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THE CAUCHY PROBLEM FOR DEGENERATE PARABOLIC

CONVOLUTION EQUATION

HUMMET K. MUSAEV1,2

Abstract. This paper explores the maximal regularity and separability properties of abstract

differential operator equations in weighted spaces. Using Fourier multiplier theorems we will

obtain the coercive properties of convolution differential-operator equations (CDOEs) with un-

bounded operator coefficients in weighted Lp spaces. Finally, these results are applied to es-

tablish well-posedness of the Cauchy problem for degenerate parabolic convolution differential-

operator equations. In particular we study the R−positivity of the corresponding convolution-

elliptic operators.
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1. Introduction

Some properties (like separability and maximal regularity for differential operator equations)

have been recently introduced; for example, in [1-6, 9-13, 16, 21-25] and the references therein.

Furthermore, convolution differential equations have been investigated, e.g., in [18-20]. More-

over, convolution differential-operator equations (CDOEs) in weighted spaces are studied in [15,

17].

In the years CDOEs are an under-researched topic. In [19, 23], the parabolic and elliptic type

CDOEs were established in Lp- spaces. Regularity and separability properties of degenerate

CDOEs have been studied, e.g., in [10, 14, 18]. This article aims to obtain the Cauchy problem

for the following degenerate parabolic convolution differential operator equation

∂u

∂t
+

l∑
i=0

ai ∗
∂[i]u

∂x[i]
+A ∗ u = f(t, x), u(0, x) = 0 (1)

in E− valued weighted Lp,γ spaces. Here E is a Banach space, A = A(x) is a linear operator

in E, ai = ai(x) are complex-valued functions, λ is a complex parameter, γ(x) is a measurable

positive function in R = (−∞;∞), and u[i] =

(
γ(x)

d

dx

)i

u.

Using the operator-valued Fourier multiplier theorems and the regularity properties of the

corresponding equations, we obtained an element: the well-posedness of the problem (1). Sub-

sequently, we obtained the sharp estimate in weighted mixed Lp,γ ,p = (p, p1) spaces.
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By virtue of the R− positivity properties of the corresponding convolution operator and the

semigroup theory we may drew the conclusion that the Cauchy problem (1) presents a unique

solution that satisfies the coercive estimate.

2. Notation and definitions

The set of natural numbers is indicated by N, the set of real numbers by R and of complex

numbers by C. If we suppose that E1 and E2 are Banach spaces. The space of bounded linear

operators from E1 to E2 is shown by L (E1, E2) . For E1 = E2 = E,we write L(E) instead of

L(E,E).

Let γ = γ(x), x = (x1, x2, ..., xn) be a positive measurable real-valued function on a mea-

surable subset Ω ⊂ Rn. By the symbol Lp,γ(Ω;E) we mean the space of all strongly E -valued

functions on a Ω ⊂ Rn with the norm

∥f∥Lp,γ
= ∥f∥Lp,γ(Ω;E) =

∫
Ω

∥f(x)∥pE γ(x)dx

1/p

, 1 ≤ p < ∞.

For γ(x) ≡ 1, the space Lp,y(Ω, E) will be denoted by Lp = Lp(Ω;E).

∥f∥L∞,γ(Ω;E) = ess sup
x∈Ω

[γ(x) ∥f(x)∥E ] .

The weight function γ(x) is said to satisfy the Ap condition, i.e., γ(x) ∈ Ap, 1 < p < ∞ if

there is such a positive constant C that

sup
Q

 1

|Q|

∫
Q

γ(x)dx


 1

|Q|

∫
Q

γ
−

1

p− 1 (x)dx


p−1

≤ C

for all compact sets Q ⊂ Rn. (Example: the weighted function γ(x) = |x|ν , x ∈ R, −1 < ν <

p− 1 belong to the Ap class.)

Suppose that

Sφ = {λ; λ ∈ C, |arg λ| ≤ φ} ∪ {0} , 0 ≤ φ < π.

