t)w, t ∈ T, (5)

with a given piecewise continuous function L(t) ∈ Rnw×l, t ∈ T , and an unknown vector w ∈ Rl

from a bounded set W = {w ∈ Rl : ω∗ ≤ w ≤ ω∗}.
In general, problem (1)-(5) is to generate in real time bounded discrete control actions u(t) ∈

U, t ∈ T , by inexact and incomplete measurements of measuring devices signals (3), (4). This
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actions have to steer system (2) to the terminal set X∗ at time t∗ with guarantee and provide
the maximum guaranteed value of the cost function J(u).

Preliminarily we solve an auxiliary problem of optimal observation.

2. Optimal preposterior observation of dynamic systems

2.1. Initial preposterior distribution. Let us single out an observation subsystem from (1)-
(4):

ẋ = A(t)x + M(t)w(t), t ∈ T ; x(t∗) = x0; (6)
yw(θw) = Cw(θw)z(θw) + ξw(θw), ξw(θw) ∈ Ξw, θw ∈ Tw;

ż = Aw(t)z + Mw(t)w(t), z(t∗) = z0, t ∈ T ; (7)

yx(θx
i ) =

∫ θx
i

θx
i−1

Cx(v)x(v)dv + ξx(θx
i ), ξx(θx

i ) ∈ Ξx, i = 1, Nx. (8)

On account of uncertainty of the vector w, the terminal state x(t∗|w) of observation subsys-
tem (6) that plays an important role in control problems, can be established only to within the
set

Xo
t∗ = {x ∈ Rnx : x = F (t∗, t∗)x0 +

∫ t∗

t∗
F (t∗, t)M(t)L(t)dtw, w ∈ W}. (9)

Here F (t, τ) = F (t)F−1(τ); F (t) ∈ Rnx×nx , t ∈ T ; Ḟ = A(t)F , F (t∗) = E. Set (9) is called a
priori distribution of the terminal state of the observation subsystem.

The set Xo
t∗ is determined by the a priori information about mathematical model (6) of the

observation object without regard for a priori information about measuring devices (7), (8). Now
we take into consideration a priori information about the whole observation subsystem (6)-(8).
To do so, preposterior analysis are supposed to be used before the observation process starting.

We inroduce the set of (virtual) closing instants Tcl = Tclw ∪Tclx, where Tclw ⊆ Tw, Tclx ⊆ Tx.
If Tclw = Tw and Tclx = Tx, then we deal with the full preposterior analysis, otherwise with
partial one.

By taking arbitrary w̃ ∈ W , ξ̃w(θw) ∈ Ξw, where θw ∈ Tclw; ξ̃x(θx) ∈ Ξx, θx ∈ Tclx, we
simulate a virtual transition process x̃(t), t ∈ T, in the observation subsystem and by the virtual
signals ỹ(·) = {ỹw(θw), θw ∈ Tclw; ỹx(θx), θx ∈ Tclx} determine a posteriori distribution [4] of the
terminal state Xo

t∗(ỹ(·)) as a set of those and only those terminal states of the subsystem x ∈ Xo
t∗

such that together with some vector w ∈ W and measurement errors ξw(θw) ∈ Ξw, θw ∈ Tclw;
ξx(θx) ∈ Ξx, θx ∈ Tclx, they can generate ỹ(·).

As the numerical characterisic (estimate) of the set Xo
t∗(ỹ(·)) along a given direction q we take

the value (the set width):
d(ỹ(·)|q) = max

x∈Xo
t∗ (ỹ(·))

q′x− min
x∈Xo

t∗ (ỹ(·))
q′x = max

x̄,x∈Xo
t∗ (ỹ(·))

q′(x̄− x).

De�nition 1. Let Ỹ be the set of all possible virtual signals ỹ(·). The number
d0(q) = max d(ỹ(·)|q), ỹ(·) ∈ Ỹ , (10)

is called the maximal width or initial preposterior estimate of sets Xo
t∗(ỹ(·)), ỹ(·) ∈ Ỹ , along the

direction q.
De�nition 2. Calculation of estimate (10) is called the optimal initial preposterior observation
problem (for direction q), its result - initial prepoterior solution (for direction q).

Let Q be a �nite totality of identity nx-vectors (directions), in which each set from nx vectors
are linear-independent.
De�nition 3. The set

X o
t∗ = {x ∈ Rnx : −d0(q)/2 ≤ q′x ≤ d0(q)/2, q ∈ Q}
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is said to be an initial preposterior distribution (on totality Q) at instant t∗. For |Q| ≤ nx each
of the sets Xo

t∗(ỹ(·)), ỹ(·) ∈ Ỹ , can be placed in X o
t∗ .

Let us represent problem (10) in analytical form. According to (6)-(8) we have got
yw(θw) = Cw(θw)Fw(θw, t∗)z0 +

∫ θw

t∗ Cw(θw)Fw(θw, t)Mw(t)L(t)dtw + ξw(θw),
θw ∈ Tclw;
yx(θx

i ) =
∫ θx

i
θx
i−1

Cx(v)F (v, t∗)x0dv +
∫ θx

i
θx
i−1

Cx(v)
∫ v
t∗ F (v, t)M(t)L(t)dtdvw + ξx(θx

i ),
θx
i ∈ Tclx;

(11)

( Fw(t, τ) = Fw(t)F−1
w (τ); Fw(t) ∈ Rnz×nz , t ∈ T : Ḟw = Aw(t)Fw, Fw(t∗) = E).

