
TWMS J. Pure Appl. Math., V.12, N.2, 2021, pp.265-277

CALDERÓN-ZYGMUND OPERATORS WITH KERNELS OF DINI’S TYPE

AND THEIR MULTILINEAR COMMUTATORS ON GENERALIZED

WEIGHTED MORREY SPACES

V.S. GULIYEV1,2,3, A.F. ISMAYILOVA4

Abstract. In this paper, we study the boundedness of the operators T and Tb⃗ on generalized
weighted Morrey spaces Mp,φ(w) with the weight function w belonging to Muckenhoupt’s class

Ap(Rn). We find the sufficient conditions on the pair (φ1, φ2) with b⃗ ∈ BMOm(Rn) and
w ∈ Ap(Rn) which ensures the boundedness of the operators T and Tb⃗ from Mp,φ1(w) to
Mp,φ2(w) for 1 < p < ∞.
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1. Introduction

The theory of Calderón-Zygmund operators has played very important roles in modern har-
monic analysis with lots of extensive applications in the others fields of mathematics, which has
been extensively studied (see [1, 2, 3, 4, 20, 21, 29, 31, 35]). In particular, Yabuta introduced
certain ω-type Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-
differential operators (see [34]). Let ω be a non-negative and non-decreasing function on (0,∞).
We say that ω satisfies the Dini condition and wirte ω ∈ Dini, if

∞∫
0

ω(t)

t
dt <∞. (1)

A measurable function K(·, ·) on Rn ×Rn is said to be a ω-type Calderón-Zygmund kernel if it
satisfies

|K(x, y) ≤ C |x− y|−n (2)

and for all distinct x, y ∈ Rn, and all z with 2|x− z| < |x− y|, there exist positive constants C
and γ such that

|K(x, y)−K(z, y)|+ |K(y, x)−K(y, z)| ≤ Cω
( |x− z|
|x− y|

)
|x− y|−n. (3)

Definition 1.1. Let T be a linear operator from S(Rn) into its dual S ′(Rn), where S(Rn)
denotes the Schwartz class. One can say that T is a ω-type Calderón-Zygmund operator if it
satisfies the following conditions:
i) T can be extended to be a bounded linear operator on L2(Rn);
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ii) there is a ω-type Calderón-Zygmund kernel K(x, y) such that

Tf(x) =

∫
Rn

K(x, y)f(y)dy, as f ∈ C∞
c and x /∈ suppf. (4)

It is easy to see that the classical Calderón-Zygmund operator with standard kernel is a special
case of ω-type operator T as ω(t) = tε with 0 < ε ≤ 1. Given a locally integrable function b,
the commutator generated by T and b is defined by

[b, T ]f(x) = b(x)Tf(x)− T (bf)(x) =

∫
Rn

[b(x)− b(y)]K(x, y)f(y)dy. (5)

Let b⃗ = (b1, ..., bm) and bj , 1 ≤ j ≤ m be locally integrable functions when we consider multilinear
commutators as defined by

T
b⃗
f(x) =

∫
Rn

m∏
j=1

(bj(x)− bj(y))K(x, y)f(y)dy. (6)

Furthermore, if we take bi = b, , i = 1, . . . ,m, then we define the following integral equation

T
b⃗
f(x) =

∫
Rn

(b(x)− b(y))mK(x, y)f(y)dy = [b, T ]mf(x).

It is well known that Calderón-Zygmund operators play an important role in harmonic analysis
(see [6, 7, 31]).

The classical Morrey spaces were introduced by Morrey [23] to study the local behavior of
solutions to second-order elliptic partial differential equations. Moreover, various Morrey spaces
are defined in the process of study. The first author, Mizuhara and Nakai [8, 24, 26] introduced
generalized Morrey spacesMp,φ(Rn) (see, also [9, 10, 15, 16, 30]). Komori and Shirai [19] defined
weighted Morrey spaces Lp,κ(w). The first author in [11] gave a concept of the generalized
weighted Morrey spaces Mp,φ(Rn, w) which could be viewed as extension of both Mp,φ(Rn) and
Lp,κ(w). In [11], the boundedness of the classical operators and their commutators in spaces
Mp,φ(Rn, w) was also studied, see also [5, 13, 14, 17, 18, 27].