A closed linear operator function A = A(x), x ∈ Ris believed to be uniformly φ− positive in

Banach space E provided that D(A(x)) is dense in E and is not dependent on x and the positive

constant M fulfills the condition below∥∥(A(x) + λI)−1
∥∥
L(E)

≤ M(1 + |λ|)−1

for every x ∈ R and λ ∈ Sφ, φ ∈ [0, π), where I is an identity operator in E. For a scalar λ

we may also write A+ λ or Aλ instead of A+ λI.

S = S(Rn;E) indicates the Schwartz space of rapidly decreasing smooth E -valued functions

on Rn. In E = C this space is denoted by the symbol S = S(Rn;C). S′(Rn;E) represents

the space of linear continuous mappings from S to E dubbed the Schwarts space of E-valued

distributions. S(Rn;E) is a norm dense in Lp,γ(Rn;E) when 1 ≤ p < ∞, γ ∈ Ap.

Let Ω be a domain in Rn. C(Ω, E) and C(m)(Ω;E) represent the spaces of E -valued bounded,

uniformly strongly continuous and m -times continuously differentiable functions on Ω, respec-

tively. For E = C the space C(m)(Ω, E) will be shown by C(m)(Ω).
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An E-valued generalized function Dαf is called a generalized derivative in the sense of

Schwartz distributions of the function f ∈ S′(Rn, E), if the equality

⟨Dαf, φ⟩ = (−1)|α| ⟨f,Dαφ⟩

holds for all φ ∈ S, where α = (α1,α2, ..., αn) , |α| =
n∑

k=1

αk, D
α = Dα1

1 Dα2
2 , ..., Dαn

n , αi are

integers.

Suppose F represents the Fourier transform of the function f which will be denoted here by

f̂ , Ff = f̂ and F−1f = f̌ . It is known that

F (Dα
xf) = (iξ1)

α1 ...(iξn)
αn f̂ , Dα

ξ (F (f)) = F [(−ix1)
α1 ...(−ixn)

αnf ]

for all f ∈ S
′
(Rn;E).

A function Ψ ∈ L∞(Rn;L(E1, E2)) is dubbed a multiplier from Lp,γ(Rn;E1) to Lp,γ(Rn;E2)

for p ∈ (1,∞) if the map u → Bu = F−1Ψ(ξ)Fu, u ∈ S(Rn;E1) is well defined and extends to

a bounded linear operator

B : Lp,γ(Rn;E1) → Lp,γ(Rn;E2).

The collection of all Fourier multipliers from Lp,γ(Rn;E1) to Lp,γ(Rn;E2) will be indicated

by Mp,γ
p,γ (E1, E2). For E1 = E2 = E it is simply denoted by Mp,γ

p,γ (E). Let M(h) denote a set of

some parameters.

Consider the family Bh = {Ψh; Ψh ∈ Mp,γ
p,γ (E1, E2), h ∈ M(h)} of multipliers from the col-

lection Mp,γ
p,γ (E1, E2). The multipliers Ψh are said to be uniformly bounded (UBM) with respect

to h if there is a positive constant M which acts independently from h ∈ M(h) that

∥∥F−1ΨhFu
∥∥
Lp,γ(Rn;E2)

≤ M ∥u∥Lp,γ(Rn;E1)

for all h ∈ M(h) and u ∈ S(Rn;E1).

The Banach space E is designated as UMD -space ([8, 11]) if the Hilbert operator of a function

f ∈ S(R;E) is defined by Hf =
1

π
PV

(
1

t

)
∗ f, that is to say,

(Hf)(t) =
1

π
lim
ε→0

∫
|τ |>ε

f(t− τ)

τ
dτ

is bounded in Lp(R;E), for p ∈ (1,∞) (see e.g. [7, 12]). UMD spaces include e.g. Lp, lp spaces,

Hilbert spaces, Sobolev spaces and Lorentz spaces Lpq, p, q ∈ (1,∞).

