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DIFFERENT TYPES OF IDEALS
AND HOMOMORPHISMS OF (m,n)-SEMIRINGS

BIJAN DAVVAZ!, FAHIME MOHAMMADI!

ABSTRACT. In this article, we develop some more of the theory of (m,n)-semirings. In partic-
ular, we study ideals, primary ideals, and subtractive ideals of (m,n)-semirings and I'-(m,n)-
semirings. We describe the functions between (m, n)-semirings that preserve the (m, n)-semiring
structure. Also, we look at another way of forming new (m, n)-semiring from existing ones.
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1. INTRODUCTION TO (m,n)-SEMIRINGS

The notion of a semiring was introduced by Vandiver in 1934 [19]. Semirings are studied by
many authors in various directions. One of the main directions of such studies is investigation
of properties of ideals, for example see [3, 4, 5, 8, 10, 18]. Crombez [6] in 1972 generalized
rings and named it as (n,m)-rings. It was further studied by Crombez and Timm [7], Leeson
and Butson [11, 12], Dudek [9], Mirvakili and Davvaz [13, 14, 15]. Alam, Rao and B. Davvaz
[1] proposed a new class of mathematical structures called (m,n)-semirings (which generalize
the usual semirings) and described their basic properties. They gave the definition of partial
ordering and initiated the generalization of congruence and homomorphism for (m, n)-semirings.
Also, see , Pop [16], Pop and Lauran [17], Asadi et al. [2].

Let R be a non-empty set and f : R”™ — R be a map, that is, f is an m-ary operation. A non-
empty set R with an m-ary operation f is called an m-ary groupoid and is denoted by (R, f). We

use the following general convention. The sequence x;, z;y1, ..., Zn, is denoted by x}* where 1 <
i <j<m. Forall 1 <i<j<m,thefollowing term f(x1,%2,..., s, Yit1,-- > Yjs Zjt1s---» 2m)
is represented as f(a;ﬁ,yfﬂ,zﬁl). In the case when y;41 = yiy2 = ... = y; = ¥y, the term

is expressed as f (xil,y(j*i),zjﬁl). An me-ary groupoid (R, f) is called an m-ary semigroup
o - o i—1 i—1y . 2m—1 i—1 +i-1y | 2m—1

if f is associative, that is, if f(z{, f(a]"™ 7Y, a0 7h) = fla) ", f(a]™7 ), 2005t for all
1,22, .-, Tom—1 € R where 1 <i < j <m. We say f is commutative if

f($1,l’2, ERE xm) = f(xn(l)axn@)a R 7xn(m))

for every permutation n of {1,2,...,m}, z1,22,..., 2y € R. Let R be a non-empty set and f, g
be m-ary and n-ary operations on R, respectively. The n-ary operation g is distributive with
respect to the m-ary operation f if

g(l‘liil) f(agﬂ)’ x?—‘—l) = f(g(xiila ay, xzn—l-l)’ e 79(:6371’ Amyy ‘/E?‘—G—l)))
for every ai*, 2} in R and 1 < i < n. An m-ary semigroup (R, f) is called a semi-abelian or
(1, m)-commutative if

f(a:,a,...,a,y)Zf(y,a,...,a,x).
——— ——

m—2 m—2
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for all a,z,y € R.
Definition 1.1. Let R be a non-empty set and f,g be m-ary and n-ary operations on R,
respectively. Then (R, f, g) is called an (m,n)-semiring if the following conditions hold:
(1) (R, f) is an m-ary semigroup;
(2) (R,g) is an n-ary semigroup;
(3) The n-ary operation g is distributive with respect to the m-ary operation f.

One can find many examples of (m, n)-semirings in [1].
Let (R, f,g) be an (m,n)-semiring. Then, m-ary semigroup (R, f) has an identity element 0
if

i—1 m—1i
for all x € R and 1 < i < m. We call 0 as an identity element of (m,n)-semiring (R, f, g).
Similarly, n-ary semigroup (R, g) has an identity element 1 if

y=g9(1,...,1,y,1,...,1),
—— S —
j—1 n—j

forally e Rand 1 <j <n.

2. IDEALS OF (m,n)-SEMIRINGS

In this paper f is an addition m-ary operation and g is a multiplication n-ary operation.
Definition 2.1. Let I be a non-empty subset of an (m,n)-semiring (R, f,g) and 1 <i < n.
We call I an i-ideal of R if

(1) I is a subsemigroup of m-ary semigroup (R, f);
(2) For every ay,as,...,an € R, g(a1,az2,...,a;i—1,1,a;41,...,a,) C I.
I is called an ideal of R if for every 1 < i <mn, I is an i-ideal.
Lemma 2.1. If Ay,..., A, are ideals of (m,n)-semiring (5, f, g), then

(1) A;n...N A, is an ideal of (S, f, g);

(2) f(Ay,...,Ay) is an ideal of (S, f,9);

(3) g(Ay,...,A,) is an ideal of (S, f, g).
Definition 2.2.

(1) A proper ideal I of an (m,n)-semiring (R, f,g) is said to be prime if for any ideals
Al ..., Ap of R, g(A1,..., Ay) C I implies A; C I for some 1 < i < n.

(2) A proper ideal I of an (m,n)-semiring (R, f, g) is said to be weakly prime if for any ideals
A1,..., Ay of R, {0} # g(Ay,...,An) C I implies A; C I for some 1 < i < n.

(3) Anideal I of an (m, n)-semiring (R, f, g) is called subtractive or k-ideal if for any elements
ai,...,an—1 € I and a, € R, g(a,...,a,) € I, then a, € I.

Theorem 2.1. An ideal of an (m,n)-semiring (S, f,g) is weakly prime if and only if for any
ideals A1, As, ..., A, of S, we have:

either g(A1,Ag, ..., Ap) = Ay or ... or g(A1,As, ..., Ay) = Ay or g(A1, Ag, ..., Ay) = 0.

