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ON THE BASICITY FROM EXPONENTS IN LEBESGUE SPACES WITH
VARIABLE EXPONENT
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Abstract. In the paper we consider the systems of exponents {exp i (n− αsignn) t}n∈Z , 1 ∪
{exp i (n− αsignn) t}n6=0 , cosines {cos (n− α) t}n≥0 (1 ∪ {cos (n− α) t}n≥1) and

sines {sin (n− α) t}n≥1. The basis properties of these systems are completely studied in the

spaces Lpt with variable exponent p (t) .
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1. Introduction

The paper studies the basicity of the system of exponents{
ei(n−α·signn)t

}
n∈Z

, (1)

1 ∪
{

ei(n−α·signn)t
}

n 6=0
(2)

in Lebesgue spaces of functions with variable exponent p (t), denoted as Lpt , where α ∈ C is
a complex parameter, Z is a set of integers. Systems (1),(2) are model systems for studying
spectral properties of some differential operators. They are obtained from ordinary system
of exponents by linear perturbation. The well-known mathematicians as Paley-Wiener [15],
N. Levinson [14] and others were the first who appealed to study basis properties of these
systems. Basis properties of systems (1),(2) were completely studied in Lebesgue ordinary spaces
Lp (p (t) ≡ const). Relatively these problems one can consider the papers [1,2,7,13] . Recently,
in connection with consideration of some concrete problems of mechanics and mathematical
physics,(see [12,16]), interest to studying these or other problems in the spaces Lpt or W k

pt

increases.
In the present paper we study basicity of systems (1),(2) in Lpt ≡ Lpt (−π, π) under definite

conditions on the function p : [−π, π] → [1,+∞).

2. Necessary notation and facts

Let p : [−π, π] → [1, +∞) be some function measurable by Lebesgue. By L0 we denote a
class of all measurable on [−π, π] (with respect to Lebesgue measure) functions. Accept the
denotation

Ip (f)
def≡

π∫

−π

|f (t)|p(t) dt.
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Let L ≡{f ∈ L0 : Ip (f) < +∞}. With respect to ordinary linear operations of addition of
functions and multiplication by a number, for p+ = sup vrai

[−π,π]
p (t) < +∞, L turns into a linear

space. By the norm

‖f‖pt

def≡ inf
{

λ > 0 : Ip

(
f

λ

)
≤ 1

}

L is a Banach space and we denote it by Lpt .
Denote

H ln def≡
{

p : ∃C > 0; ∀t1, t2 ∈ [−π, π] , |t1 − t2| ≤ 1
2

=⇒

=⇒ |p (t1)− p (t2)| ≤ C

−ln |t1 − t2|
}

.

Everywhere q (t) denotes a conjugated to p (t) function:
1

p (t)
+

1
q (t)

≡ 1. Accept p− =

inf vrai
[−π,π]

p (t) , pπ = max {p (π) ; p (−π)} , pπ = min {p (π) ; p (−π)}. It holds Holder’s generalized

inequality
π∫

−π

|f (t) g (t)| dt ≤ C
(
p−; p+

) ‖f‖pt
· ‖g‖qt

,

where C (p−; p+) = 1 +
1
p−

− 1
p+

.

The following property follows directly from definition.
Property A. If |f (t)| ≤ |g (t)| a.e. on (−π, π), then ‖f‖pt

≤ ‖g‖pt
.

We easily prove the following
Statement 1. Let p ∈ H ln, p (t) > 0, ∀t ∈ [−π, π] and {αi}m

1 ⊂ R (R is a real axis).

The function ω (t) =
m∏

i=1
|t− ti|αi belongs to the space Lpt, if αi > − 1

p (ti)
, ∀i = 1,m; where

{ti}m
1 ⊂ [−π, π] , ti 6= tj for i 6= j.

In sequel, we’ll need the following facts.
Property B [16]. If p (t) : 1 < p− ≤ p+ < +∞, the class C∞

0 (−π, π) (finite and infinitely
differentiable) is everywhere dense in Lpt.

By S we denote a singular integral:

S(f) =
1

2πi

∫

Γ

f (τ)
τ − t

dτ, t ∈ Γ,

where Γ ⊂ C is some piecewise-Holder curve on C (C is a complex plane).