The main purpose of this paper is to establish a number of results concerning weighted Morrey
boundedness of Calderón-Zygmund operators with kernels of mild regularity. Let T be a linear
Calderón-Zygmund operator of type ω(t) with ω being nondecreasing and ω ∈ Dini, but without
assuming to be concave. We show that the ω-type Calderón-Zygmund operators T and their
multlinear commutators T

b⃗
are bounded from one generalized weighted Morrey space Mp,φ1(w)

to another Mp,φ2(w), 1 < p < ∞. We find the sufficient conditions on the pair (φ1, φ2) with

b⃗ ∈ BMOm(Rn) and w ∈ Ap(Rn) which ensures the boundedness of the operators T and T
b⃗

from Mp,φ1(w) to Mp,φ2(w) for 1 < p <∞.
By A . B we mean that A ≤ CB with some positive constant C independent of appropriate

quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

2. Generalized weighted Morrey spaces

We recall that a weight function w is in the Muckenhoupt’s class Ap(Rn) [25], 1 < p <∞, if

[w]Ap : = sup
B

[w]Ap(B) = sup
B

 1

|B|

∫
B

w(x)dx

 1

|B|

∫
B

w(x)1−p′dx

p−1

(7)
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where the sup is taken with respect to all the balls B and 1
p +

1
p′ = 1. Note that, for all balls B

by Hölder’s inequality

[w]
1/p
Ap(B) = |B|−1∥w∥1/pL1(B) ∥w

−1/p∥Lp′ (B) ≥ 1. (8)

For p = 1, the class A1 is defined by the condition Mw(x) ≤ Cw(x) with [w]A1 = sup
x∈Rn

Mw(x)
w(x) ,

and for p = ∞ A∞(Rn) =
∪

1≤p<∞Ap(Rn) and [w]A∞ = inf
1≤p<∞

[w]Ap .

We define the generalized weighed Morrey spaces as follows.

Definition 2.2. Let 1 ≤ p < ∞, φ be a positive measurable function on Rn × (0,∞) and w
be non-negative measurable function on Rn. We denote by Mp,φ(w) the generalized weighted

Morrey space, the space of all functions f ∈ Lloc
p,w(Rn) with finite norm

∥f∥Mp,φ(w) = sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))
− 1

p ∥f∥Lp,w(B(x,r)),

where Lp,w(B(x, r)) denotes the weighted Lp-space of measurable functions f for which

∥f∥Lp,w(B(x,r)) ≡ ∥fχ
B(x,r)

∥Lp,w(Rn) =

 ∫
B(x,r)

|f(y)|pw(y)dy


1
p

.

Furthermore, by WMp,φ(w) we denote the weak generalized weighted Morrey space of all

functions f ∈WLloc
p,w(Rn) for which

∥f∥WMp,φ(w) = sup
x∈Rn,r>0

φ(x, r)−1w(B(x, r))
− 1

p ∥f∥WLp,w(B(x,r)) <∞,

where WLp,w(B(x, r)) denotes the weak Lp,w-space of measurable functions f for which

∥f∥WLp,w(B(x,r)) ≡ ∥fχ
B(x,r)

∥WLp,w(Rn) = sup
t>0

t

 ∫
{y∈B(x,r): |f(y)|>t}

w(y)dy


1
p

.

Remark 2.3. If w ≡ 1, then Mp,φ(1) = Mp,φ is the generalized Morrey space; If φ(x, r) ≡
w(B(x, r))

κ−1
p , thenMp,φ(w) = Lp,κ(w) is the weighted Morrey space; If φ(x, r) ≡ v(B(x, r))

κ
pw(B(x, r))

− 1
p ,

then Mp,φ(w) = Lp,κ(v, w) is the two weighted Morrey space; If w ≡ 1 and φ(x, r) = r
λ−n
p with

0 < λ < n, then Mp,φ(w) = Lp,λ(Rn) is the classical Morrey space and WMp,φ(w) =WLp,λ(Rn)

is the weak Morrey space; If φ(x, r) ≡ w(B(x, r))
− 1

p , then Mp,φ(w) = Lp,w(Rn) is the weighted
Lebesgue space.