Proof. Suppose that every ideal of S is weakly prime. Let Ay, As,..., A, be ideals of S. If
g(Ay,Ag, ..., Ay) # S, then g(Aq, A, ..., A,) is weakly prime. If {0} # g(Aj, As,..., Ay) C
g(Ay, Ag, ..., Ay), then we have A; C g(A1, A, ..., A,) for some i (since g(Aj, Ao, .. ,An)
weakly prime ideal of S). Hence, A; = g(41, Ag, ..., A,) for some i. If g(A;, Ag,..., Ap) =
then A1 =A,=...= 4, =5.



B. DAVVAZ, F. MOHAMMADI: DIFFERENT TYPES OF IDEALS ... 211

Conversely, let I be any proper ideal of S and suppose that {0} # g(A1, A, ..., Ay) C I for

ideals Ay, Ag, ..., A, of S. Then, we have A; = g(A41, Ag, ..., A,) C I for some i. O

Lemma 2.2. Let P be a subtractive ideal of (m,n)-semiring (S, f,g). Let P be a weakly

prime ideal but not a prime ideal of S. If g(ay,aq,...,a,) = 0 for some ay,as,...,a, ¢ P, then
g(a1, P"7Y) = g(P,as, P ) = ... = g(P" V. q,) = {0}.

Proof. Suppose that g(a;, p™=1)) # 0 for some p1,pa, ..., pn_1 € P. Then, we obtain
0 # g(ay, f(g(1,az,a3,...,a), (9(L,p1,p2, ..., pn1)) ™), 1"2) € P.
Since P is a weakly prime ideal of S, it follows that a; € P or
flg(1,az,a3,.. ., an), (9(1,p1,p2, ..., pn—1))""V) € P,

that is, a; € P for some 1 < i < n, a contradiction. Therefore, g(al,P(”_l)) = {0}. Similarly,
we can show that g(P,ap, P"~2)) = ... = g(P"" Y a,) = {0}. O

Theorem 2.2. Let P be a subtractive ideal of an (m,n)-semiring (S, f,g). If P is a weakly
prime ideal but not prime, then P™ = {0}.

Proof. Suppose that g(p1,p2,...,pn) # 0 for some p1,pa,...,pp € P and g(aj,az,...,a,) =0

for some ai,as,...,a, € P, where P is not a prime ideal of S. Then, by Lemma 2.5,
-1 —2 _
0# g(f(ar,p" ™), f(p2, a2, 08", .., flan,p" 1)) € P,
Hence, either f(al,pgm_l)) € P or f(pg,ag,p;m_Q)) € Por...or f(an,pq(zm_l)) € P, and so
a; € P for some 1 <i < n, a contradiction. Hence, P" = {0}. O

Corollary 2.1. Let P be a weakly prime ideal of (m,n)-semiring (S, f,q). If P is not a prime
ideal of S, then P C Nil S.

A subtractive ideal in a commutative (m,n)-semiring (S, f,g), satisfying P"™ = {0} may not
be weakly prime.

Lemma 2.3. Let h be a homomorphism from (m,n)-semiring (51, f,g) onto (m,n)-semiring
(S2, f',g’). Then, each of the following statements is true:

(1) If I is an ideal (subtractive ideal) in Sy, then h(I) is an ideal (subtractive ideal) in Ss.
(2) If J is an ideal (subtractive ideal) in S, then h~1(J) is an ideal (subtractive ideal) in
Si.

Theorem 2.3. If h: Sy — So is a homomorphism of (m,n)-semirings and P is a prime ideal
of Sz, then h=1(P) is a prime ideal of S;.

Proof. By the previous lemma h~!(P) is an ideal of (Si, f,g). Let g(ay,as,...,a,) € h™1(P).
Then, h(g(a1,as,...,a,)) € P implies ¢’(h(a1), h(az),...,h(a,)) € P. Since P is a prime ideal
of Sy, it follows that h(a;) € P for some 1 < i < n. Thus, a; € h~'(P) for some 1 < i < n.
Hence, h~!(P) is a prime ideal of 5. O
Theorem 2.4. Let (S, f,g) be an (m,n)-semiring such that S = (ai,aq9,...,ar) for k =

maz{n,m} is a finitely generated ideal of S. Then, each proper k-ideal A of S is contained
in a maximal k-ideal of S.

Proof. Let B be the set of all k-ideals B of S satisfying A C B C S, partially ordered by inclusion.
Consider a chain {B; | i € I} in 3. One easily checks that B = | J B; is a k-ideal of S, because if
ai,az,...,an—1, f(ai,as,...,a,) € B then as defined B, there is i1,1i2,...,i,—1,J € I such that

a1 € By,a3 € By,,...,an—1 € B;,_,, f(a1,a2,...,a,) € Bj, as B; partially ordered by inclusion,
then B; C B;, or B;, C Bj. Without loss of generality assuming that B;,, B;,,...,B;,_, C Bj,
then ai,ag,...,an—1, f(a1,a2,...,a,) € Bj because B; is a k-ideal. Therefore, a, € B; and

B;j C B; so ap € B which means B is a k-ideal, and S = (a1, aq,...,a;) implies B # S, and
hence B € . By Zorn’s lemma, § has a maximal element as we were to show. O
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Corollary 2.2. Let (S, f,g) be an (m,n)-semiring with identity 1. Then, each proper k-ideal
of S is contained in a maximal k-ideal of S.

Proof. The proof is immediate by S = (1). O
Lemma 2.4. If A, B are two k-ideals of an (m,n)-semiring (5, f, g), then AN B is a k-ideal.