Let ρ : [−π, π] → [1, +∞) be some weight function. Determine a weight class Lpt,ρt : Lpt,ρt

def≡
{f : ρ · f ∈ Lpt} with the norm: ‖f‖pt,ρt

def≡ ‖ρf‖pt
.

The following statement was proved in the paper [11].

Statement [11]. Let p ∈ H ln, 1 < p− and p (t) =
m∏

k=1

|t− τk|αk , where {τk}m
1 ⊂ [−π, π] , τi 6=

τj for i 6= j. Then a singular operator S boundedly acts from Lpt,ρt to Lpt,ρt if

− 1
p (τk)

< αk <
1

q (τk)
, k = 1,m

are fulfilled.
The following classes of analytic functions play an important part while establishing basicity.
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3. Hardy classes with variable exponent

These classes were considered in the papers [10,3]. Let U ≡ {z : |z| < 1} be a unique ball on
a complex plane and Γ = ∂U be a unit circle. For a function u (z) harmonic in U we accept

‖u‖pt
≡ sup

0<r<1

∥∥u
(
reit

)∥∥
pt

,

where p : [−π, π] → [1, +∞) is some measurable function. Denote

hpt ≡
{

u : ∆u = 0 in U and ‖u‖pt
< +∞

}
.

The continuous imbeddings h+ ↪→ hpt ↪→ hp− are true. The following theorem is valid.
Theorem [3]. Let 1 < p− ≤ p+ < +∞. If

u ∈ hpt , then ∃f ∈ Lpt : u
(
reiθ

)
=

1
2π

π∫

−π

pr (θ − t) f (t) dt, (3)

where pr (α) =
1− r2

1 + r2 − 2r cosα
is a Poisson kernel. Vice-versa, if f ∈ Lpt , p ∈ H ln, then (3)

belongs to hpt.
The Hardy class H+

pt
is introduced in the similar way

H+
pt

:≡
{

f : f is analytic in U and ‖f‖H+
pt

< +∞
}

,

where ‖f‖H+
pt

= sup
0<r<1

∥∥f
(
reit

)∥∥
pt

.

It is easy to see that f ∈ H+
pt
⇐⇒ Ref ; Imf ∈ hpt , where Re z; Imz are real and imaginary

parts of z, respectively.
Using the previous theorem we can easily prove the following refined variant of theorem 5 of

the paper [10].
Theorem [10]. Let p ∈ H ln and p− > 1. Then

F ∈ H+
pt
⇐⇒ ∃f ∈ Lpt : F (z) =

1
2π

π∫

−π

eitf (t) dt

eit − z
.

Analogy of Smirnov’s known theorem is also valid.
Theorem [9]. Let pi (t) : 0 < p−i ≤ p+

i < +∞, i = 1, 2; p1 (t) ≤ p2 (t) , a.e. on [−π, π] be
measurable function, F ∈ H+

pt
; p2 ∈ H ln and p−2 > 1. Then, if F+ ∈ Lp2t =⇒ F ∈ H+

p2t
.

Let’s define the class mH−
pt

of analytic outside of a unit circle functions of order ≤ m at
infinity. Let f (z) be a function analytic in C\U (

U = U ∪ Γ
)
, having a finite order ≤ m at

infinity, i.e. f (z) = f1 (z) + f2 (z), where f1 (z) is a polynomial of power ≤ m , f2 (z) is a
tame part of expansion of f (z) in Lorentz series in the vicinity of a point at infinity. If the

function ϕ (z) ≡ f2

(
1
z

)
((·) is a complex conjugation) belongs to the class H+

pt
, we’ll say that

the function f (z) belongs to the class mH−
pt

.

4. Riemann’s problem in the classes H±
pt

Let a complex valued function G (t) on [−π, π] satisfy the conditions:
1) |G|±1 ∈ L∞;
2) the argument θ (t) ≡ arg G (t) has an expansion of the form θ(t)

= θ0(t) + θ1(t), where θ0 (t) ∈ C [−π, π] ; θ1 (t) is a bounded variation function on [−π, π];
3) θ1 (t) has a finite number of discontinuity points {sk}r

1 : −π < s1 < ... < sr < π on [−π, π];
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4)
{

hk

2π
+

1
q (sk)

}r

k=0

∩ Z = {∅}, where hk = θ (sk + 0)− θ (sk − 0) , k = 1, r; h0 = θ (−π)−
θ (π).

