DIFFERENT TYPES OF IDEALS AND HOMOMORPHISMS OF (m, n)-SEMIRINGS

BIJAN DAVVAZ ${ }^{1}$, FAHIME MOHAMMADI ${ }^{1}$

Abstract

In this article, we develop some more of the theory of (m, n)-semirings. In particular, we study ideals, primary ideals, and subtractive ideals of (m, n)-semirings and Γ - (m, n) semirings. We describe the functions between (m, n)-semirings that preserve the (m, n)-semiring structure. Also, we look at another way of forming new (m, n)-semiring from existing ones.

Keywords: (m, n)-semiring, primary ideal, subtractive ideal, homomorphism.

AMS Subject Classification: 16Y99.

1. Introduction to (m, n)-SEmirings

The notion of a semiring was introduced by Vandiver in 1934 [19]. Semirings are studied by many authors in various directions. One of the main directions of such studies is investigation of properties of ideals, for example see [3, 4, 5, 8, 10, 18]. Crombez [6] in 1972 generalized rings and named it as (n, m)-rings. It was further studied by Crombez and Timm [7], Leeson and Butson [11, 12], Dudek [9], Mirvakili and Davvaz [13, 14, 15]. Alam, Rao and B. Davvaz [1] proposed a new class of mathematical structures called (m, n)-semirings (which generalize the usual semirings) and described their basic properties. They gave the definition of partial ordering and initiated the generalization of congruence and homomorphism for (m, n)-semirings. Also, see , Pop [16], Pop and Lauran [17], Asadi et al. [2].

Let R be a non-empty set and $f: R^{m} \rightarrow R$ be a map, that is, f is an m-ary operation. A nonempty set R with an m-ary operation f is called an m-ary groupoid and is denoted by (R, f). We use the following general convention. The sequence $x_{i}, x_{i+1}, \ldots, x_{m}$ is denoted by x_{i}^{m} where $1 \leq$ $i \leq j \leq m$. For all $1 \leq i \leq j \leq m$, the following term $f\left(x_{1}, x_{2}, \ldots, x_{i}, y_{i+1}, \ldots, y_{j}, z_{j+1}, \ldots, z_{m}\right)$ is represented as $f\left(x_{1}^{i}, y_{i+1}^{j}, z_{j+1}^{m}\right)$. In the case when $y_{i+1}=y_{i+2}=\ldots=y_{j}=y$, the term is expressed as $f\left(x_{1}^{i}, y^{(j-i)}, z_{j+1}^{m}\right)$. An m-ary groupoid (R, f) is called an m-ary semigroup if f is associative, that is, if $f\left(x_{1}^{i-1}, f\left(x_{i}^{m+i-1}\right), x_{m+i}^{2 m-1}\right)=f\left(x_{1}^{j-1}, f\left(x_{j}^{m+j-1}\right), x_{m+j}^{2 m-1}\right)$, for all $x_{1}, x_{2}, \ldots, x_{2 m-1} \in R$ where $1 \leq i \leq j \leq m$. We say f is commutative if

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=f\left(x_{\eta(1)}, x_{\eta(2)}, \ldots, x_{\eta(m)}\right)
$$

for every permutation η of $\{1,2, \ldots, m\}, x_{1}, x_{2}, \ldots, x_{m} \in R$. Let R be a non-empty set and f, g be m-ary and n-ary operations on R, respectively. The n-ary operation g is distributive with respect to the m-ary operation f if

$$
g\left(x_{1}^{i-1}, f\left(a_{1}^{m}\right), x_{i+1}^{n}\right)=f\left(g\left(x_{1}^{i-1}, a_{1}, x_{i+1}^{n}\right), \ldots, g\left(x_{1}^{i-1}, a_{m}, x_{i+1}^{n}\right)\right),
$$

for every a_{1}^{m}, x_{1}^{n} in R and $1 \leq i \leq n$. An m-ary $\operatorname{semigroup}(R, f)$ is called a semi-abelian or $(1, m)$-commutative if

$$
f(x, \underbrace{a, \ldots, a}_{m-2}, y)=f(y, \underbrace{a, \ldots, a}_{m-2}, x) .
$$

[^0]for all $a, x, y \in R$.
Definition 1.1. Let R be a non-empty set and f, g be m-ary and n-ary operations on R, respectively. Then (R, f, g) is called an (m, n)-semiring if the following conditions hold:
(1) (R, f) is an m-ary semigroup;
(2) (R, g) is an n-ary semigroup;
(3) The n-ary operation g is distributive with respect to the m-ary operation f.

One can find many examples of (m, n)-semirings in [1].
Let (R, f, g) be an (m, n)-semiring. Then, m-ary semigroup (R, f) has an identity element 0 if

$$
x=f(\underbrace{0, \ldots, 0}_{i-1}, x, \underbrace{0, \ldots, 0}_{m-i}),
$$

for all $x \in R$ and $1 \leq i \leq m$. We call 0 as an identity element of (m, n)-semiring (R, f, g). Similarly, n-ary semigroup (R, g) has an identity element 1 if

$$
y=g(\underbrace{1, \ldots, 1}_{j-1}, y, \underbrace{1, \ldots, 1}_{n-j}),
$$

for all $y \in R$ and $1 \leq j \leq n$.