We will use the following statement on the boundedness of the weighted Hardy operator

Hwg(t) :=

∞∫
t

g(s)w(s) ds, H∗
wg(t) :=

∞∫
t

(
1 + ln

s

t

)m
g(s)w(s) ds, 0 < t <∞,

where w is a weight. The following theorem was proved in [12].

Theorem 2.4. [12] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)Hwg(t) ≤ C sup
t>0

v1(t) g(t)
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holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∞∫
t

w(s) ds

sups<τ<∞ v1(τ)
<∞.

Theorem 2.5. [11] Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a
neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t) g(t)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
t>0

v2(t)

∞∫
t

(
1 + ln

s

t

)m w(s) ds

sups<τ<∞ v1(τ)
<∞.

3. ω-type Calderón-Zygmund operators in the spaces Mp,φ(Rn, w)

The following theorem was proved in [28].

Theorem 3.6. [28] Let 1 ≤ p < ∞, w ∈ Ap(Rn) and T be ω-type Calderón-Zygmund operator
defined by (4) with ω satisfies (1). Then, the operator T is bounded on Lp,w(Rn) for p > 1 and
bounded from L1,w(Rn) into WL1,w(Rn) for p = 1.

The following weighted local estimates are valid (see [11]).

Theorem 3.7. Let 1 ≤ p < ∞, w ∈ Ap(Rn) and T be ω-type Calderón-Zygmund operator
defined by (4) with ω satisfies (1). Then, for p > 1 the inequality

∥Tf∥Lp,w(B) . w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p,w(Rn).

Moreover, for p = 1 the inequality

∥Tf∥WL1,w(B) . w(B)

∞∫
2r

∥f∥L1,w(B(x0,t))w(B(x0, t))
−1 dt

t
(9)

holds for any ball B = B(x0, r) and for all f ∈ Lloc
1,w(Rn).

Proof. Let p ∈ (1,∞) and w ∈ Ap(Rn). For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball
centered at x0 and of radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ {(2B)
(y), r > 0. (10)

Then we have
∥Tf∥Lp,w(B) ≤ ∥Tf1∥Lp,w(B) + ∥Tf2∥Lp,w(B).

Since f1 ∈ Lp(w), Tf1 ∈ Lp(w) and from the boundedness of T in Lp(w) (see Theorem 3.6) it
follows that

∥Tf1∥Lp,w(B) ≤ ∥Tf1∥Lp,w ≤ C∥f1∥Lp,w = C∥f∥Lp,w(2B),

where constant C > 0 is independent of f .

It is clear that x ∈ B, y ∈ {
(2B) implies 1

2 |x0 − y| ≤ |x− y| ≤ 3
2 |x0 − y|. We get

|Tf2(x)| ≤ 2nc0

∫
{
(2B)

|f(y)|
|x0 − y|n

dy .
∞∫

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1
.
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Applying Hölder’s inequality, we get∫
{(2B)

|f(y)|
|x0 − y|n

dy .
∞∫

2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
. (11)

Moreover, for all p ∈ [1,∞) the inequality

∥Tf2∥Lp,w(B) . w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
(12)

is valid. Thus

∥Tf∥Lp,w(B) . ∥f∥Lp,w(2B) + w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t

. w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
− 1

p
dt

t
.

Let p = 1. From the weak (1, 1) boundedness of T it follows that:

∥Tf1∥WL1,w(B) ≤ ∥Tf1∥WL1(w) . ∥f1∥L1,w = ∥f∥L1,w(2B)

. w(B)

∞∫
2r

∥f∥L1,w(B(x0,t))w(B(x0, t))
−1 dt

t
.

(13)

Then by (12) and (13) we get the inequality (9). �

Theorem 3.8. Let 1 ≤ p < ∞, w ∈ Ap(Rn), T be ω-type Calderón-Zygmund operator defined
by (4) with ω satisfies (1), and (φ1, φ2) satisfy the condition

∞∫
r

ess inf
t<s<∞

φ1(x, s)w(B(x, s))1/p

w(B(x, t))1/p
≤ Cφ2(x, r), (14)

where C does not depend on x and r. Then the operator T is bounded fromMp,φ1(w) toMp,φ2(w)
for p > 1 and from M1,φ1(w) to WM1,φ2(w) for p = 1.