A family of operators T ⊂ L(E1, E2) is called R-bounded (see [7, 11, 24] ) if there is such a

constant C > 0 that for all T1, T2, ..., Tn ∈ T and u1, u2, ..., un ∈ E1, n ∈ N

1∫
0

∥∥∥∥∥∥
n∑

j=1

rj(y)Tjuj

∥∥∥∥∥∥
E2

dy ≤ C

1∫
0

∥∥∥∥∥∥
n∑

j=1

rj(y)uj

∥∥∥∥∥∥
E1

dy,

where {rj} is a sequence of independent symmetric {−1; 1}-valued random variables on [0, 1] .

The smallest C in which the above-mentioned holds is named the R-bound of the collection T

represented by R(T ).

The definition of R−boundedness has it that every R−bounded family of operators is (uni-

formly) bounded (it is enough to take n = 1).
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A Banach space E is believed to be a space satisfying a weighted multiplier condition with

respect to p ∈ (1,∞) and weighted function γ if for any Ψ ∈ L∞(R,L(E)) the R-boundedness

of the set {
|ξ|k DkΨ(ξ) : ξ ∈ R\ {0} , k = 0, 1

}
implies that Ψ is a Fourier multiplier in Lp,γ(R;E), i.e. Ψ ∈ Mp,γ

p,γ (E) for any p ∈ (1,∞). If

E = C and γ ∈ Ap, p ∈ (1,∞), then Ψ ∈ Mp,γ
p,γ (C).

If E is UMD space and γ(x) ≡ 1, the space E satisfies the multiplier condition in view of [7],

[12] and [24]. The UMD spaces satisfy the uniformly multiplier condition.

As is shown in [7] and [11], any Hilbert space satisfies the multiplier condition. That said, we

may have Banach spaces that are not Hilbert spaces but may satisfy the multiplier condition.

A positive operator A is said to be R-positive in the Banach space E if there exists such

φ ∈ [0, π) that the set {
ξ (A+ ξI)−1 ; ξ ∈ Sφ

}
is R-bounded.

Any bounded set is a Hilbert space is supposed to be R-bounded, so the notion of R-

boundedness in such space equals the boundedness of a family of operators. Moreover, in

Hilbert spaces all positive operators are necessarily R-positive (see [7] and [11]).

If A = A(x), x ∈ R is a closed linear operator in E with domain definition D(A) independent

of x and u ∈ Lp(R;E(A)). Then define

(A ∗ u)(x) =
∫
R

A(x− y)u(y)dy.

We consider the E−valued weighted space

W l
p,γ (Rn;E0,E) =

{
u;u ∈ Lp,γ (Rn;E0) , Dlk

k u ∈ Lp,γ (Rn;E)
}
,

where l = (l1, l2, ..., ln) , lk are positive integers, Dlk
k =

∂lk

∂xlkk
, k = 1, 2, ..., n, E0 and E are Banach

spaces, E0 is continuously and densely embedded into E,

∥u∥W l
p,γ(Rn;E0,E) = ∥u∥Lp,γ(Rn;E0)

+

n∑
k=1

∥∥∥Dlk
k u

∥∥∥
Lp,γ(Rn;E)

< ∞, 1 ≤ p < ∞.

For a positive measurable function γ(x) on R, let

D
[i]
k =

(
γ(x)

∂

∂xk

)i

,

and

W [l]
p,γ(Rn;E0, E) =

{
u;u ∈ Lp (Rn;E0) , D

[lk]
k u ∈ Lp (Rn;E) ,

∥u∥
W

[l]
p,γ(Rn;E0,E)

= ∥u∥Lp(Rn;E0)
+

n∑
k=1

∥∥∥D[lk]
k u

∥∥∥
Lp(Rn;E)

< ∞

}
.
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3. The Cauchy problem for degenerate parabolic convolution

differential-operator equations

In this section we shall consider the maximal regularity and separability properties of the

degenerate parabolic CDOEs.