It is required to find a piecewise-analytic function F± (z) on C with a section Γ, satisfying
the conditions:

a) F+ ∈ H+
pt

: 0 < p− ≤ p+ < +∞;
b) F− ∈ mH−

pt
;

c) non-tangential boundary values of F± (
eit

)
on a unit circle Γ a.e. satisfy the relation:

F+
(
eit

)
+ G (t)F− (

eit
)

= g (t) , a.e. t ∈ (−π, π) ,

where g ∈ Lpt is an arbitrary function.
When summability indices are constant, the theory of these problems were sufficiently well

studied (see. [6]). Let’s consider Riemann’s following homogeneous problem:
{

F+ (τ) + G (τ) F− (τ) = 0, τ ∈ Γ;
F+ ∈ H+

pt
; F− ∈ mH−

pt
.

(4)

Let’s introduce into consideration the following analytic functions X±
i (z) interior (the sign

” + ”) and exterior (the sign ”− ”) to a unit circle.

X±
1 (z) ≡ exp



±

1
4π

π∫

−π

ln
∣∣G (

eit
)∣∣ eit + z

e− z
dt



 ,

X±
2 (z) ≡ exp



±

1
4π

π∫

−π

θ (t)
eit + z

e− z
dt



 .

Let

Zi (z) ≡
{

X+
i (z) , |z| < 1,[

X−
i (z)

]−1
, |z| < 1.

Denote Z± (z) ≡ Z±1 (z) · Z±2 (z). Define {ni}r
i=1 ⊂ Z from the inequalities




− 1

q (sk)
<

hk

2π
+ nk − nk−1 <

1
p (sk)

, k = 1, r;

n0 = 0.

Let ωr =
h0

2π
+ nr. Eearlier we proved

Theorem [9]. Let p ∈ H ln, 1 < p− ; the conditions 1)-4) be fulfilled. Then, if it holds

− 1
qπ

< ωr <
1
pπ

, the general solution of homogeneous problem (4) in the classes
(
H+

pt
;m H−

pt

)
is

of the form F (z) ≡ Z (z) · Pm (z), where Pm (z) is an arbitrary polynomial of power ≤ m.
Corollary. Let all the requirements of the previous theorem be fulfilled. Then, provided

F− (∞) = 0 the Riemann’s homogeneous problem (4) in the classes
(
H+

pt
;m H−

pt

)
has only a

trivial solution, i.e. zero solution.
Now, let’s consider Riemann’s homogeneous problem

{
F+ (τ) + G (τ)F− (τ) = g (τ) , τ ∈ Γ;

F+ ∈ H+
pt

; F− ∈ mH−
pt

,
(5)

where g (τ) ∈ Lpt is an arbitrary function. Obviously, the problem (5) has a unique solution (if
it is solvable) iff the appropriate problem (4) has only a trivial solution. In the general case the
solution of problem (5) is of the form F (z) = F0 (z) + Z (z) · Pm (z), where F0 (z) is one of the
particular solutions of problem (5), Pm (z) is a polynomial of power ≤ m.
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5. Main results

As G (τ) we take the concrete function G
(
eit

)
= e2iαt, t ∈ [−π, π]. Suppose α ∈ R. The

complex case is similarly investigated.
At first we assume that g

(
eit

)
is a Holder function [−π, π]. Solve the problem (5) by the

method devoloped in the monograph [8]. We get the particular solution F0 (z) of the form:

F+
0 (z) =

1
2π

π∫

−π

eiαθg
(
eiθ

)
dθ

(1 + eiθ)2α (1− z · e−iθ)
(1 + z)2α ,

F−
0 (z) =

1
2π

π∫

−π

eiαθg
(
eiθ

)
dθ

(1 + eiθ)2α (1− z · e−iθ)
z−2α (1 + z)2α .