Proof. For p > 1 from Theorem 2.4 and Theorem 3.7 we get

∥Tf∥Mp,φ2 (w) . sup
x∈Rn,r>0

φ2(x, r)
−1

∞∫
r

∥f∥Lp,w(B(x0,t))w(B(x, t))
− 1

p
dt

t

. sup
x∈Rn,r>0

φ1(x, r)
−1w(B)

− 1
p ∥f∥Lp,w(B) = ∥f∥Mp,φ1 (w)

and for p = 1

∥Tf∥WM1,φ2 (w) . sup
x∈Rn,r>0

φ2(x, r)
−1

∞∫
r

∥f∥L1,w(B(x0,t))w(B(x0, t))
−1 dt

t

. sup
x∈Rn,r>0

φ1(x, r)
−1w(B)−1∥f∥L1,w(B) = ∥f∥M1,φ1 (w).

�
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Remark 3.9. Let 0 ≤ κ < 1. Assume that ψ is a positive increasing function defined in (0,∞)
and satisfies the following Dκ condition :

ψ(t2)

tκ2
≤ C

ψ(t1)

tκ1
, for any 0 < t1 < t2 <∞,

where C > 0 is a constant independent of t1 and t2. If φ1(x, r) = φ2(x, r) = ψ(w(x, r)) and ψ
satisfy the Dκ condition, Theorems 3.7 and 3.8 were proved in [32]. Also, in the case ω(t) = tε

with 0 < ε ≤ 1, Theorems 3.7 and 3.8 were proved in [11].

4. Commutators of ω-type Calderón-Zygmund operators in the spaces
Mp,φ(Rn, w)

We recall the definition of the space of BMO(Rn).

Definition 4.10. Suppose that b ∈ Lloc
1 (Rn), and let

∥b∥∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy <∞,

where

bB(x,r) =
1

|B(x, r)|

∫
B(x,r)

b(y)dy.

Define
BMO(Rn) = {b ∈ Lloc

1 (Rn) : ∥b∥∗ <∞}.
Modulo constants, the space BMO(Rn) is a Banach space with respect to the norm ∥ · ∥∗.
The following lemma is proved in [11].

Lemma 4.11. [11]

(1) Let w ∈ A∞ and b ∈ BMO(Rn). Let also 1 ≤ p < ∞, x ∈ Rn, k > 0 and r1, r2 > 0.
Then,( 1

w(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|
kpw(y)dy

) 1
p ≤ C

(
1 +

∣∣∣ ln r1
r2

∣∣∣)k
∥b∥k∗,

where C > 0 is independent of f , w, x, r1 and r2.
(2) Let w ∈ Ap and b ∈ BMO(Rn). Let also 1 < p < ∞, x ∈ Rn, k > 0 and r1, r2 > 0.

Then,( 1

w1−p′(B(x, r1))

∫
B(x,r1)

|b(y)− bB(x,r2),w|
kp′ w(y)1−p′dy

) 1
p′

≤ C
(
1 +

∣∣∣ ln r1
r2

∣∣∣)k
∥b∥k∗,

where C > 0 is independent of b, w, x, r1 and r2.

Since linear commutator has a greater degree of singularity than the corresponding ω-type
Calderón-Zygmund operator, we need a slightly stronger version of condition

1∫
0

ω(t)

t

(
1 + log

1

t

)m
dt <∞. (15)

The following weighted endpoint estimate for commutator T
b⃗
of the ω-type Calderón-Zygmund

operator was established in [33] under a stronger version of condition (15) assumed on ω, if

b⃗ ∈ BMOm(Rn) (for the unweighted case, see [22]).
The following theorem was proved in [33].
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Theorem 4.12. [33] Let T be linear ω-CZO and b⃗ ∈ BMOm(Rn). If ω satisfies condition (15)
and w ∈ Ap(Rn), 1 < p <∞, then there exists a constant C > 0 such that

∥T
b⃗
f∥Lp,w ≤ C ∥⃗b∥∗ ∥f∥Lp,w ,

where ∥⃗b∥∗ =
∏m

j=1 ∥bj∥∗.

The following weighted local estimates are valid (see [11]).