The degenerate parabolic CDOEs (1) are said to be uniformly separable in Lp (R;E) if for

f ∈ Lp (R;E) equation (1) has a unique solution u ∈ W
1,[l]
p,γ (R;E0, E) and the following coercive

estimate holds:

∥∥∥∥∂u∂t
∥∥∥∥
Lp(R;E)

+

l∑
i=0

∥∥∥∥∥ak ∗ ∂[i]u

∂x[i]

∥∥∥∥∥
Lp(R;E)

+ ∥A ∗ u∥Lp(R;E) ≤ C ∥f∥Lp(R;E) ,

where the constant C is independent of f.

This section aims to obtain separability property of the following degenerate parabolic CDOE

∂u

∂t
+

l∑
i=0

ai ∗
∂[i]u

∂x[i]
+A ∗ u = f(t, x), (2)

where
∂[i]u

∂x[i]
=

(
γ(x)

∂

∂x

)i

u(x), γ(x) is a positive measurable function in R, A = A(x) is a linear

operator in Banach space E, ai = ai(x) are complex-valued functions.

First, the Cauchy problem for the convolution parabolic equation is examined here

{∂u

∂t
+

l∑
i=0

ai ∗
∂iu

∂xi
+A ∗ u = f(t, x)

u(0, x) = 0, t ∈ R+, x ∈ R.
(3)

For this purpose we will indicate the space of all p = (p, p1)−summable E−valued functions

with mixed norm through Lp,γ

(
R2
+;E

)
, where R2

+ = R× R+. Therefore, Lp,γ

(
R2
+;E

)
denotes

the space of all measurable E−valued functions defined on R2
+ with the norm

∥f∥Lp,γ(R2
+;E) =

∫
R

∫
R+

∥f(t, x)∥pE γ(x)dx


p1
p

dt


1
p1

< ∞.

Respectively, we define W 1,l
p,γ

(
R2
+;E0, E

)
. Let E0 and E be two Banach spaces, where E0 is

continuously and densely embedded into E0. Consequently W 1,l
p,γ

(
R2
+;E0, E

)
denotes the space

of all functions u ∈ Lp,γ

(
R2
+;E

)
with the norm

∥u∥
W 1,l

p,γ(R2
+;E0,E) = ∥u∥Lp,γ(R2

+;E) + ∥Dtu∥Lp,γ(R2
+;E) +

n∑
i=1

∥∥Di
xu

∥∥
Lp,γ(R2

+;E) .

First we show that the operator L is defined by D(L) = W l
p,γ̃ (R;E(A), E) , Lu =

l∑
i=0

ai ∗
∂iu

∂xi
+

A ∗ u, is R−positive in Lp,γ(R;E).

Condition 3.1. Suppose the followings are satisfied:

1) L(ξ) =
l∑

i=0
âi(ξ)(iξ)

i ∈ Sφ1 , φ1 + φ < π,φ ∈ [0, π),

|L(ξ)| ≥ C |ξ|l
l∑

i=0
|âi(ξ)| , ξ ∈ R\ {0} ;
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2) Â(ξ) is uniformly R−positive in E;

3) ai ∈ C(1)(R), Â′(ξ)A−1(ξ0) ∈ C (R;L(E)) , and

|ξ|
∥∥∥Â′(ξ)A−1(ξ0)

∥∥∥ < C1, |ξ| |â′i(ξ)| < C2, ξ0 ∈ R\ {0} ;
4) γ ∈ Ap, p ∈ (1,∞) .

By using Condition 3.1 and the assumption on Â (ξ) , we get the following:

Lemma 3.1. Suppose Condition 3.1.holds for 0 ≤ φ < π, E is a Banach space and satisfies the

uniform weighted multiplier condition. Then the operator AL (ξ) =
[
Â (ξ) + L (ξ)

]
is uniformly

R−positive in Lp,γ(R;E).

