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1.    Introduction   
 

       In 2003, Z. Mustafa and B. Sims [16] introduced a more appropriate and 

robust notion of a generalized metric space. In such kind of spaces a nonnegative 

real number is assigned to every triplet of elements. In [17] they proved some fixed 

point results for mapping satisfying sufficient conditions on complete G-metric 

space. After that several other fixed point theorems have been proved in G-metric 

spaces by many researchers, see [2, 3, 4, 6, 7, 8, 9, 16, 24, 25, 27]. The studies 

relevant to metric spaces are being extended to G-metric spaces by several other 

researchers. For instance, we noted that a best approximation result in G-metric 

spaces established by Nezhad and Mazaheri in [19], the notion of w-distance, 

which is relevant to minimization problem in metric spaces [13], has been extended 

by Saadati et al. [22] to G-metric spaces. Also, Shatanawi [26] gave the concept of 

ordered generalized metric spaces and presented some fixed point results in 

ordered G-metric spaces. There has been an important interest to study common 

fixed point for a pair of mappings that satisfying some contractive conditions in 

metric spaces. Some elegant and interesting results were obtained in this direction 

by various authors. In 1976, G. Jungck [10] introduced the notion of commutativity 

and presented some common fixed point theorems. Also G. Jungck [11] introduced 

the concept of compatible mappings and proved fixed point results. It is noticed 

that the problems of fixed point of non-compatible mappings are very important 

and considered in a number of research studies, see [12, 21]. Also weaker version 

of commutativity has been considered in a large number of works. One such notion 

is R-weakly commutativity. This is an extension of weakly commuting mappings 

[20, 23]. 
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2.     Preliminaries 

 

           The following definitions and results will be needed in this paper. 

Definition 1. [16] Let Y be a nonempty set, and let G: Y × Y × Y → R+ be a 

function satisfying the following axioms: 

(G1) G (a, b, c) = 0 if a = b = c, 

(G2) 0 < G (a, a, b), for all a, b ∈ Y with a b , 

(G3) G (a, a, b) ≤ G (a, b, c), for all a, b, c ∈ Y with c b , 

(G4) G (a, b, c) = G (a, c, b) = G(b, c, a) = . . . (symmetry in all variables), 

(G5) G (a, b, c) ≤ G (a, s, s) + G(s, b, c), ∀ a, b, c, s ∈ Y, (rectangle inequality). 

Then the function G is called a generalized metric, or more specifically a G-metric 

on Y, and the pair (Y, G) is called a G-metric space. 

Example 1. [16] Let Y = {x, y}. Define G on Y × Y × Y by 

                     G(x, x, x) = G(y, y, y) = 0, G(x, x, y) = 1, G(x, y, y) = 2 

and extend G to Y × Y × Y by using the symmetry in the variables. Then it is clear 

that (Y, G) is a G-metric space. 

Definition 2. [16] Let (Y, G) be a G-metric space and (an) a sequence of points of 

Y . A point a ∈ Y is said to be the limit of the sequence (an), if  

 
,

 l ,i ,m 0n m
n m

G a a a


  and we say that the sequence (an) is  G-convergent to a. 

Proposition 1. [16] Let (Y, G) be a G-metric space. Then the following are 

equivalent: 

(1) (an) is G-convergent to a. 

(2) G (an, an, a) → 0 as n → +∞. 

(3) G (an, a, a) → 0 as n → +∞. 

(2) G (an, am, a) → 0 as n, m → +∞. 

Definition 3. [14] Let (Y, G) be a G-metric space. A sequence (an) is called G-

Cauchy if for every     0 , there is k ∈ N such that   ,  ,   n m lG a a a  , for all n, 

m, l ≥ k; that is G(an, am, al) → 0 as n, m, l → +∞. 

Proposition 2. [16] Let (Y, G) be a G-metric space. Then the following are 

equivalent: 

(1) The sequence (an) is G-Cauchy. 

(2) For every     0 , there is k ∈ N such    that   ,  ,   n m lG a a a  , for all  

l, n, m ≥ k. 

Definition 4. [16] A G-metric space (Y, G) is called G-complete if every G-

Cauchy sequence in (Y, G) is G-convergent in (Y, G). 