Theorem 4.13. Let T be linear ω-CZO and b⃗ ∈ BMOm(Rn). Let also ω satisfies condition
(15) and w ∈ Ap(Rn), 1 < p <∞. Then

∥T
b⃗
f∥Lp,w(B) ≤ C ∥⃗b∥∗w(B)

1
p

∞∫
2r

lnm
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t

holds for any ball B = B(x0, r) and for all f ∈ Lloc
p,w(Rn), where C does not depend on f , x0 ∈ Rn

and r > 0.

Proof. Let p ∈ (1,∞). For arbitrary x0 ∈ Rn and r > 0, set B = B(x0, r). Write f = f1 + f2
with f1 = fχ2B and f2 = fχ {

(2B)
. For all f ∈ Lloc

p (Rn, w) we define

T
b⃗
f(x) := T

b⃗,0
f1(x) +

∫
Rn

m∏
j=1

(bj(x)− bj(y))K(x, y)f2(y)dy, (16)

here T
b⃗,0

denotes the commutator as a bounded linear operator on Lp,w(Rn) with 1 ≤ p < ∞
and w ∈ Ap(Rn) (see [33]). It is easy to check that the definition of T

b⃗
f(x) does not depend on

the choice of the ball B. First we show that T
b⃗,0
f(x) is well-defined a.e. x and independent of

the choice of B containing x. As T
b⃗,0

is bounded on Lp,w(Rn) provided by Theorem 4.12 and

f1 ∈ Lp,w(Rn), T
b⃗,0
f1 is well-defined.

Next, we show that the second-term of the right-hand side defining T
b⃗
f(x) converges absolutely

for any f ∈ Lp,w(Rn) and almost every x ∈ Rn.
Hence

∥T
b⃗
f∥Lp,w(B) ≤ ∥T

b⃗
f1∥Lp,w(B) + ∥T

b⃗
f2∥Lp,w(B).

From the boundedness of T
b⃗
in Lp,w(Rn) ( see Theorem 4.12) it follows that:

∥T
b⃗
f1∥Lp,w(B) ≤ ∥T

b⃗
f1∥Lp,w . ∥⃗b∥∗ ∥f1∥Lp,w = ∥⃗b∥∗ ∥f∥Lp,w(2B).

For the term ∥T
b⃗
f2∥Lp,w(B), without loss of generality, we can assume m = 2. Thus, the

operator T
b⃗
f2 can be divided into four parts

T
b⃗
f2(x) =

(
b1(x)−

(
b1
)
B,w

)(
b2(x)−

(
b2
)
B,w

) ∫
Rn

K(x, y)f2(y)dy

+

∫
Rn

K(x, y)
(
b1(y)−

(
b1
)
B,w

)(
b2(y)−

(
b2
)
B,w

)
f2(y)dy

−
(
b1(x)−

(
b1
)
B,w

) ∫
Rn

K(x, y)
(
b2(y)−

(
b2
)
B,w

)
f2(y)dy

−
(
b2(x)−

(
b2
)
B,w

) ∫
Rn

K(x, y)
(
b1(y)−

(
b1
)
B,w

)
f2(y)dy

= I1(x) + I2(x) + I3(x) + I4(x).
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For x ∈ B we have

|T
b⃗
f2(x)| ≤ |I1(x) + |I2(x)|+ |I3(x)|+ |I4(x)|

.
∣∣b1(x)− (

b1
)
B,w

∣∣∣∣b2(x)− (
b2
)
B,w

∣∣ ∫
{(2B)

|f(y)|
|x0 − y|n

dy

+

∫
{
(2B)

∣∣b1(y)− (
b1
)
B,w

∣∣∣∣b2(y)− (
b2
)
B,w

∣∣ |f(y)|
|x0 − y|n

dy

+
∣∣b1(x)− (

b1
)
B,w

∣∣ ∫
{
(2B)

∣∣b2(y)− (
b2
)
B,w

∣∣ |f(y)|
|x0 − y|n

dy

+
∣∣b2(x)− (

b2
)
B,w

∣∣ ∫
{(2B)

∣∣b1(y)− (
b1
)
B,w

∣∣ |f(y)|
|x0 − y|n

dy.

Then

∥T
b⃗
f2∥Lp,w(B) .