It follows from th de�nition of a posteriori distribution of the terminal state that the set
Xo

t∗(ỹ(·)) consists of all x ∈ Rnx such that they satisfy:




x = F (t∗, t∗)x0 +
∫ t∗
t∗ F (t∗, t)M(t)L(t)dtw,

ξ∗w ≤ Dw(θw)w − Cw(θw)Fw(θw, t∗)z0 + ỹw(θw) ≤ ξ∗w, θw ∈ Tclw;
ξ∗x ≤ Dx(θx

i )w − ∫ θx
i

θx
i−1

Cx(v)F (v, t∗)x0dv + ỹx(θx
i ) ≤ ξ∗x, θx

i ∈ Tclx;
ω∗ ≤ w ≤ ω∗,

where
Dw(θw) = − ∫ θw

t∗ Cw(θw)Fw(θw, t)Mw(t)L(t)dt;

Dx(θx
i ) = − ∫ θx

i
θx
i−1

Cx(v)
∫ v
t∗ F (v, t)M(t)L(t)dtdv.

(12)

Denote
qx′ = q′

∫ t∗

t∗
F (t∗, t)M(t)L(t)dt. (13)

Using relations (11), we conclude that optimal initial preposterior observation problem (10)
is a linear programming problem




d0(q) = max
w̄,w,w̃,ξ̃w(·),ξ̃x(·)

qx′(w̄ − w),

ξ∗w ≤ Dw(θw)(w̄ − w̃) + ξ̃w(θw) ≤ ξ∗w,

ξ∗w ≤ Dw(θw)(w − w̃) + ξ̃w(θw) ≤ ξ∗w, θw ∈ Tclw;
ξ∗x ≤ Dx(θx)(w̄ − w̃) + ξ̃x(θx) ≤ ξ∗x,

ξ∗x ≤ Dx(θx)(w − w̃) + ξ̃x(θx) ≤ ξ∗x, θx ∈ Tclx;
ω∗ ≤ w̄ ≤ ω∗, ω∗ ≤ w ≤ ω∗, ω∗ ≤ w̃ ≤ ω∗;
ξ∗w ≤ ξ̃w(θw) ≤ ξ∗w, θw ∈ Tclw; ξ∗x ≤ ξ̃x(θx) ≤ ξ∗x, θx ∈ Tclx.

(14)

Here ξ̃w(·) = {ξ̃w(θw), θw ∈ Tclw}, ξ̃x(·) = {ξ̃x(θx), θx ∈ Tclx}. Since preposterior analysis is
carried out before the observation process, the time of solving problem (14) does not matter to
control.

2.2. Current preposterior distribution. Let us carry out preposterior analysis for current
instant τ ∈ Tw∪Tx of observation process, assuming that observaion has been accomplished dur-
ing the interval T+τ = [t∗, τ ] and by logged signals y∗τ (·) = {y∗w(θw), θw ∈ Tw ∩T+τ ; y∗x(θx), θx ∈
Tx∩T+τ} the current distribution W (τ, y∗τ (·)) of vector w, corresponding to the position (τ, y∗τ (·))
has been determined. It consists of those and only those w ∈ W that together with some mea-
surement errors ξw(θw) ∈ Ξw , θw ∈ Tw ∩ T+τ ; ξx(θx) ∈ Ξx, θx ∈ Tx ∩ T+τ , are capable to
generate y∗τ (·).

We choose arbirary w̃ ∈ W (τ, y∗τ (·)), ξ̃w(θw) ∈ Ξw, θw ∈ Tclw ∩ T−τ ; ξ̃x(θx) ∈ Ξx, θx ∈
Tclx ∩ T−τ ; T−τ = ]τ, t∗], and simulate the virtual transition process x̃(t), t ∈ T−τ ; x̃(τ) =
F (τ, t∗)x0 +

∫ τ
t∗ F (τ, t)M(t)L(t)dtw̃, at the observation subsystem. By logged y∗τ (·) and virtual

ỹτ (·) = {ỹw(θw), θw ∈ Tclw ∩ T−τ ; ỹx(θx), θx ∈ Tclx ∩ T−τ} measurements we determine the
a posteriori distribution of terminal state Xo

t∗(ỹ
τ (·)|τ, y∗τ (·)) for the position (τ, y∗τ (·)). The set
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Xo
t∗(ỹ

τ (·)|τ, y∗τ (·)) is composed from all such terminal states of system (6) which together with
some w ∈ W and measurement errors ξw(θw) ∈ Ξw, θw ∈ (Tw ∩T+τ )∪ (Tclw ∩T−τ ); ξx(θx) ∈ Ξx,
θx ∈ (Tx ∩ T+τ ) ∪ (Tclx ∩ T−τ ), can generate y∗τ (·), ỹτ (·).
De�nition 4. The current width of set Xo

t∗(ỹ
τ (·)|τ, y∗τ (·)) in the direction q is called the number

d(ỹτ (·)|q, (τ, y∗τ (·))) = max
x∈Xo

t∗ (ỹ
τ (·)|τ,y∗τ (·))

q′x− min
x∈Xo

t∗ (ỹ
τ (·)|τ,y∗τ (·))

q′x = max
x̄,x∈Xo

t∗ (ỹ
τ (·)|τ,y∗τ (·))

q′(x̄− x).