The fact that F0 (z) satisfies the relation (5) follows directly from the Sokhotsky-Plamel
formula. Denote

h+
n (t) =

(
1 + eit

)−2α

2π
eiαt ·

n∑

k=0

Cn−k
2α · eikt, n = 0,∞;

h−m (t) = −
(
1 + eit

)−2α

2π
eiαt ·

m∑

k=0

Cm−k
2α · e−ikt, m = 1,∞,

where Cn
β =

β (β − 1) ... (β − n + 1)
n!

are binomial coefficients. Expanding the functions F+
0 (z)

and F−
0 (z) respectively, in the vicinities of zero and a point at infinity in power of z, we get

F+
0 (z) =

∞∑

n=0

a+
n · zn, F−

0 (z) =
∞∑

n=1

a−n · z−n,

where

a+
n =

π∫

−π

g
(
eiθ

)
h+

n (θ)dθ, n ≥ 0; a−m =

π∫

−π

g
(
eiθ

)
h−n (θ)dθ, m ≥ 1.

Let |2α| < 1. It is easy to see that F+
0 ∈ H+

1 ; F−
0 ∈−1 H−

1 . The relations [6]
π∫

−π

∣∣F+
0

(
eit

)− F+
0

(
reit

)∣∣ dt → 0, r → 1− 0;

π∫

−π

∣∣F−
0

(
eit

)− F−
0

(
reit

)∣∣ dt → 0, r → 1 + 0,

yield

a+
n =

1
2π

π∫

−π

F+
0

(
eit

)
e−intdt, ∀n ≥ 0; a−m =

1
2π

π∫

−π

F−
0

(
eit

)
eimtdt, ∀m ≥ 1.

Using the representation of the Cauchy type integral with power character peruliarity in the
vicinity of a discontinuity point of first order density (see [8], p.74), it is easy to show that if the
conditions 0 < 2α < 1 and g1 (1) = g (−1) = 0 hold, the functions F±

0 (τ) are continuous on a
unit circle. Therefore, the Fourier series of these functions by the system of exponents

{
eint

}
n∈Z

converge to them on [−π, π] uniformly, since they satisfy some Holderian conditions on Γ. As
the result we get

F+
0

(
eit

)
=

∞∑

n=0

a+
n eint; F−

0

(
eit

)
=

∞∑

n=1

a−n e−int,
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uniformly on [−π, π]. Considering these relations in (5) we get (where g (τ) = f (τ) · eiαt, τ =
eit; f

(
eit

)
is a Holder function on [−π, π])

f
(
eit

)
=

∞∑

n=0

a+
n ei(n−α)t +

∞∑

n=1

a+
n e−i(n−α)t,

uniformly on [−π, π]. It is proved in [4] that for |α| < 1
2

the following relations

π∫
−π

ei(n−α)th+
m (t)dt = δnm, ∀n,m ≥ 0;

π∫
−π

ei(n−α)th−m (t)dt = 0, ∀n ≥ 0;∀m ≥ 1;
π∫
−π

e−i(n−α)th+
m (t)dt = 0, ∀n ≥ 1;∀m ≥ 0;

π∫
−π

e−i(n−α)th−m (t)dt = δnm, ∀n, m ≥ 1.





(6)

are fulfilled.
It directly follows from the Property A that, if p (t) ∈ H ln and p− > 1, then the system (1)

belongs to Lpt . In this case the space Lqt is a space conjugated to Lpt (see [16]). Consequently,

it follows from statement 1 and representations for h±n (t) that for α <
1

2qπ
the system {h+

n ; h−m}
belongs to Lqt . Then, from relations (6) we get that while fulfilling the conditions formulated
above, the system (1) and {h+

n ; h−m} are conjugated and so (1) is minimal in Lpt . Having paid

attention to the Property B we get that for
1
2

> α ≥ 0 the system (1) is complete in Lpt . Thus,

if the inequality 0 ≤ α <
1

2qπ
is fulfilled, then (1) is complete and minimal in Lpt .

Denote

I (z) =

π∫

−π

eiαθg0 (θ) dθ

(1 + eiθ)2α (1− ze−iθ)
, g0 (θ) = g0

(
eiθ

)
.

Then we can represent F±
0 (z) in the form

F+
0 (z) =

1
2π

I (z) (1 + z)2α , |z| < 1;

F−
0 (z) =

1
2π

I (z)
(
1 + z−1

)2α
, |z| > 1.