Proof. Suppose that A, B are two k-ideals of S. Then, A N B is an ideal. Now, let x € S
such that f(a’lnfl,x) € AN B for some ai,as,...,an_1 € ANB. Then ay,a9,...,am_1 € A,
ai,as,...,am-1 € B, f(a’f‘_l,x) € B and f(aT_l,x) €A So,z€ Aand x € B as A, B are
k-ideals. Hence, x € AN B. O

Definition 2.3. An equivalence relation p on an (m,n)-semiring (5, f, g) is called a congru-
ence on S if for any ai,...,am,b1,...,b, € .S such that apb, then

(1) f(a,a5")pf (b, a3");

(2) g(a,b3)pg(b, b5);

(3) g(b5,a)pg(b3,b).

Let p be a congruence on an (m,n)-semiring (S, f, g). Then, the congruence class of z € S is

denoted by zp and is defined by zp = {y € S | (z,y) € p}. The set of all congruence classes of
S is denoted by S/p. Now, we define two operations on S/p as follows:

f(a‘lp7 tet 7amp) = f(a?l)p and g(b107 . 7bnp) = g(b?)p7
for all a1,...,am,b1,...,b, €8S.

Theorem 2.5. Let (S, f, g) be an (m,n)-semiring. Then, (S/p, f,g) is an (m, n)-semiring under
the above operations.

Proof. Suppose that aip,agp,...,anp are elements of S/p. Then, for every permutation 7 at
{1,2,...,m},

flaip,azp,...;amp) = f(a1, ..., am)p = flaya), ay@), - Qym))P
= f(an(l)pa An(2)Ps -+« a'r](m)p)
So, S/p is commutative under addition.
For each 1 <i < j < m, we have
f(alpa azp; ..., Q;—1p0, f(aiP7 Qi+1pP5 - - - ,am+i—lp)7 Am+ify Am+i+1P, an—lP)
= flaip,azp,...,aj_1p, f(ajp,aj11p, ..., Amij—1P); GmtjPs Gmtj+1P; - - -5 A2m—1p)-

So, addition is associative on S/p. Similarly, multiplication is associative.
Finally, we have the distributive law,

glarp, azp, ..., ai—1p, f(bip,bap, ..., bmp), ais1p, Qiy2p; - - ., anp)
= f(g(a‘lp7 a0, ..., ai—1p, blP» Qi 105 - - anp)a g(a1p> a0, . ..,0;—1p0, b2p7 Ai+10; - - - 7anp)7
e 7g(a‘1p7 azp; ..., ai—1p, bmpa Ai+1pP; - - - 7an10))‘

Therefore, S/p is an (m,n)-semiring. O

Lemma 2.5. Let (R, f,g) be an (m,n)-semiring with 1 # 0. Then, R has at least one
k-maximal ideal.

Proof. Since {0} is a proper k-ideal of R, it follows that the set A of all proper k-ideals of R is
not empty. Of course, the relation of inclusion, C, is a partial order on A, and by using Zorn’s
lemma, a maximal k-ideal of R is just a maximal member of the partially ordered set (A, C). O
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3. PRIMARY IDEAL

Definition 3.1. Let (R, f,g) be an (m,n)-semiring and I be an ideal of R. The union of all
ideals B such that B® C I for some positive integer | where s =1(2n — 1) or s =1(2n + 1) is an
ideal of R and is called the radical of I which we shall denote by N (I).

Definition 3.2. Let (R, f,g) be an (m,n)-semiring and I an ideal of R. The set of all
elements x € R such that x® € I for some positive integer | where s = [(2n —1) or s =[(2n+ 1)
is said to be the nil-radical of I which we shall denote by P(I).

If I is 0 in the previous definitions we use the symbols N and P for the radicals (radical and
nil-radical) of 0.

From the above preliminary discussion and definitions, we introduce the following definition.

Definition 3.3. A proper ideal I of an (m,n)-semiring (R, f,g) is called i-N-primary pro-
vided a1, as,...,a, € R with g(aj ...a,) € I implies a; € I or j # i and
je{l,2,...,n}, a; € N(I).

The ideal I is said to be N-primary provided it is -N-primary for all i € {1,2,...,n}.

If we substitute the symbol P for N in the definition, we have the definitions of i- P-primary
and P-primary.

Remark 3.1. It is clear that prime ideal in an (m,n)-semiring (R, f,g) is N-primary, but
the converse is not true in general (similarly, for P-primary).

Definition 3.4. A proper ideal I of an (m,n)-semiring (R, f, g) is called weakly i-N -primary
provided ay,as,...,a, € R with 0 # g(ai,as,...,a,) € I implies a; € T or j # i and j €
{1,2,...,n}, aj € N(I).

The ideal [ is called weakly N -primary provided it is weakly i- N-primary for alli € {1,2,...,n}.

If we substitute the symbol P for N in the definition, we have the definitions of weakly
t-P-primary and weakly P-primary.

Remark 3.2. It is easy to see N-primary ideal is weakly N-primary, but the converse is not
true, because 0 is always weakly N-primary ideal (by definition) but not necessarily N-primary.
So, weakly N-primary ideal need not to be N-primary (similarly, for P-primary ideal).

Remark 3.3. It is clear that every weakly prime ideal of an (m, n)-semiring (R, f, g) is weakly
N-primary, but the converse is not true in general (similarly, for weakly P-primary ideal).

Lemma 3.1. Let I be a weakly P-primary subtractive ideal of an (m,n)-semiring (R, f,g).
If I is not a P-primary ideal, then I = {g(a1, a2, ...,ay) | a1,a2,...,a, € I} =0.

Proof. Suppose that I"™ # 0. We show that [ is a P-primary ideal of R. Suppose that
glai,as,...,a,) € I where aj,az,...,a, € R. If g(a1,a9,...,a,) # 0, then there exist i €
{1,2,...,n},a; € ITora; € P(I). Assume that g(ay,az,...,a,) =0. If0 # g(a1,as,...,an—1,1) C
I, then there is an element d,, of I such that g(ai,as,...,an—1,d,) # 0. Hence,

0 7é g(a17a27 v 7an—1adn) = g(a17a27 <oy Qn—1, f(dnva%mil)) el
Then, either a; € I for i € {1,2,...,n — 1} or f(dn,a;m_l)) € P(I). Thus, a; € I for i €
{1,2,...,n—1} or a, € P(I). Therefore, I is a P-primary ideal.