Proposition 3. [16] Let (Y, G) be a G-metric space. Then for any a, b, c, e ∈ Y, it 

follows that 

(i) if G(a, b, c) = 0, then a = b = c; 

(ii) G (a, b, c) ≤ G (a, a, b) + G (a, a, c); 

(iii) G (a, b, b) ≤ 2G (b, a, a); 

(iv) G (a, b, c) ≤ G (a, e, c) + G (e, b, c); 
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(v) G (a, b, c) ≤ 2 3(G (a, b, e) + G (a, e, c) + G (e, b, c)); 

(vi) G (a, b, c) ≤ G (a, e, e) + G (b, e, e) + G (c, e, e). 

Proposition 4. [16] Let (Y, G) be a G-metric space. Then the function G (a, b, c)  

is jointly continuous in all three of its variables. 

Proposition 5. [11] Let f and g be weakly compatible self-mappings on a set Y. If f 

and g have unique fixed point of coincidence w = fa = ga, then w is the unique 

common fixed point of f and g. 

Definition 5. [11] Let f and g be two self-mappings on a metric space (Y, d). The 

mappings f and g are said to be compatible if   lim 0,  
n

n nd fga gfa


  , whenever 

{an} is a sequence in Y such that lim lim
n n 

 
n n

fa ga z  for some z ∈ Y. 

Definition 6. [4] Let (Y, G) be a G-metric space and H: Y → Y be a self-mappings 

on (Y, G). Now H is said to be a contraction if 

G (Ha, Hb, Hc) ≤ α G (a, b, c) for all a, b, c ∈ Y where α ∈ [0, 1).            (1) 

Clearly every self-mapping H: Y → Y satisfying condition (1) is continuous. To 

generalize the condition (2.1) for a pair of self-mappings S and H on Y : 

G (Sa, Sb, Sc) ≤ α G (Ha, Hb, Hc) for all a, b, c ∈ Y where α ∈ [0, 1).          (2) 

Definition 7. [4] let f and g be two self-mappings on a G-metric space (Y, G). The 

two mappings are said to be compatible if    ,    0m ,li n n n
n

G fga gfa gfa


 , 

whenever {an} is a sequence in Y such that lim limn n
n n

fa ga z
 

   for some z ∈ Y. 

In 2002, Branciari in [5] introduced a general contractive condition of integral type 

as follows. 

Theorem 1. [5] Let (Y, d) be a complete metric space, α ∈ (0, 1), and  

f: Y → Y is a mapping such that for all x, y ∈ Y , 
     , 

0

( )t dt

d f x f y

 ≤ α 

 ,

0

( )t dt

d x y

. 

where φ: [0, +∞) → [0, +∞) is nonnegative and Lebesgue-integrable mapping 

which is summable (i.e., with finite integral) on each compact subset of [0, +∞) 

such that for each 𝛜 > 0, 

0

( )t dt



 , then f has a unique fixed point  a ∈ Y , such that 

for each x ∈ Y ,  lim
n

n
f x a . 

The aim of this research paper is to carry the above idea of integral type contractive 

mappings to G-metric spaces. 
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3. Main results 

 

            In this section, we prove some common fixed point results in the setting of 

G-metric spaces by using the idea of integral type contractive mappings. Our first 

main result is stated as: 

Theorem 2.  Let (Y, G) be a complete G-metric space and f, g be two self-

mappings on (Y, G) satisfies the following conditions: 

(1) f(Y ) ⊆ g(Y ),                                                                                                     (3) 

(2) f or g is continuous,                                                                                           (4) 

(3)   

       

( , )

0

,

( )

G fa fb fc

t dt ≤ α 

( , )

0

,

( )

G fa gb gc

t dt  + β 

( , )

0

,

( )

gG a fb gc

t dt   

                                     + γ 

( , )

0

,

( )

gG gb cc f

t dt .                                   (5)                                                                    

For every a, b, c ∈ Y and α, β, γ ≥ 0 with 0 ≤ α + 3β + 3γ < 1 and φ: [0,+∞) → 

[0,+∞) is a Lebesgue integrable mapping which is summable, non-negative and 

such that for each 𝛜  > 0, 

0

0( )t dt


  . Then the mappings f and g have a unique 

common fixed point in Y provided f and g are compatible maps. 

 

Proof. Let a0 be arbitrary in Y. Choose a1 ∈ Y such that fa0 = ga1. In general we 

can choose an+1 such that bn = fan = gan+1 , n = 0,1,2, . . . . 

From (5), we have 

 

 
 1 1

0

, ,n n nG fa fa fa

t dt
 

  ≤ α  
 1 1

0

, ,n n nG fa ga ga

t dt
 

 + β  
 1 1

0

, ,n n nG ga fa ga

t dt
 

  

                                        + γ  
 1 1

0

, ,n n nG ga ga fa

t dt
 

  

                                   = α  
 ,

0

,n n nG fa fa fa

t dt + β  
 1 1, ,

0

n n nG fa fa fa

t dt
 

  

                                      + γ  
 1 1, ,

0

n n nG fa fa fa

t dt
 

 . 