(7)

From the same reasonings we get that for finite functions g0 (θ) on [−π, π], the Fourier series

for boundary values I±
(
eiθ

)
converge to them uniformly on [−π, π]. Therewith, if 2α > − 1

pπ
,

the functions
(
1 + eiθ

)2α and
(
1 + e−iθ

)2α belong to the space Lpt and by the results of the
paper [5], the Fourier series of these functions converge to them in Lpt . Again, it follows from

the Property B that for − 1
2pπ

< α <
1
2

the system (1) is complete in Lpt . Combining the

obtained results we arrive at the following conclusion.
Statement 2. Let p (t) ∈ H ln, p− > 1, and the inequality

− 1
2pπ

< α <
1

2qπ
, (8)

be fulfilled.Then the system (1) is complete and minimal in Lpt.
Now we study the basicity. Let (8) be fulfilled. Then the system (1) is minimal in Lpt and

let {h+
n (t) ; h−m (t)}n≥0;m≥1 be an appropriate conjugated system. Hence ∀f ∈ Lpt and consider

the partial sum Sm:

Sm [f ] =
m∑

n=0

a+
n ei(n−α)t +

m∑

n=1

a−n e−i(n−α)t,
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where

a+
n =

π∫

−π

f (t) h+
n (t)dt, n ≥ 0; a−k =

π∫

−π

f (t) h−n (θ)dt, k ≥ 1.

Let’s consider the problem (5), where as the right hand side of g (τ) we take the function
g

(
eiθ

)
= eiαtf (ϑ), furthermore, require F− (∞) = 0. Then, as it follows from Corollary 1, the

problem (5) has a unique solution F±
0 (z) in the classes

(
H+

pt
;−1 H−

pt

)
and thus F±

0

(
eit

) ∈ Lpt .
Show that

sup
m

‖f‖pt
=1

‖Sm [f ]‖pt
< +∞.

As we have already seen

a+
n =

1
2π

π∫

−π

F+
0

(
eit

)
e−intdt, ∀n ≥ 0; a−k =

1
2π

π∫

−π

F−
0

(
eit

)
eiktdt, ∀k ≥ 1.

We have

‖Sm [f ]‖pt
≤

∥∥∥∥∥e−iαt
m∑

n=0

a+
n eint

∥∥∥∥∥
pt

+

∥∥∥∥∥eiαt
m∑

n=1

a−n e−int

∥∥∥∥∥
pt

.

Since the classic system of exponents
{
eint

}
n∈Z

forms a basis in Lpt (see[5]),then considering
the Property A hence we get

‖Sm [f ]‖pt
≤ M1

∥∥F+
0

(
eit

)∥∥
pt

+ M2

∥∥F−
0

(
eit

)∥∥
pt

,

where Mi, i = 1, 2 are some constants. Applying the Sokhotsky-Plamel formula to the expres-
sions F+

0 (z) and F−
0 (z) we get

F+
0

(
eiθ

)
= ieiαθf (θ) + S+ (f) , F−

0

(
eiθ

)
= ie−iαθf (θ) + S− (f) ,

where S± (f) are appropriate singular type integrals

S+ (f) =
1
2π

π∫

−π

eiαθf (θ) dθ

(1 + eiθ)2α (
1− ei(s−θ)

) ·
(
1 + eis

)2α
,

S− (f) =
1
2π

π∫

−π

eiαθf (θ) dθ

(1 + eiθ)2α (
1− ei(s−θ)

) ·
(
1 + e−is

)2α
.

Then, having paid attention to the Statement [11] we get that the integral operators S+ (f)
and S− (f) act boundedly from Lpt to Lpt , i.e.

∥∥S± (f)
∥∥

pt
≤ M ‖f‖pt

, ∀f ∈ Lpt .

As the result we have

‖Sm [f ]‖pt
≤ M1

(
M3 ‖f‖pt

+
∥∥S+ (f)

∥∥
pt

)
+

+M2

(
M4 ‖f‖pt

+
∥∥S− (f)

∥∥
pt

)
≤ M5 ‖f‖pt

, ∀f ∈ Lpt ,

where Mi, i = 3, 5 are some constants.
As the result, it follows from the basicity criterium that the system (1) forms a basis in Lpt ,

i.e. the following theorem is valid.