Suppose that g(a1,ag,...,an—1,I) = 0. If g(ay,az,...,an—2,1,a,) # 0, then there exists
dp—1 € I such that g(aq,a2,...,an—2,dn—1,a,) # 0. Now, we have

0+# g(ai,ag,...,an—2, f(agnzzl),dn_l),an) el.
So, we obtain a; € I for i € {1,2,...,n—2,n} or a,—1 € P(I), and hence I is a P-primary
ideal. Thus, we assume that
g(ai,ag,...,an—2,1,a,) =0.

Also, we can prove that g(I,ase,...,an—2,an—1,a,) = 0. Since I" # 0, it follows that there
are elements c1,ca,...,¢, € I such that g(ci,ca,...,¢n) # 0. Then, 0 # g(ci,co,...,¢n) =
g(f(agmfl),cl),f(agmfl),@),...,f(a%mfl),cn) € I, so either a; € I or a; € P(I) for i €
{1,2,...,n}, and hence I is a P-primary ideal. O
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Theorem 3.1. Let I be a proper subtractive ideal of an (m,n)-semiring (R, f,g). If for ideals
A1, Ag, . Ay of R with 0 # g(Aq, Ag, ..., Ay) C I implies A; C 1 or for some positive integer
k,s=k(2n—1) ors=k(2n+1), A} ={af € R| a; € A;} C I, then I is a weakly P-primary
ideal of R.

Proof. Suppose that I is a proper subtractive ideal of an (m,n)-semiring (R, f,g) and let 0 #
g(ai,ag,...ay) € I, where ay,as,...,a, € R. Then, 0 # g({(a1), (a2),...,{a,)) C I. Hence,
(a;) C I or (aj) C I for some positive integer k, where s = k(2n—1) or s = k(2n+1). So, a; € I
or a; € I for some positive integer k, where s = k(2n — 1) or s = k(2n + 1). This implies that
a; € P(I). Therefore, I is a weakly P-primary ideal of R. O

Lemma 3.2. If I is a weakly P-primary subtractive ideal that is not a P-primary over a
semiring R, then P(I) = P.

Proof. Assume that I is a weakly P-primary subtractive ideal that is not a P-primary over an
(m,n)-semiring (R, f,g). Then, it is clear that P C P(I). Now, by Lemma 3.5, I = 0 gives
I C P, and hence P(I) C P. Therefore, P(I) = P. O

4. HOMOMORPHISM OF (m,n)-SEMIRINGS

We recall the following definition from [1].
Definition 4.1. A mapping n from an (m,n)-semiring (R, f,g) into an (m,n)-semiring
(R, f',4¢) is called a homomorphism if

glar,az,...,an)n =g (a1n,azn, ..., ann),
flar,ag, ... am)n = f(a1n,an, ..., amn),
for each aq,...,a, € R.
An isomorphism is a one-to-one homomorphism. The semirings R and R’ are called isomorphic
(denoted by R = R') if there exists an isomorphism from R onto R'.
Definition 4.2. A homomorphism 7 from the semiring (R, f, g) onto the semiring (R, f/, ¢)
is said to be mazimal if for each a € R’ there exists ¢, € n7!({a}) such that

f(, ker(n) ™=V C f(eq, ker(n)™Y),

for each x € n~({a}), where ker(n) = {x € R | xn = 0}.
Lemma 4.1. Let n be a homomorphism from the semiring (R, f,g) onto the semiring
(R, f',¢"). If n is maximal, then ker(n) is a Q-ideal, where Q = {cg }ocr'-

Proof. 1t is clear that (J,cp f(ca, ker(n)™~1) = R. Let ¢, and ¢, be distinct elements in Q and
a # b. Assume that

f(ca, ker(m) ™) 0 (e, ker(n)™~Y) # 0.
Thus, there exist ki,...,km—1,k},...,K'm—1 € ker(n) such that f(ca, k7" ") = f(cp, K.

Hence, we have

a = f’(ca% k1777 ceey km—ln) = (f(cav kl) ey km—l))ﬁ
= (f(Cb, kll) ety k;;nfl))n = f’(Cbﬁa k/1777 ey k;nfﬂ?) - b7

a contradiction. Now, it follows that ker(n) is a Q-ideal. O

Lemma 4.2. Let R, R, n and Q be as stated in Lemma 4.3 and ¢4, Cags - - -, Caps Camis
elements in Q.

(1) I f(f(cays---sCapm)s ker(n)(mfl)) C f(Camirs ker(n)(mfl)), then f(a1,a2,...,a0m) = ami1.
(2) It f(g(camcazv SRR Can)’ ker(n)(m_l)) C f(Can-H? ker(n)(m_l))v then g(alv azy ..., an) =
An+1-
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Proof. (1) Since

f(CCH?CCsz R 7Cam) € f(f(clll’cllw e 7cam)7 ker(n)(m_l)) C f(cllerlv ker(n)(m_l))v
it follows that there exists k1, ..., kyn—1 € ker(n) such that f(Cay,Cags -+ - Cam) = f(Camar, K"1).
Thus, we obtain
f/(ab az, . .. 7am) - fl(ca1777 Cas 1, 1 . 7Cam77) = (f(calaca2a ey Cam))n
= (f(Capsi, " N0 = F'(Carant )y K1) = @y
(2) Since

9(CaysCas -+ -+ Can) € F(9(CaysCags -+ -5 Can ), ke?“("?)(m_l)) - f(c[anrl? ke?"(??)(m_l)),
it follows that there exists k1, ..., kn—1 € ker(n) such that g(cq,, Cay, - -+ Can) = f(Cansr> k{"_l).
Thus, we have
gl(caﬂ% Cas T, '1' . acann) = (g(ca1 yCagy -+ 7Can))77
(f(can-;-la k{rli ))77 = f/(Can+1777 kin, ..., kmfln) = An+1-

d (a1, az,...,ay)

5. I'-(m,n)-SEMIRING

We begin with the following definition.