Theorem 3.1. Suppose Condition 3.1 holds for 0 ≤ φ < π, E is a Banach space and satisfies

the uniform weighted multiplier condition. Then for f ∈ Lp,γ (R;E) and λ ∈ Sφ the equation

(L+ λ)u = f has a unique solution u ∈ W l
p,γ (R;E(A), E) and the following coercive uniform

estimate holds

l∑
i=0

|λ|1−
i
l

∥∥∥∥ai ∗ diu

dxi

∥∥∥∥
Lp,γ(R;E)

+ ∥A ∗ u∥Lp,γ(R;E) ≤ C ∥f∥Lp,γ(R;E) . (4)

Proof. If the Fourier transform is applied to the equation

(L+ λ)u = f, (5)

we get û (ξ) = [AL (ξ) + λ]−1 f̂ (ξ) , where âi(ξ), Â (ξ) , û (ξ) and f̂ (ξ) show the Fourier

transforms of ai(x), A(x), u(x) and f(x), respectively.

It is easy to see that
(
Â (ξ) + L (ξ) + λ

)−1
∈ L (E) , and

u (x) = F−1
[
Â (ξ) + L (ξ) + λ

]−1
f̂ .

In a similar manner as in [15] and in view of Lemma 3.1, one can easly show that the operator-

valued functions âi (ξ) (iξ)
k [AL (ξ) + λ]−1 , Â (ξ) [AL (ξ) + λ]−1 produced in the solution of equa-

tion (5) are Fourier multipliers from Lp,γ (R;E) to Lp,γ (R;E) . By using a similar technique as

in [14] and [15], we may conclude that for f ∈ Lp,γ (R;E) and λ ∈ Sφ equation (5) has a unique

solution u ∈ W l
p,γ (R;E(A), E) and the following coercive uniform estimate holds

l∑
i=0

|λ|1−
i
l

∥∥∥∥ai ∗ diu

dxi

∥∥∥∥
Lp,γ(R;E)

+ ∥A ∗ u∥Lp,γ(R;E) ≤ C ∥f∥Lp,γ(R;E) . (6)

It implies that for all λ ∈ Sφ the resolvent of the operator L exists and the following sharp

estimate holds

l∑
i=0

|λ|1−
i
l

∥∥∥∥ai ∗ di

dxi
(L+ λ)−1

∥∥∥∥
L(Lp,γ(R;E))

+
∥∥∥A ∗ (L+ λ)−1

∥∥∥
L(Lp,γ(R;E))

+

∥∥∥λ (L+ λ)−1
∥∥∥
L(Lp,γ(R;E))

≤ C. (7)

The estimate (7) particularly, implies that the operator L is positive in Lp,γ(R;E). To prove the

R−positivity, we need to prove the R−boundedness of the set
{
λ (L+ λ)−1 ;λ ∈ Sφ

}
. From the

representation of the solution of the equation (L+ λ)u = f, it is clear that

λ (L+ λ)−1 = F−1

[
λ
(
Â(ξ) + λ+ L (ξ)

)−1
]
f̂ .
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Like in [14, Lemma 2.1] one can easly show that λ
(
Â(ξ) + λ+ L (ξ)

)−1
is a uniformly

bounded multiplier (UBM) in Lp,γ(R;E). Then, by definition of R−boundedness we obtain

1∫
0

∥∥∥∥∥
k∑

i=1

ri(y)F
−1

[
λi

(
Â(ξ) + λi + L (ξ)

)−1
]
f̂i

∥∥∥∥∥
Lp,γ(R;E)

dy =

1∫
0

∥∥∥∥∥F−1
k∑

i=1

ri(y)λi

(
Â(ξ) + λi + L (ξ)

)−1
f̂i

∥∥∥∥∥
Lp,γ(R;E)

dy ≤

≤ C

1∫
0

∥∥∥∥∥
k∑

i=1

ri(y)fi

∥∥∥∥∥
Lp,γ(R;E)

dy

for all ξ ∈ R, λi ∈ Sφ, fi ∈ Lp,γ(R;E), i = 1, k, where {ri} is a sequence of indepen-

dent symmetric {−1; 1}−valued random variables on [0,1]. So, from this we get that the

set
{
λ(L+ λ)−1; λ ∈ Sφ

}
is R−bounded. We presume that the operator L is a generator of the

analytic semigroup in Lp,γ(R;E), for φ ∈
(π
2
, π

)
.