(∫
B

( ∫
{
(2B)

2∏
j=1

∣∣bi(y)− (
bi
)
B,w

∣∣
|x0 − y|n

|f(y)|dy
)p
w(x)dx

) 1
p

+

∫
B

∣∣b1(x)− (
b1
)
B,w

∣∣
 ∫

{(2B)

∣∣b2(y)− (
b2
)
B,w

∣∣
|x0 − y|n

|f(y)|dy


p

w(x)dx


1
p

+

∫
B

∣∣b2(x)− (
b2
)
B,w

∣∣
 ∫

{(2B)

∣∣b1(y)− (
b1
)
B,w

∣∣
|x0 − y|n

|f(y)|dy


p

w(x)dx


1
p

+
(∫

B

( ∫
{(2B)

2∏
j=1

∣∣bi(x)− (
bi
)
B,w

∣∣
|x0 − y|n

|f(y)|dy
)p
w(x)dx

) 1
p

= I1 + I2 + I3 + I4.

Let us estimate I1.

I1 = w(B)
1
p

∫
{
(2B)

2∏
j=1

∣∣bi(y)− (
bi
)
B,w

∣∣
|x0 − y|n

|f(y)|dy

≈ w(B)
1
p

∞∫
2r

∫
2r≤|x0−y|≤t

2∏
j=1

∣∣bi(y)− (
bi
)
B,w

∣∣ |f(y)|dy dt

tn+1

. w(B)
1
p

∞∫
2r

∫
B(x0,t)

2∏
j=1

∣∣bi(y)− (
bi
)
B,w

∣∣ |f(y)|dy dt

tn+1
.
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Applying Hölder’s inequality and by Lemma 4.11, we get

I1 . w(B)
1
p

∞∫
2r

2∏
j=1

 ∫
B(x0,t)

∣∣bi(y)− (
bi
)
B,w

∣∣2p′w(y)1−2p′dy


1

2p′

∥f∥Lp,w(B(x0,t))
dt

tn+1

.
2∏

j=1

∥bj∥∗w(B)
1
p

∞∫
2r

(
1 + ln

t

r

)2
∥w−1/p∥Lp′ (B(x0,t)) ∥f∥Lp,w(B(x0,t))

dt

tn+1

. ∥⃗b∥∗w(B)
1
p

∞∫
2r

ln2
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t
.

Let us estimate I2.

I2 =

∫
B

∣∣b1(x)− (
b1
)
B,w

∣∣pw(x)dx
 1

p ∫
{
(2B)

∣∣b2(y)− (
b2
)
B,w

∣∣
|x0 − y|n

|f(y)|dy

. ∥b1∥∗w(B)
1
p

∫
{(2B)

∣∣b2(y)− (
b2
)
B,w

∣∣ |f(y)| ∞∫
|x0−y|

dt

tn+1
dy

≈ ∥b1∥∗w(B)
1
p

∞∫
2r

∫
2r≤|x0−y|≤t

∣∣b2(y)− (
b2
)
B,w

∣∣ |f(y)|dy dt

tn+1

. ∥b1∥∗w(B)
1
p

∞∫
2r

∫
B(x0,t)

∣∣b2(y)− (
b2
)
B,w

∣∣ |f(y)|dy dt

tn+1
.

Applying Hölder’s inequality and by Lemma 4.11, we get

I2 . ∥b1∥∗w(B)
1
p

∞∫
2r

( ∫
B(x0,t)

∣∣b2(y)− (
b2
)
B,w

∣∣p′w(y)1−p′dy
) 1

p′ ∥f∥Lp,w(B(x0,t))
dt

tn+1

.
2∏

j=1

∥bj∥∗w(B)
1
p

∞∫
2r

(
1 + ln

t

r

)
∥w−1/p∥Lp′ (B(x0,t)) ∥f∥Lp,w(B(x0,t))

dt

tn+1

. ∥⃗b∥∗w(B)
1
p

∞∫
2r

ln2
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t
.

In the same way, we shall get the result of I3

I3 . ∥⃗b∥∗w(B)
1
p

∞∫
2r

ln2
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t
.
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In order to estimate I4 note that

I4 =

∫
B

2∏
j=1

∣∣bi(x)− (
bi
)
B,w

∣∣pw(x)dx
 1

p ∫
{(2B)

|f(y)|
|x0 − y|n

dy

≤
2∏

j=1

∫
B

∣∣bi(x)− (
bi
)
B,w

∣∣2pw(x)dx
 1

2p ∫
{
(2B)

|f(y)|
|x0 − y|n

dy.