                               = (β + γ)  
 1 1, ,

0

n n nG fa fa fa

t dt
 

 . 
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By use of (G5) and Proposition 3,  we have 

G (fan−1, fan, fan+1) ≤ G (fan−1, fan, fan) + G (fan, fan, fan+1) 

                                ≤ G (fan−1, fan, fan) + 2G (fan, fan+1, fan+1). 

Then, 

                         
 11

0

, ,n nn
G fa fa fa

t dt



 ≤ (β + γ)  
 11

, ,

0

nn n
G fa fa fa

t dt



  

                                ≤ {(β + γ)  
 1

0

, , nn n
G fa fa fa

t dt


  

                                     +  
 11

0

2 , ,
n nn

G fa fa fa

t dt



 } 

                                 ≤ (β + γ)  
 

1

0

, ,
nn n

G fa fa fa

t dt


  

                                   + (2β + 2γ)  
11

2 ,

0

,
n nn

G fa fa fa

t dt



 
 
 

  

                                ≤ 
 

 

  

1  2   2

 

 



 
  

1

,

0

,
nn n

G fa fa fa

t dt


 
 
 

  

                               ≤   
1

0

, ,
nn n

G fa fa fa

tl t d


 
 
 

 . 

where   
 

 

  

1  2   2
l

 

 



 
  < 1. 

Continuing this process, we get 

 

                                 
 11

0

, ,n nn
G fa fa fa

t dt



 ≤  
 0 11

0

, ,G fa f

n

fa a

l t dt  

For all n, m ∈ N, n < m, we have 

 
 

0

, ,n m mG b b b

t dt ≤  
 1 1, ,

0

n n nG b b b

t dt
 

 +  
 1 2 2,

0

,n n nG b b b

t dt
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                                + · · · +  
 1

0

, ,m m mG b b b

t dt


 . 

                            ≤ 
1 1( .... )n n ml l l      

 0 1, , 1

0

G b b b

t dt  

                            ≤   
  

nl

l1
 

 0 1, , 1

0

G b b b

t dt  → 0 as n, m → ∞. 

Thus, 

                      
,
lim 0,  ,  n m m

n m
G b b b


 . 

This means that {bn} is a G-Cauchy sequence in Y. Since (Y, G) is complete G-

metric space, therefore, there exists a point p ∈ Y such that 

1lim lim lim .
n n n

n n nb fa ga p
  




    

 As the mapping f or g is continuous, so we can assume that g is continuous, 

therefore lim lim
n n

n ngf ga gpa g
 

  . 

Also f and g are compatible, therefore,  ,  ,  lim 0n n
n

nG fga gfa gfa


 , this implies 

lim
n

f p



n

ga g . 

From (5), we have 

 
 

0

, ,n n nG fga fa fa

t dt ≤ α  
 

0

, ,n n nG fga ga ga

t dt  + β  
 

0

, ,n n nG gga fa ga

t dt  

                                  + γ  
 

0

, ,n n nG gga ga fa

t dt  . 

Taking limit as n → ∞, we have gp = p. 

Again from condition (5), we have 

 
 

0

, ,n p pG fa f f

t dt ≤ α  
 

0

, ,n p pG fa g g

t dt + β  
 

0

, ,n p pG ga f g

t dt  

                               + γ  
 

0

, ,n p pG ga g f

t dt . 

By taking limit as n → ∞, we have p = fp. Therefore, we have gp = fp = p. Thus p 

is a common fixed point of f and g. 

For uniqueness, we suppose that p1 6= p be another common fixed point of 

f and g Then 



PROCEEDINGS OF  IAM, V.5, N.1, 2016 

 

 70 

 
 1 1, ,

0

G p p p

t dt =  
 1 1, ,

0

G fp fp fp

t dt  

                          ≤ α  
 1 1, ,

0

G fp gp gp

t dt + β  
 1 1, ,

0

G gp fp gp

t dt  

                            + γ  
 1 1, ,

0

G gp gp fp

t dt  

                          = (α + β + γ)  
 1 1, ,

0

G p p p

t dt  

                         <  
 1 1, ,

0

G p p p

t dt . 

This arise contradiction and hence p1 = p. The proof is completed. 