Theorem 1. Let p (t) ∈ H ln, p− > 1, and the inequality − 1
2pπ

< α <
1

2qπ
be fulfilled.Then

the system of exponents (1) forms a basis in Lpt.
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Separately we consider the case − 1
2pπ

≤ α ≤ − 1
2pπ

. In this case, it follows from relations (6)

and from expressions for h±n (t) that the system (1) is minimal in Lpt , since it has a biorthogonal
system.Represent the system (1) in the form:

{
ei[(n+1−(α+1)]t; e−i(m−α)t

}
n≥0;m≥1

. (9)

Multiplication of each term of the system (9) by the function ei t
2 doesn’t influence on its

completeness in Lpt . As the result we get the system
{
I eαn;m (t)

}
n≥1;m≥1

, where I eαn;m (t) ≡
(
ei(n−eα)·t, e−i(m−eα)·t) , α̃ = α+

1
2
. It is easy to notice that

1
pπ

+
1
qπ

= 1;
1
pπ

+
1
qπ

= 1.Therefore,

the inequality
1

2qπ
≤ α̃ ≤ 1

2qπ
<

1
2

is fulfilled for α̃. Then by the previous results we get that

the system
{
I eαn;m (t)

}
n≥0;m≥1

is complete in Lpt . It follows from the expressions for {h±n (t)}
and from Statement 1 that in this case the system {h±n (t)} doesn’t belong to the space Lqt .
Since the system

{
I eαn;m (t)

}
n≥1;m≥1

is complete in Lpt then from the uniqueness of biorthogonal

system to the complete system we get that
{
I eαn;m (t)

}
n≥0;m≥1

is not minimal in Lpt and as a

result of that the system
{
I eαn;m (t)

}
n;m≥1

and so the system (1) is complete and minimal in Lpt .
The fact that the system (1) doesn’t form a basis in Lpt is proved similar to the paper [13].

We arrive at the following conclusion: if − 1
2pπ

≤ α ≤ − 1
2pπ

, the system (1) is complete and

minimal in Lpt . And now, let α < − 1
2pπ

, for example − 1
2pπ

− 1
2
≤ α < − 1

2pπ
. In this case, it

holds − 1
2pπ

≤ α̃ <
1

2qπ
and so the system

{
I eαn;m (t)

}
n≥0;m≥1

is complete, and minimal in Lpt .

As the result the system (1) is not complete, but minimal in Lpt. In the similar way we show

that for α ≥ 1
2qπ

the system is complete, but not minimal in Lpt .

Combining all the obtained results, we have the following theorem.

Theorem 2. Let p (t) ∈ H ln, p− > 1. The system (1) is complete in Lpt iff α ≥ − 1
2pπ

; it is

minimal in Lpt only for α <
1

2qπ
.

Let the inequality α <
1

2qπ
hold. By theorem 2, in this case the system (1) is minimal in Lpt .

It directly follows from analytical expressions for the conjugated system {h±n (t)} that

h+
0 (t) =

1
2π

· eiαt

(1 + eit)2α .

We have

c+
0 =

π∫

−π

h+
0 (t)dt =

1
2π

π∫

−π

dt

(1 + e−it)2α · (eit)α =

=
1
2π

π∫

−π

dt(
ei t

2 + e−i t
2

)2α =
1
2π

π∫

−π

dt(
2 cos

t

2

)2α 6= 0.

We consider the system {H+
n ;H−

m}n≥0;m≥1

H+
0 =

1
c+
0

h+
0 ; H±

n = h±n −
c±n
c+
0

h+
0 , (10)
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where c±n =
π∫
−π

h±n (t) dt, ∀n ≥ 1. It is easy to verify that the systems
{
H+

n ;H−
n+1

}
n≥0

and (2)

are biorthonormed. Thus, for α <
1

2qπ
the system (2) is minimal in Lpt . The remaining cases

for the values of α are similarly proved.

Let − 1
2pπ

< α <
1

2qπ
. Take ∀f ∈ Lpt and consider

S0
m [f ] = f+

0 +
m∑

n=1

[
f+

n e−iαteint + f−n eiαte−int
]
,

where f±n are biorthogonal coefficients of the function f by the system (2).
Considering expression (10) for H±

n it is easy to show that
‖S0

m(f) − f‖pt → 0, m → ∞. This proves the basicity of the system (2) in the considered
case. Thus, it is proved.