Let Ỹ (τ, y∗τ (·)) be a set of all possible virtual signals ỹτ (·) for a position (τ, y∗τ (·)).
De�nition 5. The number

d0(q|τ, y∗τ (·)) = max d(ỹτ (·)|q, (τ, y∗τ (·))), ỹτ (·) ∈ Ỹ (τ, y∗τ (·)), (15)
will be called the current maximal width (current preposterior estimate) of sets Xo

t∗(ỹ
τ (·)|τ, y∗τ (·)),

ỹτ (·) ∈ Ỹ (τ, y∗τ (·)) in the direction q or the current preposterior solution to the optimal observa-
tion problem (preposteriori solution to the oprimal observation problem for the current position).
De�nition 6. The set

X o
t∗(τ, y

∗
τ (·)) = {x ∈ Rnx : −d0(q|τ, y∗τ (·))/2 ≤ q′x ≤ d0(q|τ, y∗τ (·))/2, q ∈ Q},

is called the current preposterior distribution at time instant t∗. For |Q| ≤ nx each of sets
Xo

t∗(ỹ
τ (·)|τ, y∗τ (·)), ỹτ (·) ∈ Ỹ (τ, y∗τ (·)), can be placed in X o

t∗(τ, y
∗
τ (·)).

By analogy with initial problem (10) it is easy to show analytical form of problem (15) is as
follows: 




d0(q|τ, y∗τ (·)) = max
w̄,w,w̃,ξ̃τ

w(·),ξ̃τ
x(·)

qx′(w̄ − w),

ξ∗w ≤ Dw(θw)w̄ − Cw(θw)Fw(θw, t∗)z0 + y∗w(θw) ≤ ξ∗w,
ξ∗w ≤ Dw(θw)w − Cw(θw)Fw(θw, t∗)z0 + y∗w(θw) ≤ ξ∗w, θw ∈ Tw ∩ T+τ ;
ξ∗x ≤ Dx(θx

i )w̄ − ∫ θx
i

θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x,

ξ∗x ≤ Dx(θx
i )w − ∫ θx

i
θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x, θx

i ∈ Tx ∩ T+τ ;

ξ∗w ≤ Dw(θw)(w̄ − w̃) + ξ̃w(θw) ≤ ξ∗w,

ξ∗w ≤ Dw(θw)(w − w̃) + ξ̃w(θw) ≤ ξ∗w, θw ∈ Tclw ∩ T−τ ;
ξ∗x ≤ Dx(θx)(w̄ − w̃) + ξ̃x(θx) ≤ ξ∗x,

ξ∗x ≤ Dx(θx)(w − w̃) + ξ̃x(θx) ≤ ξ∗x, θx ∈ Tclx ∩ T−τ ;
ω∗ ≤ w̄ ≤ ω∗, ω∗ ≤ w ≤ ω∗, ω∗ ≤ w̃ ≤ ω∗;
ξ∗w ≤ ξ̃w(θw) ≤ ξ∗w, θw ∈ Tclw ∪ T−τ ; ξ∗x ≤ ξ̃x(θx) ≤ ξ∗x, θx ∈ Tclx ∪ T−τ ,

(16)

where ξ̃τ
w(·) = {ξ̃w(θw), θw ∈ Tclw ∩ T−τ}, ξ̃τ

x(·) = {ξ̃x(θx), θx ∈ Tclx ∩ T−τ}.

2.3. Positional solution to the optimal preposterior observation problem. In order to
generate current control actions (with aim of obtaining su�ciently complete information about
uncertainty) estimates d0(q|τ, y∗τ (·)) are calculated for several vectors (directions) q ∈ Q under
positional control. A vector

d0(τ, y∗τ (·)) = (d0(q|τ, y∗τ (·)), q ∈ Q)

is called the vector of su�cient estimates for the position (τ, y∗τ (·)).
Let Y ∗

τ be a collection of all possible signals y∗τ (·) of measuring devices (7), (8) which can be
obtained by τ .
De�nition 7. A function

d0(τ, y∗τ (·)), y∗τ (·) ∈ Y ∗
τ , τ ∈ Tw ∪ Tx, (17)

is called the positional solution to optimal preposterior observation problem. The construction
of solutions to (17) represents the synthesis of an optimal preposterior obseravtion system.

Knowledge of positional solution (17) makes possible to obtain su�cient estimates for each
possible position (τ, y∗τ (·)) and generate on the basis of them optimal control actions in the
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system a) with optimal output closable loop if the partial preposterior analysis is used in the
course of observation; b) with optimal output closed loop if the full preposterior analysis is used.
At present such method of synthesis of optimal systems is impossible to realize since there is no
methods to construct positional solution (17).

2.4. Optimal preposterior real-time observation. As can be seen from the foregoing, po-
sitional solution (17) is constructed for all possible positions before observation process starting
that requires to remember huge amount of information. In contemporary era of rapid devel-
opment of computer science it is natural to resort to another approach of optimal observation
where function (17) is not constructed but its current values required for control are calculated
in the course of processes.