Corollary 1.  Let (Y, G) be a complete G-metric space and f, g be two compatible 

self-mappings on (Y, G) satisfies assertions (3), (4) and the following condition: 

                                      
 

 
 , , ,

0 0

,G fa fb fc G a b c

t dt t dtl   , 

for all a, b, c ∈ Y and 0 1l  . Then f and g have a unique common fixed point in 

Y. 

Theorem 3.  Let f and g be two weakly compatible self-mappings of a Gmetric 

space (Y, G) satisfying conditions (3) and (5) and any one of the subspace f(Y ) or 

g(Y ) is complete. Then f and g have a unique common fixed point in Y . 

Proof. From the main result 3, we conclude that {bn} is a G-Cauchy sequence in Y. 

Since either f(Y) or g(Y) is complete, we assume that g(Y) is complete subspace of 

Y then the subsequence of {bn} must get a limit in g(Y) be p. Let v ∈ g
−1

p. Then gv 

= p as {bn} is a G-Cauchy sequence containing a convergent subsequence, 

therefore the sequence {bn} also convergent implying thereby the convergence of 

subsequence of the convergent sequence. Now we can show that fv = p. 

Setting a = v, b = an and p = an, in condition (5), we have 

 

 
 , ,

0

n nG fv fa fa

t dt ≤ α  
 , ,

0

n nG fv ga ga

t dt + β  
 , ,

0

n nG gv fa ga

t dt  

                                + γ  
 , ,

0

n nG gv ga fa

t dt . 

As n → ∞ in above inequality, we get 
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0

, ,G fv p p

t dt ≤ α  
 

0

, ,G fv p p

t dt . 

Implies that fv = p. 

Therefore, fv = gv = p, that is, v is a coincident point of two mappings f 

and g. Since the two mappings f and g are weakly compatible, it follows that fgv = 

gfv, that is, fp = gp. 

Next we show that fp = p. Further we assume that fp p . 

From condition (5), we set a = p, b = v, p = v, we have 

 
 

0

, ,G fp p p

t dt  =  
 

0

, ,G fp fv fv

t dt  

                          ≤ α  
 

0

, ,G fp gv gv

t dt  + β  
 

0

, ,G gp fv gv

t dt  

                           + γ  
 

0

, ,G gp gv fv

t dt . 

                           = (α + β + γ)  
 

0

, ,G fp p p

t dt  

                           <  
 

0

, ,G fp p p

t dt . 

Which is contradiction and hence fp = p. Therefore, fp = gp = p that is, p is 

common fixed point of mappings f and g. We can show the uniqueness as above 

easily. The proof is completed. 

We now give an example to illustrate Theorem 2. 

Example 2. Suppose that Y = [0,1] and also assume that G be the G-metric on Y 

×Y ×Y defined as G(a, b, c) = |a−b|+|b−c|+|c−a| ∀ a, b, c ∈ Y . 

Then (Y, G) be a G-metric space. We define 
 

  
a

fa
6

 and
 

  
2


a

ga . Also we 

noted that, the mapping f is continuous and f(Y) ⊆ g(Y). Also, 

                             
 

 
 , , , ,

0 0

G fa fb fc G ga gb cc

lt dt t dt   , 

holds for all a, b, c ∈ Y ,  1l 
1

3
 and 0 is the unique common fixed point of  f 

and g. 
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G-metrik fəzalarda inteqral tipli sıxılmalarla uzlaşmalı inikaslarda tərpənməz 

nöqtə haqqında bəzi ümumi teoremlər 

 

Rəhim Şah, Əkbər Zadə 

 

XÜLASƏ 
 

Məqalədə G-metrik fəzalarda inteqral tip sıxılmalardan istifadə etməklə tərpənməz 

nöqtələr haqqında bəzi ümumi teoremlər isbat edilir. Alkınan nəticələri illüstrasiya edən 

misallar verilmişdir.  

Açar sözlər: G-metrik fəzalar, ümumi tərpənməz nöqtə, uzlaşan inikaslar, inteqral 

tip sıxılmış inikas. 

 

Некоторые общие теоремы о неподвижных точках совместимых 

отображений с интегрального типа сжатиями в G-метрических 

пространствах 

 

Рахим Шах, Акбар Zada 

 

РЕЗЮМЕ 
 

В данной работе мы докажем некоторые общие теоремы о неподвижной 

точке в G-метрическом пространстве, используя понятие сжатия интегрального типа. 

Дается пример для иллюстрации наших результатов. 

Ключeвые слова: G-метрическиe пространства, общие неподвижные точки, 

совместимые отображения, отображения с интегрального типа сжатиями 

 

 

 