Now we prove one of the main propositions of this section.

Theorem 3.2. Assume the conditions of Theorem 3.1 hold for φ ∈
(π
2
, π

)
. Then for all

f ∈ Lp,γ

(
R2
+;E

)
the problem (3) has a unique solution u ∈ W l

p,γ

(
R2
+;E(A), E

)
satisfying the

estimate

∥∥∥∥∂u∂t
∥∥∥∥
Lp,γ(R2

+;E)

+
l∑

i=0

∥∥∥∥ai ∗ ∂iu

∂xi

∥∥∥∥
Lp,γ(R2

+;E)

+ ∥A ∗ u∥Lp,γ(R2
+;E) ≤ C ∥f∥Lp,γ(R2

+;E) . (8)

Proof. By Fubini‘s theorem we have

∥f∥Lp,γ(R2
+;E) =

∫
R

∫
R+

∥f(t, x)∥pE γ(x)dx


p1
p

dt


1
p1

=

∫
R+

∥f(x, t)∥p1Lp,γ(R;E) dt


1
p1

= ∥f∥Lp1 (R+;Lp,γ(R;E)) .

In a similar way we have

∥u∥
W 1,l

p,γ(R2
+;E(A),E) = ∥u∥W 1

p1
(R+;D(L),Lp,γ(R;E)) .

Moreover, by definition of spaces W l
p,γ (R;E (A) , E) , Z0 = W 1,l

p,γ

(
R2
+;E (A) , E

)
for E0 =

E (A) and Z = Lp1 (R+;Lp,γ (R;E)) we obtain

∥u∥Z0
= ∥u∥Z(A) +

∥∥∥∥dudt
∥∥∥∥
Z

+ ∥Lu∥Z ≃∥∥∥∥∂u∂t
∥∥∥∥
Lp,γ(R2

+:E)
+ ∥Lu∥Lp,γ(R2

+;E) ≃
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∥Au∥Lp,γ(R2
+;E) +

∥∥∥∥∂u∂t
∥∥∥∥
Lp,γ(R2

+;E)
+

n∑
k=1

∥∥∥Dl
ku

∥∥∥
Lp,γ(R2

+;E)
≃ ∥u∥Z0

,

where

Z (A) = Lp1 (R+;X (A)) , X (A) = Lp,γ (R;E (A)) .

From this we get that the problem (3) can be expressed as

du

dt
+ Lu(t) = f(t), u(0) = 0, t ∈ R+. (9)

Given of [3, Theorem 4.5.2] and [11], X is a Banach space satisfying the multiplier condition

with respect to p ∈ (1,∞). Then in view of R-positivity of operator L with φ ∈
(π
2
;π

)
, by

virtue of [24, Theorem 4.2] we obtain that for f ∈ Lp1(R+;Lp,γ(R;E)) (see [7], [19]) the equation

(9) has a unique solution u ∈ W 1
p1 (R+;D(L), Lp,γ(R;E)) satisfying∥∥∥∥dudt

∥∥∥∥
Lp1 (R+;Lp,γ(R;E))

+ ∥Lu∥Lp1 (R+;Lp,γ(R;E)) ≤ C ∥f∥Lp1 (R+;Lp,γ(R;E)) . (10)

In view of estimate (6) and from the estimate (10) we get (8).

Now, we consider the Cauchy problem for equation (2), i.e.

{∂u

∂t
+

l∑
i=0

ai ∗
∂[i]u

∂x[i]
+A ∗ u = f(t, x),

u(0, x) = 0, t ∈ R+, x ∈ R.
(11)

We use the following substitution

y =

x∫
0

γ−1(z)dz. (12)

It is clear to see that, under the substitution (*) the weighted derivatives
∂[i]u

∂x[i]
transform to

the function
∂iu

∂xi
. Furthermore the spaces Lp(R;E) and W

[l]
p,γ (R;E(A), E) are mapped iso-

morphically onto the weighted spaces Lp,γ̃(R;E) and W l
p,γ̃ (R;E(A), E) respectively, where

γ̃(y) = γ(x(y)). Therefore, under substitution (12) the degenerate problem is transformed into

the nondegenerate problem which is regarded in the weighted space Lp,γ̃(R;E). Similarly, under

the substitution (12) the degenerate Cauchy problem (11) examined in Lp(R;E) is transformed

into nondegenerate Cauchy problem (3) considered in the weighted space Lp,γ̃(R;E).