To describe this method, �rst of all we �nd out how the positional solution is used in particular
observation process. We assume that positional solution (17) was constructed. And we consider
some particular observation process where unknown w∗, ξ∗w(θw), θw ∈ Tw; ξ∗x(θx), θx ∈ Tx is
realized. In subsystem (6)-(8) this collection generates transient process x∗(t), t ∈ T , and known
signals y∗w(θw), θw ∈ Tw; y∗x(θx), θx ∈ Tx. Knowing positional solution (17), by this signals it
is easy to obtain current estimates d∗(τ) = d0(τ, y∗τ (·)), τ ∈ Tw ∪ Tx. Hence it follows that in a
particular observation process positional solution (17) is not used as a whole and only its values
along a separate sequence of signals y∗τ (·), τ ∈ Tw ∪ Tx are required.
De�nition 8. A function

d∗(τ), τ ∈ Tw ∪ Tx,

is called a realization of positional solution in a particular observation process. On account
of stated above reasons it is imposible to implement such method of observation. Below we
describe another principle of optimal observation which we call the optimal observation in real
time mode. Let us assume that for each instant τ ∈ Tw ∪ Tx there exists a method to calculate
values d0(τ, y∗τ (·)) during time so(τ) not exceeding h.
De�nition 9. We call the function

d∗∗(t) =





(d0(q), q ∈ Q), t ∈ [t∗, t̄∗ + so(t̄∗)];
d∗(τ), t ∈ [τ + so(τ), τ̄ + so(τ̄)[, τ ∈ Tw ∪ Tx;
d∗(t∗), t ∈ [t∗ + so(t∗), t∗],

where t̄ = min{τ ∈ Tw ∪ Tx : τ > t}, t = max{τ ∈ Tw ∪ Tx : τ < t}, the quasirealization of
positional solution, and the device able to construct it the optimal estimator (OE).

In other words, quasirealization is a realization of positional solution with regard for expendi-
ture of time on calculation of its current values.

Thus, the problem of synthesis of optimal observation system is reduced to construction of
algorithm of operating OE.

In the paper we suggest the following algorithm of work of OE.
Since calculations for each direction q ∈ Q can be carried out parallel, an algoritm of work of

OE will be described only for one OE. Before the observation process starting OE solves problem
(14) using the dual method [4] and, thus, calculating the initial preposterior estimate d0(q) and
corresponding optimal support K0

b (q, t∗).
Let OE worked during the interval T+τ and constructed the optimal support K0

b (q, τ) for the
position (τ, y∗τ (·)) from the obtained signals y∗τ (·) and calculated the current preposterior estimate
d0(q|τ, y∗τ (·)). At the nearest next instant τ̄ of measurements the signals a) y∗w(τ̄) if τ̄ ∈ Tw; b)
y∗x(τ̄) if τ̄ ∈ Tx; c) both signals a), b) if τ̄ ∈ Tw ∩ Tx become known.
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During interval [ τ̄ , τ̄ + so(τ̄)[ OE solves problem (16) for the position (τ̄ , y∗̄τ (·)). This problem
di�ers from the solved at the previous step for the position (τ, y∗τ (·)) that added are the constraints

a)
{

ξ∗w ≤ Dw(τ̄)w̄ − Cw(τ̄)Fw(τ̄ , t∗)z0 + y∗w(τ̄) ≤ ξ∗w,
ξ∗w ≤ Dw(τ̄)w − Cw(τ̄)Fw(τ̄ , t∗)z0 + y∗w(τ̄) ≤ ξ∗w;

b)





ξ∗x ≤ Dx(θx
i )w̄ − ∫ θx

i
θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x,

ξ∗x ≤ Dx(θx
i )w − ∫ θx

i
θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x, θx

i = τ̄ ;

c)





ξ∗w ≤ Dw(τ̄)w̄ − Cw(τ̄)Fw(τ̄ , t∗)z0 + y∗w(τ̄) ≤ ξ∗w,
ξ∗w ≤ Dw(τ̄)w − Cw(τ̄)Fw(τ̄ , t∗)z0 + y∗w(τ̄) ≤ ξ∗w;
ξ∗x ≤ Dx(θx

i )w̄ − ∫ θx
i

θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x,

ξ∗x ≤ Dx(θx
i )w − ∫ θx

i
θx
i−1

Cx(v)F (v, t∗)x0dv + y∗x(θx
i ) ≤ ξ∗x, θx

i = τ̄ ,

and removed are the constraints{
ξ∗w ≤ Dw(τ̄)(w̄ − w̃) + ξ̃w(τ̄) ≤ ξ∗w,

ξ∗w ≤ Dw(τ̄)(w − w̃) + ξ̃w(τ̄) ≤ ξ∗w;
if τ̄ ∈ Tclw;

{
ξ∗x ≤ Dx(τ̄)(w̄ − w̃) + ξ̃x(τ̄) ≤ ξ∗x,

ξ∗x ≤ Dx(τ̄)(w − w̃) + ξ̃x(τ̄) ≤ ξ∗x;
if τ̄ ∈ Tclx.