Theorem 3. Let p (t) ∈ H ln, p− > 1. The system (2) forms a basis in Lpt iff − 1
2pπ

<

α <
1

2qπ
. Moreover, it is complete in Lpt only for α ≥ − 1

2pπ
; it is minimal iff α <

1
2qπ

. For

− 1
2pπ

≤ α ≤ − 1
2pπ

it is complete and minimal, but doesn’t form a basis in Lpt.

References

[1] Bilalov, B.T. ,(1990), Basicity of some systems of exponents, cosines and sines, Differents. Urav., 26(1),
pp.10-16 (Russian).

[2] Bilalov, B.T., (2004), Basis properties of some systems of exponents, cosines and sines, Sib. Mat. J., 45(2),
pp. 264-273 (Russian).

[3] Bilalov, B.T. , Mamedov, F.I., Bandaliev, R.A., (2007), On classes of harmonic functions with variable
exponent, Dokl NAN Azerb., LXIII(5), pp. 16-21(Russian).

[4] Bilalov, B.T., Huseynov, Z.G., (2008), Bases from exponents in Lebesgue spaces of functions with variable
summability exponent, Trans. of NAS of Azerb., XXVIII(1), pp. 43-48

[5] Bilalov,B.T., (1995), Basis properties of the systems of eigen functions of some differential operators and
their generalizations. The author’s thesis for Doctor’s Degree, Moscow, MGU, 25 p. (Russian).

[6] Danilyuk, I.I., (1975), Nonregular boundary value problems on a plane. M.: Nauka, (Russian).
[7] Devdariani, Q.Q., (1987), Basicity of some system functions , Different. Urav., 22(1), pp. 170-171(Russian).
[8] Gakhov, F.D., (1977), Boundary value problems. M.: Nauka, (Russian).
[9] Huseynov, Z.G., (2007), On basis properties of the system of exponents in Lebesgue spaces of functions with

variable exponent, Izvestia of Nakhicevan. Teachers Institute., 3(11), pp. 64-78 (Russian).
[10] Kokilashvili, V., Paatashvili, V., (2006), On Hardy classes of analytic functions with a variable exponent,

Proc. A. Razmadze math. Inst., 142, pp. 134-137.
[11] Kokilashvili, V., Samko, S., (2003), Singular Integrals in Weighted Lebesgue Spaces with variable exponent,

Geargian Math. J., 10(1), pp. 145-156.

[12] Kovacik, O., Rakosnik, J., (1991), On the spaces Lp(·) and W k,p(·), Czechoclovak Math. J.,41 (116), pp.
592-618.

[13] Moiseev, E.I., (1984), Basicity of the systems of exponents, cosines and sines in Lp, DAN SSSR, 275(4), pp.
794-798. (Russian).

[14] Sedletskii, A.M., (1982), Biorthogonal expansions in series of the exponents on real axis intervals., Usp. Mat.
Nauk, 37(5), (227), pp.51-59 (Russian).

[15] Wiener, N., Paley, R., (1964), Fourier transformation in a complex domain. M.: Nauka, (Russian).

[16] Xianling, F., Dun, Z.,(2001), On the spaces Lp(x)(Ω) and W m,p(·)(Ω), Journal of Math. Anal. and Appl.,
263, pp. 424-446.



BILALOV B.T., HUSEYNOV Z.G : ON THE BASICITY FROM EXPONENTS IN ... 23

Bilalov Bilal - is professor, head of department of the
Non-harmonic analysis of the Institute of Mathematics
and Mechanics of Azerbaijan National Academy of Sci-
ences(ANAS).He got his Ph.D. and D. degrees in Moscow
State University. Bilalov Bilal is a member of editorial
board of Transactions of ANAS and Proceedings of IMM
of ANAS since 2001, and referee of Math.Review since
2005.He is also a member of Editorial Board of ”TWMS
Journal of Pure and Applied Mathematics”.

The research areas of Bilalov Bilal can be roughly listed as follows: theory of an approximation by polynomials
of functions theory of basicity in the Hilbert and Banach spaces, and its application to concrete systems; research
of basis properties of eigen-functions and adjoint-functions of some not self-conjugate differential operators.

Huseynov Zafar - was born in 1953 in Shusha city,
Azerbaijan. He graduated from Faculty of Mechanic
and Mathematics of Baku State University in 1975. At
present he is a dean of Faculty of Mathematics in Sum-
gait State University.