Definition 5.1. Let (S, f) be a commutative m-semigroup and I" be a non-empty set. Then,
S is called a I'-(m, n)-semiring, if (S, f, g) is a I'-semigroup, that is, S satisfies the identities for
all a1,a9,...,ay, b1,bo,...,b, € S and z1,29,...,2, €1,

9(9(a} % 2, a),y,0%) = glai ™2, z, g(an, y,b}))

g(a?_27 xZ, f(b17 b27 e 7bm)> = f(g(a?_Qu x, b1)7g(a?_27x7 b2)7 e 7g(a?_27 xz, bm))
g(f(b17b27 .- 'abm)vxaag) = f(g(bla%ag),g(b%%ag), cee 7g(bm7x7a§))

g(a11717 f(xla T2y e axm)’ a?—i—l) = f(g(azlilvl‘lv a?_t,-l)vg(allila x2, a?+1)a e ,g(aﬁil,fﬂl, a?—}-l))'

A T-(m, n)-semiring S is called commutative, if for all a1, as,...,a, € S, €';i € {1,...,n}
and every permutation 7,

g(ail_la «, a?—i—l) = g(an(l)v An(2)s -+ Ap(i—1) ¥, Ay(i41)5 - - - 7an(n)>'

Example 5.1. We have known that (N, f) is a semigroup. Let I' = {1,2,3}. For all

i€ {l,...,n} define a mapping
A:NXNx...xNX'xNxNx...xN—N

i—1 n—i

by h(ai™",r,ay,) = glai™!

semiring.

Example 5.2. Let R be the additive commutative semiring of all m x n matrices over the
set of all non-negative integers and let I" be the additive commutative semigroup of all n x m
matrices over the same set. Then, we observe that R is a I'-(2, 2)-semiring.

Example 5.3. Let (S, f,g) be an arbitrary (m,n)-semiring and I" be a non-empty set. We
define a mapping

,ryaiy ) for all ag,as,...,a, € Nand r € I'. Then, N is a I'-(m, n)-

Ah:NXNxXx.. XNxI'x NxNx...xN—N

7 n—1i

by h(ai,r, ai ) — g(ai,a,...,a,) for all ar,az,...,a, € S and r € I'. It is easy to see that
S is a I'-(m, n)-semiring.

Thus, an (m,n)-semiring can be considered as a I'-(m, n)-semiring.

Example 5.4. Let (5, f,g) be a I'-(m, n)-semiring and r a fixed element in I'. We define
h(ai,ag,...,an) = g(aﬁ_l,r, aiy ) for all ay,az,...,a, € S. We can show that (S, f,g) is an
(m, n)-semiring.
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Definition 5.1. A proper ideal P of a I'-(m,n)-semiring (S, f, g) is said to be prime if for
any n ideals Hy, Ha,...,H, of Sand i € {1,...,n}, g(HZ Ir ,H 1) € P implies that H; C P
for some 1.

Let Ay, Ag,..., A, be subsets of a I'-(m,n)-semiring (5, f,g) and A C I".  We denote by
g(A7T, A, A7, ) the subset of S consisting of all finite sums of the form

Zg(a1j7a2j7 sy Q=15 O Qi 155 - - 7anj)a
where a1; € Ay, az; € Ag, ..., a;—1; € Ai—1, iy1; € Aig1,e .., an; € Ap and o € T
Definition 5.2. A non-empty subset T" of a I'-(m, n)-semiring (S, f, g) is called a subl'-(m, n)-
semiring of S if T is a subsemigroup of (S, f) and g(a’l_l, r,ap ) €T for all ay,az,...,a, €T

and r €T

Definition 5.3. Let S be a I'-(m, n)-semiring. An element e € S is called an identity of S if
gV, o, e D) = ¢ for all a € T.

Definition 5.4. Let X be a non-empty subset of a I'-(m,n)-semiring S. By the term left
ideal (X); (resp. right ideal (X),, ideal (X);) of S generated by X, we mean the smallest left
ideal (resp. right ideal, ideal) of S containing X, that is the intersection of all left ideals (resp.
right ideals, ideals) of S containing X.

Definition 5.5. Let S be a I'-(m,n)-semiring (S, f,g). By a quasi-ideal @) we mean a
subsemigroup @ of (S, f) such that g(S¢—D, T, S"=D Q)ng(Q,S2.T,s") C Q.

It is clear that each quasi-ideal of S is a subI'-(m, n)-semiring of S. In fact, g(QU~1), T, Q(»~%) C
g(S(i_l),P, S(n—i—l)’ Q) N g(Q, S(i_Q),F, S(n—z)) cQ.

Definition 5.6. Let N be a set of natural numbers and I' = 2N. Then, N is a I'-(m,n)-
semiring and A = 3N is a quasi-ideal of I'-(m, n)-semiring N.

Definition 5.7. Let X be a non-empty subset of a I'-(m, n)-semiring S. By quasi-ideal (X ),
of S generated by X, we mean the smallest quasi-ideal of S containing X, that is the intersection
of all quasi-ideals of S containing X.

Definition 5.8. A I'-(m,n)-semiring S is said to be a quasi-simple I'-(m, n)-semiring if S is
the unique quasi-ideal of S, then S has no proper quasi-ideal.

Definition 5.9. Let @ be a quasi-ideal of I'-(m,n)-semiring (5, f,g). Then, @ is said to
be minimal quasi-ideal of T-(m,n)-semiring (S, f, g) if @ does not contain any other proper
quasi-ideal of S.