OE solves new problem by the dual method, correcting the optimal support K0
b (q, τ) of the

problem solved at the previous step till constructing the optimal K0
b (q, τ̄). As these problems

di�er from each other insigni�cantly, the current support K0
b (q, τ) can be corrected rapidly using

the dual method.
Remarks: 1.As a set of possible values of vector w, we may consider W = {w ∈ Rl : l∗w ≤

Lww ≤ l∗w, ω∗ ≤ w ≤ ω∗}, Lw ∈ Rmw×l;
2. The initial state x0 ∈ X∗ = {x ∈ Rnx : x = L0ν, ν ∈ V = {ν ∈ Rnv : l∗ν ≤ Lνν ≤ l∗ν , ν∗ ≤
ν ≤ ν∗}}, L0 ∈ Rnx×nν , Lν ∈ Rmx×nν , also can be uncertain.

3. Example 1

Let the mathematical model of observation object be given in the form
2ẍ + 5.4x = w(t); x(0) = 0.8, ẋ(0) = −1.0, T = [0, 12] .

Suppose we have measuring devices
yw = z + ξw(t), |ξw(t)| ≤ ξ∗w; ż + 1.8z = w(t), z(0) = −3.0;
yx(θx

i ) =
∫ θx

i
θx
i−1

(x + ẋ)dv + ξx(θx
i ), |ξx(θx

i )| ≤ ξ∗x, i = 1, Nx;

and disurbance
w(t) = w1 sin(t) + w2 sin(3t) + w3 sin(5t), t ∈ T ;
(w1, w2, w3) ∈ W = {w ∈ R3 : |wi| ≤ 1.6, i = 1, 3};

Q = (q(i) = (cos(πi/12), sin(πi/12)), i = {1, 2, .., 24}).
Aim of experiments is to construct initial and current preposterior distributions at terminal

moment T = 12.
In the �rst series of experiments it was assumed that ξ∗w = 0.1, ξ∗x = 0.1, and distributions

were constructed for the following cases (Fig. 5, x1 = x, x2 = ẋ): 1. X0
t∗ = {x ∈ Rnx : x =∫ t∗

t∗ F (t∗, t)M(t)L(t)dtw, w ∈ W}; 2. X o
t∗ , Tclw = Tclx = {9}; 3. X o

t∗ , Tclw = Tclx = {6}; 4. X o
t∗ ,

Tclw = Tclx = {3, 6, 9}; 5. X o
t∗ , Tclw = Tclx = {1, 3, 6, 9, 11}; 6. X o

t∗ , Tclw = Tclx = {1, 2, ..., 11}.
In the second series it was supposed that Tclw = Tclx = {3, 6, 9}. In the �rst part of the series

it was assumed that ξ∗x = 0.1 and the following cases are considered (Fig. 6a): 1. X0
t∗ ; 2. X o

t∗ ,
ξ∗w = 0.6; 3 X o

t∗ , ξ∗w = 0.3; 4. X o
t∗ , ξ∗w = 0.1; 5. X o

t∗ , ξ∗w = 0.05; 6. X o
t∗ , ξ∗w = 0.005. In the second
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part it was assumed that ξ∗w = 0.1 and the following cases are considered (Fig. 6b): 1. X0
t∗ ; 2. X o

t∗ ,
ξ∗x = 0.6; 3. X o

t∗ , ξ∗x = 0.3; 4. X o
t∗ , ξ∗x = 0.1; 5. X o

t∗ , ξ∗x = 0.05; 6. X o
t∗ , ξ∗x = 0.005. In the third

part the following cases are considered (Fig. 6c): 1. X0
t∗ ; 2. X o

t∗ , ξ∗w = 0.35, ξ∗x = 0.35; 3. X o
t∗ ,

ξ∗w = 0.3, ξ∗x = 0.5; 4. X o
t∗ , ξ∗w = 0.2, ξ∗x = 0.2; 5. X o

t∗ , ξ∗w = 0.1, ξ∗x = 0.1; 6. X o
t∗ , ξ∗w = 0.05,

ξ∗x = 0.05; 7. X o
t∗ , ξ∗w = 0.05, ξ∗x = 0.005.
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In the third series of experiments current preposterior distributions were constructed for
ξ∗w = 0.1, ξ∗x = 0.1. At that, values of simulation elements were: vector w∗ = (0.2, −1.0, −1.2),
measurement errors ξ∗w(t) = ξ∗w cos(3t), ξ∗x(t) = ξ∗x sin(5t), t ∈ T . In Fig. 7a the sets were
obtained by full preposterior analysis for Tw = Tx = Tclw = Tclx = {3, 6, 9}: 1. X o

t∗ ;
2. X o

t∗(τ, y
∗
τ (·)), τ = 3. In Fig. 7b the sets were obtained by partial preposterior analysis for

Tw = Tx = {1, 2, ..., 11}, Tclw = Tclx = {3, 6, 9}: 1. X o
t∗ ; 2. X o

t∗(τ, y
∗
τ (·)), τ = 2.
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4. Optimal closable output loop and its realization

4.1. Optimal initial closable program. To introduce a new type of optimal loops in problem
(1)-(5), we continue preposterior analysis and for each closing instant tj ∈ Tcl, j = 1, p, and
construct closure sets X p, X p−1, ...,X 1.