Example 3.1. Let we put γ(z) = zν , ν < 1. Then by using the substitution

y =

x∫
0

γ−1(z)dz,

we get

y =

x∫
0

z−νdz =
x−ν+1

−ν + 1
, x1−ν = (1− ν) y, x = [(1− ν) y]

1
1−ν .

Hence,

γ(x) = xν = [(1− ν) y]
ν

1−ν = γ̃(y).

We note that the nondegenrate Cauchy problem for parabolic CDOE is considered in [19].
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Theorem 3.3. Suppose that Condition 3.1 holds for φ ∈
(π
2
, π

)
, E is a Banach space and

satisfies the weighted multiplier condition. Then for all f ∈ Lp(R2
+;E) problem (11) has a

unique solution u(t, x) and the following coercive estimate holds:

∥∥∥∥∂u∂t
∥∥∥∥
Lp(R2

+;E)

+
l∑

i=0

∥∥∥∥∥ai ∗ ∂[i]u

∂x[i]

∥∥∥∥∥
Lp(R2

+;E)

+ ∥A ∗ u∥Lp(R2
+;E) ≤ C ∥f∥Lp(R2

+;E) .

Proof. Let H be the operator in Lp,γ(R;E) generated by the problem

l∑
i=0

ai ∗
d[i]u

dx[i]
+A ∗ u = f, (13)

i.e., D(H) = W l
p,γ̃ (R;E(A), E) ,Hu =

l∑
i=0

ai ∗
d[i]u

dx[i]
+A ∗ u.

Under the conditions of Theorem 3.1 and substitution (12) the equation (13) has a unique

solution u(x), belongs to the space W
[l]
p,γ (R;E (A) , E) and the coercive uniform estimate

l∑
i=0

|λ|1−
i
l

∥∥∥∥∥ai ∗ d[i]u

dx[i]

∥∥∥∥∥
Lp(R;E)

+ ∥A ∗ u∥Lp(R;E) ≤ C ∥f∥Lp(R;E) (14)

holds. It is clear to see that, under substitution (12) the degenerate Cauchy problem (11) con-

sidered in Lp(R;E) is transformed into the following nondegenerate Cauchy problem considered

in the weighted space Lp,γ̃(R;E),

{∂ũ

∂t
+

l∑
i=0

ãi ∗
∂iũ

∂yi
+ Ã ∗ ũ = f̃(t, y)

ũ(0, y) = 0, t ∈ R+, y ∈ R.
In view of Theorem 3.2 from the estimate (14) we get the assertion.

Finally, from estimate (14) and Theorem 3.1, after some transformations we have the following

result.

Result 3.1. For all λ ∈ Sφ there exists the resolvent of the operator H and has the estimate

l∑
i=0

|λ|1−
i
l

∥∥∥∥∥ai ∗ d[i]

dx[i]
(H + λ)−1

∥∥∥∥∥
L(Lp(R;E))

+
∥∥∥A ∗ (H + λ)−1

∥∥∥
L(Lp(R;E))

+

∥∥∥λ (H + λ)−1
∥∥∥
L(Lp(R;E))

≤ C.

Result 3.2. So, from Theorems 3.1-3.3 we obtained the similar results for power weighted

γ(x) = xν .

4. Conclusion

The Cauchy problem (1) for the degenerate parabolic convolution differential operator equa-

tion presents a unique solution that satisfies the coercive estimate. Moreover, it is shown that

for all λ ∈ Sφ there exists the resolvent of the operator H with a corresponding estimate.
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