Theorem 5.1. For each non-empty subset X of S the following statements hold:
(1) g(SU=D,1, 8=V X)) is a left ideal,
(2) g(X S(Z D1, 8Mm==1) s a right ideal,
(3) g(S®, T, SU X, 8W) 1, 8(n=i=i=k=3)y s an ideal of S.
)

Proof. (1) Suppose that
(S@ .1, 80— X)
= {Z g(ar;,a2;, 5 Q1) Qs A4 1) ;5 A(i12)5 - - s Un—1);» Ti) | ai; €S,
2—123 Snyo; €l oz e X}
Let ai,a2,...,am € g(S(l_l),F, S(=i=1) X)), Then,
f(al,ag, ceey )

— 2 f( (bllg N b12j, ey bl(z‘—1)j7 alj’bl(i+1)j’ e ,b1<n_1)j,$j),
_s
Z ( mijo mzjv crty bm“,l)jaalj?bm“Jrl)ja e 7bm(n,1)jxj))a

implies f(ai,as2,...,ay) is a finite sum. Hence, f(a1,a2,...,ay) € g(S(i_l),F,S("_i_l),X)
and this shows g(S(i_l),F, S(=i=1) X is a subsemigroup of (S, f). For ti,ty,...,tn €S, a €
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g(SU=D. 1, 8==1 X) and § € I, we have

g(til_17 Ba t?Jrlla )

i— k
(t 17 67 t?+117 Ej:l g(blja b2j> ceey b(i—l)ja a1y, b(i+1)j7 ceey b(n—l)j7 x]))

(tl 17 ﬁ? ti_t:ll’g(blja b2j7 SRR b(i—l)ja 15, b(i—‘rl)jv SRR b(n—l)j7 xj))

k
P
; i—1
Z ( (t 767tz+1 blj) b2j)"'7b(i71)j7a1j7b(i+1)j)'"Jb(nfl)jaxj))
(S(z 1) F S(n i—1) X)
Therefore, g(S¢—1,T, S(”*Zfl),X) is a left ideal of S.
(2) As in (1), we can prove that g(X, S0 T, §("==1)) is a right ideal of S.
(3) By (1), g(SU=1, T, 8==1) X)) is a left ideal of S. Hence, we have
g(SW, 1,80 X, sk T §Mn—i=i=k=3)) is a right ideal of S by (2).
Similarly, by (2), g(X, S0~ T, §(=i=1)) is a right ideal of S. Hence,
g(8W, 1,80, X, 8k T §n=i=i=k=3)) is a left ideal of S by (1).
Therefore, we conclude that g(S®,T, SV, X, Sk T, S("_i_j_k_3)) is an ideal of S. O
Theorem 5.2. Arbitrary intersection of quasi-ideals of S is either empty or a quasi-ideal of S.
Proof. Suppose that T'= () {Q; | Q; is a quasi-ideal of S }, where A denotes any indexing set,
1EA
is a non-empty set. T is a subsemigroup of (S, f). Furthermore,
g(S(z 1) T, S(n i—1) T) ﬁg(T S(z 1) T, S(n i— 1))
= g(St~ 2 S (ﬂ Qi) N ((ﬂ Qq), SU=1, T, §(r=i=h)
Cg(Qz S(z 1) F S(n i— 1))09(3(1 1) F S(n i—1) Q ) C Q“
for all i € A. Hence, we have

g(SU=1, L, 80D Ty N g(T, S6 D, T, s0=V) € N Qi =T.
€A
This shows that T is a quasi-ideal of S. (I

Theorem 5.3. For each non-empty subset X of S, the set
g(StV 1, s =1 X)ng(x, S0V 1, s=imb)y
s a quasi-ideal of S.
Proof. Suppose that
g(S(i—l)’ T, S(n—i—l)jg<S(i—1) T, sr=i-1) X))
Ng(g(X, S0 T, §—i=1)) gt-1) T gn—i-1))
= g(g(SU-V,T, S(n—i))’S(i—2)7F78(n i-1), X)
Ng(X, 80D T, §(n=i=2) (g0 T gn—i-1))
C g(SE=D T, 8= xX) N g(X, S T, §n—i=1),
Therefore, g(s(ifl)’ T, S(nﬂ'*l)jx) Ng(X, SE=1 1. S(n7i71)> is a quasi-ideal of S. -

Theorem 5.4. If Q) is a quasi-ideal of T'-(m,n)-semiring (S, f,g) and T is a
subl'-(m, n)-semiring of I'-(m,n)-semiring (S, f,g), then Q NT is a quasi-ideal of T

Proof. Since Q@ NT is a subsemigroup of (S, f) and QNT C T, we get Q N7 is subsemigroup
of (T, f). Furthermore, we have

g(T@1, 0, 70D (TN Q))Ng((T NQ), TV, T, T"==1)
C g(T(’_l), F, T(n—z—1)7 Q) N g(Q, T(l_1)7 P, T(n—z—l))
C (S, 1, 0= Q) ng(Q, S0, T, s0=71) C @,



218 TWMS J. PURE APPL. MATH., V.12, N.2, 2021

and
g(Tt= VT, TV (TN Q) Ng(TNQ), TV, T, T")
Cg(TtD 1, 7NN g1, T, 7= =Dy CcTNT =T.
These imply that
g(TE=D 1, S==D (TN Q) Ng(TNQ), TED, T, 8=y CcQnT.
This shows that Q NT is a quasi-ideal of T. O

Theorem 5.5. Intersection of a right ideal and a left ideal of I'-(m,n)-semiring S is a quasi-
ideal of S.