We begin with the set X p. Denote: X o
t+0 is an initial preposterior distribution for the obser-

vation subsystem at the instant t constructed by virtual signals along the interval [ t∗, t]; X o
t−0

- by signals along the interval [ t∗, t[. Let X o
tp+0, X o

t∗−0 be initial preposterior distributions at
the instants tp è t∗ respectively. Let X c

tp+0(z) = z + X o
tp+0. We introduce a set Zp composed of

all such vectors z ∈ Rnx for which there exist available control actions u(tp : t∗|X c
tp+0(z)) that

Xc
t∗(u(tp : t∗|X c

tp+0(z))) = {F (t∗, tp)z +
∫ t∗
tp

F (t∗, s)B(s)u(s|X c
tp+0(z))ds + X o

t∗−0} ⊂ X∗. Family
of sets

X p = {X c
tp+0(z), z ∈ Zp}

is called the closure set of control system at instant tp.
Let nonemply sets X p, X p−1, ...,X j+1 are determined. Using constructed by moment tj sets

X o
tj+0, X o

tj+1−0 we de�ne

Zj = {z ∈ Rnx : ∃u(t|X c
tj+0(z)) ∈ U, t ∈ [tj : tj+1[, Xc

tj+1
(u(tj : tj+1|X c

tj+0(z))) ⊂ X j+1},
where Xc

tj+1
(u(tj : tj+1|X c

tj+0(z))) = F (tj+1, tj)z+
∫ tj+1

tj
F (tj+1, s)B(s)u(s|X c

tj+0(z))ds+X o
tj+1−0.

Denote
X j = {X c

tj+0(z), z ∈ Zj}.
Continuing the process we construct X j , j = 1, p. Let the inclusion Xc

t1(u(t∗ : t1|x0)) =∫ t1
t∗ F (t1, s)B(s)u(s|x0)ds + Xo

t1 ⊂ X 1 holds. Totality u(·) = {u(t∗ : t1|x0); u(t1 : t2|X ), X ∈
X 1; ...; u(tp : t∗|X ), X ∈ X p} is called an initial closable program. It is guaranteed to transfer
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system (2) to the terminal set for any implementations of uncertainty if measurements are carried
out at the instants t ∈ Tcl.

We choose β > min c′x, x ∈ X∗, replace the set X∗ by X∗β = X∗ ∩ {x ∈ Rnx : c′x ≥ β} and
construct the sets X pβ, X p−1β, ...,X 1β while following the above rules. The maximum β0 for
which an initial closable program exists, is equal to the maximum guaranteed value of the cost
function of problem (1)-(5).
De�nition 10. The totality

u0(·) = {uβ0
(t∗ : t1|x0); uβ0

(t1 : t2|X ),X ∈ X 1β0
; ...; uβ0

(tp : t∗|X ),X ∈ X pβ0}
is called an optimal initial closable program (a program preposterior solution).

4.2. Optimal current closable program. Following classical rule of constructing optimal
current closable programs we introduce a positional preposterior solution to the problem. Let
τ ∈ Tw ∪ Tx be a current instant and the control process is carried out during the time interval
T−τ = [t∗, τ [, the control actions u∗τ (·) = u∗(t∗ : τ) are generated and �pure� from u∗τ (·) signals
y∗τ (·) known by the instant τ are logged (measuring devices signals of the observation object).
Denote: T τ

cl = Tcl ∩ T−τ = {tk(τ), tk(τ)+1, ..., tp}, tk(τ) = min{t ∈ Tcl : τ < t}; T τ
cl = ∅, τ ≥

tp. Having replaced the a priori information {t∗, W} by current {τ, W (τ, y∗τ (·)}, we perform
described above preposterior analysis on the time interval T−τ . As a result, we get closure sets
X p(τ, y∗τ (·)), X p−1(τ, y∗τ (·)), ...,X k(τ)(τ, y∗τ (·)) and determine an optimal current closable program
u0(t|τ, y∗τ (·)), t ∈ T+τ = [τ, t∗], for the position (τ, y∗τ (·)). Note that for τ ≥ tp the optimal
current closable program turns into disclosable [3].

4.3. Positional solution to optimal control problem. Denote Yθ(τ)(·), τ ∈ Tu, a set of
all signals yθ(τ)(·) such that for the position (θ(τ), yθ(τ)(·)) a closable program exists; θ(τ) =
max{θw ∈ Tw ∩ T+τ ; θx ∈ Tx ∩ T+τ ; t∗}.
De�nition 11. A functional

u0(τ, yτ (·)) = u0(τ |θ(τ), yθ(τ)(·)), yθ(τ)(·) ∈ Yθ(τ)(·), τ ∈ Tu, (18)
is called an optimal closable (combined, discrete) output loop (OCOL) (a positional solution to
the control problem in the class of output closable loops); contraction of (18) to a set of signals of
measuring device (3) is an optimal output closable feedforward loop; contraction of (18) to a set
of signals of measuring device (4) is an optimal output closable feedback loop. The construction
of OCOL is the synthesis of the optimal control system in the class of output closable loops.

Note, if τ ≥ tp then OCOL becomes an optimal output disclosable loop.

4.4. Optimal real-time control. To control dynamical objects by the classical closed-loop
principle OCOL has to be constructed before control process starting, that it is not a success even
for optimal state feedbacks yet. Therefore, like in the case of optimal observation(Section 2),
we adhere to the principle of optimal real-time control, by which OCOL is not constructed
wholly, but in each particular control process its current values (a realization of OCOL) u∗(τ) =
u0(τ, y∗τ (·)), τ ∈ Tu, are generated by an optimal regulator (OR) for the time sc(τ), and so(τ) +
sc(τ) < h (Fig. 8).
De�nition 12. The function

u∗∗(t) =





u∗(t∗), t ∈ [t∗, t∗ + h + so(t∗ + h) + sc(t∗ + h)];
u∗(τ), t ∈ [τ + so(τ) + sc(τ), τ + h + so(τ + h) + sc(τ + h)[, τ ∈ Tu\{t∗, t∗ − h};
u∗(t∗ − h), t ∈ [t∗ − h + so(t∗ − h) + sc(t∗ − h), t∗],

constructed by OE and OR, is called a quasirealization of OCOL.
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ООRОE
α

Fig. 8: Optimal real-time control.