By Lemma 4.11, we get

I4 . ∥⃗b∥∗w(B)
1
p

∫
{(2B)

|f(y)|
|x0 − y|n

dy.

Applying Hölder’s inequality, we get

∫
{
(2B)

|f(y)|
|x0 − y|n

dy .
∞∫

2r

∥f∥Lp,w(B(x0,t)) ∥w
−1/p∥Lp′ (B(x0,t))

dt

tn+1

≤ [w]
1/p
Ap

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

(17)

Thus, by (17)

I4 . ∥⃗b∥∗w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.

Summing up I1 and I4, for all p ∈ [1,∞) we get

∥T
b⃗
f2∥Lp,w(B) . ∥⃗b∥∗w(B)

1
p

∞∫
2r

ln2
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t
. (18)

On the other hand,

∥f∥Lp,w(2B) . |B|
∞∫

2r

∥f∥Lp,w(B(x0,t))
dt

tn+1

≤ w(B)
1
p ∥w−1/p∥Lp′ (B)

∞∫
2r

∥f∥Lp,w(B(x0,t))
dt

tn+1
(19)

≤ w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t)) ∥w
−1/p∥Lp′ (B(x0,t))

dt

tn+1

≤ [w]
1/p
Ap

w(B)
1
p

∞∫
2r

∥f∥Lp,w(B(x0,t))w(B(x0, t))
−1/p dt

t
.
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Finally,

∥T
b⃗
f∥Lp,w(B) . ∥⃗b∥∗ ∥f∥Lp,w(2B)

+ ∥⃗b∥∗w(B)
1
p

∞∫
2r

lnm
(
e+

t

r

)
∥f∥Lp,w(B(x0,t))w(B(x0, t))

−1/p dt

t
,

and the statement of Theorem 4.13 follows by (19). �

Theorem 4.14. Let T be linear ω-CZO and b⃗ ∈ BMOm(Rn). Let also ω satisfies condition
(15), w ∈ Ap(Rn), 1 < p <∞ and (φ1, φ2) satisfy the condition

∞∫
r

lnm
(
e+

t

r

) ess inf
t<s<∞

φ1(x, s)w(B(x, s))1/p

w(B(x, t))1/p
≤ Cφ2(x, r), (20)

where C does not depend on x and r. Then the operator T
b⃗
is bounded from Mp,φ1(w) to

Mp,φ2(w). Moreover,

∥T
b⃗
f∥Mq,φ2 (w) . ∥⃗b∥∗ ∥f∥Mp,φ1 (w).

Proof. Using the Theorem 2.5 and the Theorem 4.13 we have

∥T
b⃗
f∥Mp,φ2 (w) = sup

x∈Rn,r>0
φ2(x, r)

−1w(B(x, r))
− 1

p ∥T
b⃗
f∥Lp,wB(x,r)

. ∥⃗b∥∗ sup
x∈Rn,r>0

φ2(x, r)
−1

∞∫
r

lnm
(
e+

t

r

)
∥f∥Lp,w(B(x,t))w(B(x, t))−1/p dt

t

. ∥⃗b∥∗ sup
x∈Rn,r>0

φ1(x, r)
−1w(B(x, r))

− 1
p ∥f∥Lp,w(B(x,r)) = ∥⃗b∥∗ ∥f∥Mp,φ1 (w).

�

Remark 4.15. Note that, if φ1(x, r) = φ2(x, r) = ψ(w(x, r)) and ψ satisfy the Dκ condition,
Theorems 4.13 and 4.14 were proved in [32]. Also, in the case m = 1 and ω(t) = tε with
0 < ε ≤ 1, Theorems 4.13 and 4.14 were proved in [11].

5. Conclusion

In this paper, we obtain that the ω-type Calderón-Zygmund operators T and their multlinear
commutators T

b⃗
are bounded from one generalized weighted Morrey space Mp,φ1(w) to another

Mp,φ2(w), 1 < p <∞. We find the sufficient conditions on the pair (φ1, φ2) with b⃗ ∈ BMOm(Rn)
and w ∈ Ap(Rn) which ensures the boundedness of the operators T and T

b⃗
from Mp,φ1(w) to

Mp,φ2(w) for 1 < p <∞.
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