Proof. Suppose that R is a right ideal and L is a left ideal of S. Then, RN L is a subsemigroup
of (S, f). Furthermore, we have

g(8W. 1,82 (LN R))Ng((LNR),SV), T, §(n=i=2)
= g(SV, 1,802 L) ng(sY, T, 8"~ R)ng(L, SV, T, 80=I72) n g(R, SV, T, §"=7=2))
C g(S®, 1,802 )ng(R,SY,T,8"7-2)C LNR.
Hence, RN L is a quasi-ideal of S. O
Theorem 5.6. Let L be a left ideal of I'-(m,n)-semiring S. Then, for any idempotent element
e of S, g(e,S0=2 T, 8=V L) is a quasi-ideal of S.
Proof. First, we prove that g(e, S¢=2), T, S==1 L) = LNg(e, ST, §"=9). We know that
g(g(e, S, 1,877, (e, SO, T, 80 7)) € g(e, SO, T, 570,
Hence, g(e, S0~2) T, $(»=%) is a subsemigroup of (S, f). Since
9(g(e, 82,1, 8*=9), 561, 1, n=i=1))
= gle, S0, 1, S0, (SO, T, S=i7)) C g(e, U2, T, 500),

g(e, S~ T, 8= is a right ideal of S. Since e € S and L is a left ideal of S, it follows that
g(e, S0~ 1,81 ) C L. Furthermore, g(e, ST, S=i=1) L) C g(e, S~2), T, Sn=1),
This implies that

9(67 S(i*Z)’P, S(”*i*l)’ L) cCLnN g(e’ S(if2)’ra S(n,z))
For the reverse inclusion let a € L N g(e, S(i—Q)jr’ S(”_i))_ Hence,

n

:];19(6,352]-71'33'7---,l'(i—1)j,04j,33(i+1)j,---,wnj)-
Thus, we obtain
Jélg(e T2j5 T35+ - s T(i—1)j» Qs T(i1)j» - - - > Tng)
Jég( g(el ™Y, a eln), 255355+ 5 T(im1)js Oy L) -+ > Tnj)
= g(el V), q, e(n—i=1) i g(e, 025, T35, + - s T(i—1)j> Qs T(i41)j> - - - » L)
=g(e" 1=-1 1) € g(e, -, T, -1, ),

This shows that
Lng(e, S=2) 1, S=Dy C gle, SO~2 T, =1 ).
Hence, L N g(e, S=2) S("_i)) = g(e, S§=2) p gn—i-1) L). Since L is a left ideal and
gle, S(i—Q)’ T, S(n—i))
is a right ideal of S, we conclude that g(e, S(=2) p gn—i-1) L) is a quasi-ideal of S. O
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Theorem 5.7. Let R be a right ideal of T'-(m,n)-semiring (S, f,g). Then, for any idempotent
element e of S,

g(R, 8= 1, 50=1=1) )
is a quasi-ideal of S.
Proof. The proof is similar to the proof of Proposition 5.6. U
Theorem 5.8. Let S be a I'-(m,n)-semiring. Then, for any idempotent elements e, f of S,
g(e, 89 1, 5U==2) p gr=i=2) f)
s a quasi-ideal of S.
Proof. First, we prove that
gle, S(i),p, S(jﬂ'ﬂ)?p7 S(nfij)’ F) = g(e, S(i),F, S(n*iﬁ)) N g(S(j),F, S(nfjf2)’ ).

9(e, SW. T, 80772 1, §0=372) f) - = g(g(e, SO, T, S0==2)), §U=V. 1, §0=3=2), f)

C g(e, SO, T, S(n=i=2))
and

g

(SU), T, 8(n=3=2) ).
Thus, we obtain

Suppose that a € g(SU), T, S"=7=2 £y g(e, SO, T, S"=1=2)) Then,

a= Zlg(fxliax%? sy Ly Ay L(541),5 - 'al‘(n—2)i7f)
- Zlg(CUlWﬂ?Q” cee 7xji7 ai7x(j+1)ia o .. 7$(n72)¢7g(f(k)7 «, f(nikil))>
= Z g(g(xlivl?w sy Ly Oy L(G41)5 - o5 L(n—2)5» f)a f(k_l)a «, f(n_k_l))

—_

1=

Hence, a = g(a,f(k_l),a, f("_k_l)) for all @ € I'. Since a € g(e,S(i_Q),F,S(”_i)), a el it
follows that

a=gla, f* D o, fFD) € g(e, SO, T, U2 T §(n=i=2) 1),
We obtain
gle, 89 1, 82y (S 1,872 1) C g(e, 89,1, 5U=72) 1 §=3=2) ),
Thus, we have
gle, SO T, S(n—i—Q)) N g(S(J’)’F’ S§n=i=2) 1) =gle, SO 1, 50==2) p g(n=i=2) 1)
Since g(SU), T, 8("=7=2) f) is a left ideal and g(e, S®, T, S("~=2)) is a right ideal of S, we get
gle, 89 1,82y (S 1,872 1) = g(e, SO I, §U—72) 1 §(n=i=2) )
is a quasi-ideal of S. (I

Theorem 5.9. If (S, f,g) is a I'-(m,n)-semiring, then S is a quasi-simple I'-(m,n)-semiring if
and only if g(S®, T, 8"=1=2) 4N g(a, SO, T, 872y = § foralla € S.
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Proof. Suppose that S is a quasi-simple I'-(m, n)-semiring. For every a € S, g(S®, T, S"=1=2) q)
and g(a, S, T, S(=7-2)) are left and right ideals of S, respectively. Therefore,
(8@, 1,502 a) N g(a, SV, T, S0I72)

is a quasi-ideal of S. Furthermore, g(S®,I",5"~=2) ¢) C S and g(a, SV, I,§("72) C §
imply g(S®.T,8"==2) 4) N g(a,SY),T,8"=-2)) C S. Since S is a quasi-simple I-(m,n)-
semiring, it follows that S = g(S®, T, S™~1=2) )N g(a, SO, T, SM—i=2)),

Conversely, suppose that S = g(S® . T, S™==2) 4)Ng(a,SU), T, S"7-2). Let Q be a quasi-
ideal of S. For any ¢ € (), by assumption we have,

S =g(S0,T, 5072 q) N g(g, 59, T, S"772)) C

Therefore, S C . Thus S = Q. Hence, S is a quasi-simple I'-(m, n)-semiring. O

Theorem 5.10. The intersection of a minimal right ideal and a minimal left ideal of a T'-(m,n)-
semiring S is a minimal quasi-ideal of S.