We suggest the folllowing algorithm of operating OR. Before the control process starts, OR
carries out initial preposterior analysis and constructs closure sets X pβ , X p−1β, ...,X 1β , where
β = min c′x, x ∈ X∗.

At �rst, we describe a method of constructing X pβ (the other closure sets are constructed
similarly). Let η̄t∗(q) = max q′x, x ∈ X o

t∗−0, η
t∗(q) = min q′x, x ∈ X o

t∗−0, be estimates of the
initial preposterior distribution in the direction q at terminal instant. Then X pβ = X o

tp+0 + Zpβ ,
where Zpβ consists of all z ∈ Rnx that the inequalities hold:





g∗i − η
t∗(hi) ≤ h′iF (t∗, tp)z + h′i

∫ t∗
tp

F (t∗, s)B(s)u(s)ds ≤ g∗i − η̄t∗(hi), i ∈ I;

β − η
t∗(c) ≤ c′F (t∗, tp)z + c′

∫ t∗
tp

F (t∗, s)B(s)u(s)ds;
u(t) ∈ U, t ∈ [tp, t∗].

We note that estimates are calculated along the directions hi, i ∈ I; c, because the set X∗β ,
by which X pβ is constructed, is determined on this directions.

Let sets X pβ , X p−1β, ..., X 1β have been constructed; H1β are directions, by which the outer
approximation of set X 1β is under construction; γ1β = (γ1β(q), q ∈ H1β), γ1β(q) = max q′x, x ∈
X 1β is an estimate of the closure set at instant t1 in direction q; γ0 = (γ0(q), q ∈ H1β),
γ0(q) = max q′x, x ∈ Xo

t1 is an estimate of a priori distribution Xo
t1 of the observation subsystem

state at the instant t1 in direction q. The initial closable program u(t), t ∈ [t∗, t1[ is a solution
to problem (19):





α → min
α, u(t∗:t1)

;

H1β
∫ t1
t∗ F (t1, s)B(s)u(s)ds− α ≤ γ1β − γ0;

u(t) ∈ U, t ∈ [t∗, t1[.

(19)

Step by step increasing β and solving problem (19) by the dual method (iterations begin with
the empty support), OR generates the optimal initial closable program uτ0(·), computes the
maximum value β0(t∗) = β0 of the cost function, the optimal support K0

b (t∗) and constructs a set
S∗b (t̄∗) of supporting control action indices which are to �freeze� at the nearest next measurement
instant t̄∗. As initial supports for solving linear programming problems the empty supports are
taken. Since operations are implemented in advance, the time expence is not signi�cant.
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To the input of the control object OR sends the control action u∗(t) = u0(t), t ∈ [t∗, t̄∗ +
so(t̄∗) + sc(t̄∗)[, where so(t̄∗) è sc(t̄∗) is a time of operating OE and OR correspondingly.

Suppose that OR has operated on the interval T−τ , τ ∈ Tw ∪ Tx, τ < tp, has computed the
optimal closable program uτ0(·|τ , yτ (·)), respective to it sets K0

b (τ), S∗b (τ) and calculated the
maximum value β0(τ) of the cost function for the nearest previous measurement instant τ . At
instant τ OE receives a new signal from measuring devices and for the current position (τ, y∗τ (·))
solves the optimal preposterior observation problem. By results of OE work, OR computes the
closure sets X pβ(τ, y∗τ (·)), X p−1β(τ, y∗τ (·)), ..., X k(τ)β(τ, y∗τ (·)) and the optimal current closable
program uτ0(·|τ, y∗τ (·)).

Now we describe a method of constructing X pβ(τ, y∗τ (·)). Let η̄t∗(q|τ, y∗τ (·)) = max q′x, x ∈
X o

t∗−0(τ, y
∗
τ (·)); η

t∗(q|τ, y∗τ (·)) = min q′x, x ∈ X o
t∗−0(τ, y

∗
τ (·)), be estimates of the current prepos-

terior distribution in direction q at the terminal instant. Then X pβ(τ, y∗τ (·)) = X o
tp+0(τ, y

∗
τ (·)) +

Zpβ(τ, y∗τ (·)), where Zpβ(τ, y∗τ (·)) consists of all z ∈ Rnx , on which inequalities hold:




g∗i − η
t∗(hi|τ, y∗τ (·)) ≤ h′iF (t∗, tp)z + h′i

∫ t∗
tp

F (t∗, s)B(s)u(s)ds ≤ g∗i − η̄t∗(hi|τ, y∗τ (·));
β − η

t∗(c|τ, y∗τ (·)) ≤ c′F (t∗, tp)z + c′
∫ t∗
tp

F (t∗, s)B(s)u(s)ds;
u(t) ∈ U, t ∈ [tp, t∗].

Let sets X pβ(τ, y∗τ (·)), X p−1β(τ, y∗τ (·)), ...,X k(τ)β(τ, y∗τ (·)) have been constructed; Hk(τ)β are
directions, by which the outer approximation of set X k(τ)β(τ, y∗τ (·)) is under construc-
tion; γk(τ)β(τ, y∗τ (·)) = (γk(τ)β(q|τ, y∗τ (·)), q ∈ Hk(τ)β), γk(τ)β(q|τ, y∗τ (·)) = max q′x, x ∈
X k(τ)β(τ, y∗τ (·)) is the estimate of the current closure set in direction q at the instant tk(τ);
γ0(τ, y∗τ (·)) = (γ0(q|τ, y∗τ (·)), q ∈ Hk(τ)β), γ0(q|τ, y∗τ (·)) = max q′x, x ∈ Xo

tk(τ)
(τ, y∗τ (·)) is the

estimate of current distribution Xo
tk(τ)

(τ, y∗τ (·)) of the observation subsystem state in direction
q at the instant tk(τ). The current closable program u(t|τ, y∗τ (·)), t ∈ [τ, tk(τ)[ is a solution to
problem (20):





α → min
α, u(τ :tk(τ))

;

Hk(τ)β
∫ tk(τ)

τ F (tk(τ), s)B(s)u(s)ds− α ≤
≤ γk(τ)β(τ, y∗τ (·))− γ0(τ, y∗τ (·))−Hk(τ)β

∫ τ
t∗ F (tk(τ), s)B(s)u∗(s)ds;

u(t) ∈ U, t ∈ [τ, tk(τ)[.

(20)

Algorithm of constructing the optimal current closable program uτ0(·|τ, y∗τ (·)) begins with
value β = β0(τ) of the cost function and initial support K0

b (τ). Solving problem (20) for
β = β0(τ), OR computes set S∗b (τ) and sends the control action u∗(t) = u0(t|τ, y∗τ (·)), t ∈
[τ + so(τ) + sc(τ), τ̄ + so(τ̄) + sc(τ̄)[ to the input of the control object.

5. Example 2

Consider the following example:
x(t∗) + ẋ(t∗) → max;

ẍ + 2.7x = 0.5u + 0.5w(t); x(0) = −1.0, ẋ(0) = −1.7, T = [0, 12];
(x(12), ẋ(12)) ∈ X∗ = {x ∈ R2 : |x1| ≤ 0.5, |x2| ≤ 0.5};

|u(t)| ≤ 1.0, t ∈ T ;

yw = z + ξw(t), |ξw(t)| ≤ 0.1, t ∈ T ; ż + 1.8z = w(t), z(0) = −3.0;
yx(t) =

∫ t
t−3 (x(t) + ẋ(t))ds + ξx(t), |ξx(t)| ≤ 0.1, t ∈ T ;
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w(t) = w1 + w2 sin(t) + w3 sin(3t), t ∈ T ;
(w1, w2, w3) ∈ W = {w ∈ R3 : |w1| ≤ 2.4, |w2| ≤ 0.8, |w3| ≤ 0.8};

w∗ = (1.0,−0.1,−0.5),
ξ∗w(t) = 0.1 cos(t), ξ∗x(t) = 0.1 sin(t), t ∈ T ;

Q = (q(i) = (cos(πi/12), sin(πi/12)), i = {1, 2, .., 24});
h = 1; Tw = Tx = {3, 6, 9}; Tcl = Tclw = Tclx = {6}.
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Fig. 9

In Fig. 9 a priori and current distributions of terminal states of the observation system are
represented: 1.Xo

t∗ ; 2. Xo
t∗(τ, y

∗
τ (·)), τ = 3; 3. Xo

t∗(τ, y
∗
τ (·)), τ = 6; 4. Xo

t∗(τ, y
∗
τ (·)), τ = 9; A is a

terminal state of the observation subsystem for w(t) = 0, t ∈ T .
Fig. 10 introduces realizations of optimal output closable (solid line) and optimal disclosable

[3] (dashed line) loops in a particular control process. In it guaranteed value of the cost function
with use of the optimal output disclosable loop is J(u∗(·)) = 0.7028, and with use of the optimal
output closable loop is J(ũ∗(·)) = 0.7920. It appears on the realized trajectory x̃(t), t ∈ T ,
that corresponds to the optimal output closable (combined) loop, value of the cost function is
equal to 0.9250; on the realized trajectory x(t), t ∈ T , that corresponds to the optimal output
disclosable two-phase (combined) loop with parameter ε = 0.001, value of the cost function is
equal to 0.8358.
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The phase trajectories that correspond that two types of loops are depicted in Fig. 11a; Fig. 11b
contains on enlarge scale fragments of the phase trajectories at the �nal control stage; X̃, X are
the posteriori distributions of terminal states of the control system.
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Conclusions

In the paper optimal preposterior observation and optimal control problems for dynamic sys-
tems under uncertainty with use of a priori and current information about the control object
behaviour and uncertainty are considered. The method of implementing the optimal output
closable loop by the optimal estimators and the optimal regulator is suggested. The algorithm of
operating the optimal estimators and the optimal regulator that implements positional solutions
to the problem in real-time mode is described. Obtained results can �nd application in solving
other (not extreme) control problems (in particular, stabilization problems for dynamic systems
under uncertainty).
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