Proof. Let R and L denote the minimal right ideal and the minimal left ideal of S, respectively.
Define () = RN L. Then, @ is a quasi-ideal of S. Let )1 be a quasi-ideal of S such that @1 C Q.
Then, g(S®T, "= Q1) is a left ideal and g(Q1,S®W,T, S"=2)) is a right ideal of S. So,
@1 C L implies A ‘ A ‘
g(s. 1,502, Qy) € g(sV. T, 8" L) C L.
Also, Q1 C R implies
g(Q1,8U) 1,812y C g(R, SV, T, 8§("—-2)) C R.
By the minimality of R and L, we have
9(5(2)7 F? S(nii72)7 Ql) = L
and ' '
9(Q1, S@ 1, S(”—J—Q)) = R.
Therefore, we have
Q=RNL=yg(5%,1,5"72,Q1)ng(Q1,5Y,T,5"77) C Q.
Hence, @1 = Q). This shows that () is a minimal quasi-ideal of S. O

Theorem 5.11. If Q is a minimal quasi-ideal of I'-(m,n)-semiring S, then any two non-zero
elements of Q) generate the same left (right) ideal of S.

Proof. Let Q be a minimal quasi-ideal of S and x be a non-zero element of ). Then, (x);,
the left ideal generated by x, is a quasi-ideal of S. Hence, (z); N @ is a quasi-ideal of S. As
();NQ C @ and Q is a minimal quasi-ideal of S we get (z);NQ = Q. Thus, Q C (z);. For any
non-zero element y of @, y € @ implies y € (z);. Therefore, (y); C (z);. Similarly, we can show
that (z); C (y);. Hence, (2); = (y);.

In the same way, we can prove that any two non-zero elements of () generate the same right
ideal of S. O

Theorem 5.12. Let Q be a quasi-ideal of T'-(m,n)-semiring S. If Q itself is a quasi-simple
I'-(m,n)-semiring, then @ is a minimal quasi-ideal of S.

Proof. Since @ is a quasi-ideal of S, it follows that @ is a subI'-(m,n)-semiring of S. Suppose
that @ is a quasi-simple I'-(m, n)-semiring. Let @1 be a quasi-ideal of S such that @1 C Q.
Then, we obtain

9(QY,T, Q" ",Q1) N g(Q1,QY,T,Q"2)) C
g(S(Z)a Fa S(n_i_Q)u Ql) N g(Q17 S(’l)’l“’ S(n_i_Q)) g Ql'
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Therefore, )1 is a quasi-ideal of ). Since @1 C @, @1 is a quasi-ideal of ) and () is a quasi-
simple I'-(m,n)-semiring, it follows that Q1 = Q. Therefore, @ is a minimal quasi-ideal of
S. O

Theorem 5.13. Every minimal quasi-ideal Q of I'-(m,n)-semiring (S, f,g) is represented as
Q= g(59, 1,507 a) N g(a, SV, T, 5" 172),

where a is any element of Q, g(SW,T,S"=2) a) and g(a,S®,T,S"==2)) is ¢ minimal left
ideal and a minimal right ideal of S, respectively.

Proof. Suppose that () is a minimal quasi-ideal of S and a € ). Then, g(S(i), r,sm—i=2) a) and
g(a, S@. T, S(”*FQ)) is a left ideal and a right ideal of S, respectively. Therefore, we conclude
that g(S®W, T, S™==2) a) N g(a, SO, T, S"2)) is a quasi-ideal of S. Then

g(S®,1,8==2) a) N g(a, SO, T, S"==2)) C (SO, T, "2 Q)ng(Q,S,T,Sr==2)
CQ.

By the minimality of Q, we obtain Q = g(S®, T, S"~=2) )N g(a,S®,T, S"=2)). Now, in
order to show that g(S(i),I‘, G§(n—i=2) a) is a minimal left ideal, let L be a left ideal of S such
that L C g(S®W, T, 8==2) 4). Then,

g(SD 1,802 1) C L C g(SD, 1,802 ),
g(SW. 1, 8==2) 1Yng(a,S® T, S"=1=2)) C (SO T, "2 a)ng(a, SV,T, S"=2)) = Q.

Since g(S®, T, 8"=2) L) is a left ideal of S and g(a, S®,I", S("=2)) is a right ideal of S, we
conclude that g(S®, I, S"==2) L) N g(a, S, T, 5"=2)) is a quasi-ideal of S. Furthermore,
since ¢(S@W, T, 8= L)y N g(a,S®,T,$"2)) C Q and Q is minimal quasi-ideal of S, we
have Q = ¢(SW, T, S"==2 LY g(a, S, T, S"~=2)) C ¢(S® T, S"==2) L). Now, we have

g(SV. 1,807 a)  C g(SV,T, 80172, Q) C g(SO,T, S"=1=2), (SO, T, §"=1=2), L))
g(g(s®,T, 50170 §G=D, T, §tn=i=2) )
g

(8™ 1,8M"=1=2) 1) C L.

NN

This shows that g(S(i),F, G(n—i=2) a) C L. Therefore, g(S(i), r,Sm=i=2) a) = L. Hence,
g(S(i), r,sm=i=2) a) is a minimal left ideal of S. Similarly, we can prove that ¢(a, SO T, S("_i_m)
is a minimal right ideal of S. ]

6. CONCLUSIONS

Semirings constitute a natural generalization of rings with broad applications in the math-
ematical foundation of computer sciences. The class of (m,n)-semirings is a generalization of
semirings. We studied special ideals hand homomorphisms of (m,n)-semirings. In particular,
we studied I'-(m, n)-semirings and investigated their properties.

For future research, one may consider (m,n)-semihyperrings and related algebraic structures
and study their properties.
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