2. Ideals of (m, n)-SEmirings

In this paper f is an addition m-ary operation and g is a multiplication n-ary operation.
Definition 2.1. Let I be a non-empty subset of an (m, n)-semiring (R, f, g) and $1 \leq i \leq n$. We call I an i-ideal of R if
(1) I is a subsemigroup of m-ary semigroup (R, f);
(2) For every $a_{1}, a_{2}, \ldots, a_{n} \in R, g\left(a_{1}, a_{2}, \ldots, a_{i-1}, I, a_{i+1}, \ldots, a_{n}\right) \subseteq I$.
I is called an ideal of R if for every $1 \leq i \leq n, I$ is an i-ideal.
Lemma 2.1. If A_{1}, \ldots, A_{n} are ideals of (m, n)-semiring (S, f, g), then
(1) $A_{1} \cap \ldots \cap A_{n}$ is an ideal of (S, f, g);
(2) $f\left(A_{1}, \ldots, A_{m}\right)$ is an ideal of (S, f, g);
(3) $g\left(A_{1}, \ldots, A_{n}\right)$ is an ideal of (S, f, g).

Definition 2.2.

(1) A proper ideal I of an (m, n)-semiring (R, f, g) is said to be prime if for any ideals A_{1}, \ldots, A_{n} of $R, g\left(A_{1}, \ldots, A_{n}\right) \subseteq I$ implies $A_{i} \subseteq I$ for some $1 \leq i \leq n$.
(2) A proper ideal I of an (m, n)-semiring (R, f, g) is said to be weakly prime if for any ideals A_{1}, \ldots, A_{n} of $R,\{0\} \neq g\left(A_{1}, \ldots, A_{n}\right) \subseteq I$ implies $A_{i} \subseteq I$ for some $1 \leq i \leq n$.
(3) An ideal I of an (m, n)-semiring (R, f, g) is called subtractive or k-ideal if for any elements $a_{1}, \ldots, a_{n-1} \in I$ and $a_{n} \in R, g\left(a_{1}, \ldots, a_{n}\right) \in I$, then $a_{n} \in I$.

Theorem 2.1. An ideal of an (m, n)-semiring (S, f, g) is weakly prime if and only if for any ideals $A_{1}, A_{2}, \ldots, A_{n}$ of S, we have:
either $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)=A_{1}$ or \ldots or $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)=A_{n}$ or $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)=0$.
Proof. Suppose that every ideal of S is weakly prime. Let $A_{1}, A_{2}, \ldots, A_{n}$ be ideals of S. If $g\left(A_{1}, A_{2}, \ldots, A_{n}\right) \neq S$, then $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is weakly prime. If $\{0\} \neq g\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subseteq$ $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, then we have $A_{i} \subseteq g\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for some i (since $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is weakly prime ideal of S). Hence, $A_{i}=g\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for some i. If $g\left(A_{1}, A_{2}, \ldots, A_{n}\right)=S$, then $A_{1}=A_{2}=\ldots=A_{n}=S$.

Conversely, let I be any proper ideal of S and suppose that $\{0\} \neq g\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subseteq I$ for ideals $A_{1}, A_{2}, \ldots, A_{n}$ of S. Then, we have $A_{i}=g\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subseteq I$ for some i.

Lemma 2.2. Let P be a subtractive ideal of (m, n)-semiring (S, f, g). Let P be a weakly prime ideal but not a prime ideal of S. If $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for some $a_{1}, a_{2}, \ldots, a_{n} \notin P$, then

$$
g\left(a_{1}, P^{(n-1)}\right)=g\left(P, a_{2}, P^{(n-2)}\right)=\ldots=g\left(P^{(n-1)}, a_{n}\right)=\{0\}
$$

Proof. Suppose that $g\left(a_{1}, p^{(n-1)}\right) \neq 0$ for some $p_{1}, p_{2}, \ldots, p_{n-1} \in P$. Then, we obtain

$$
0 \neq g\left(a_{1}, f\left(g\left(1, a_{2}, a_{3}, \ldots, a_{n}\right),\left(g\left(1, p_{1}, p_{2}, \ldots, p_{n-1}\right)\right)^{(m-1)}\right), 1^{(n-2)}\right) \in P
$$

Since P is a weakly prime ideal of S, it follows that $a_{1} \in P$ or

$$
f\left(g\left(1, a_{2}, a_{3}, \ldots, a_{n}\right),\left(g\left(1, p_{1}, p_{2}, \ldots, p_{n-1}\right)\right)^{(m-1)}\right) \in P
$$

that is, $a_{i} \in P$ for some $1 \leq i \leq n$, a contradiction. Therefore, $g\left(a_{1}, P^{(n-1)}\right)=\{0\}$. Similarly, we can show that $g\left(P, a_{2}, P^{(n-2)}\right)=\ldots=g\left(P^{(n-1)}, a_{n}\right)=\{0\}$.
Theorem 2.2. Let P be a subtractive ideal of an (m, n)-semiring (S, f, g). If P is a weakly prime ideal but not prime, then $P^{n}=\{0\}$.
Proof. Suppose that $g\left(p_{1}, p_{2}, \ldots, p_{n}\right) \neq 0$ for some $p_{1}, p_{2}, \ldots, p_{n} \in P$ and $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for some $a_{1}, a_{2}, \ldots, a_{n} \notin P$, where P is not a prime ideal of S. Then, by Lemma 2.5,

$$
0 \neq g\left(f\left(a_{1}, p_{1}^{(m-1)}\right), f\left(p_{2}, a_{2}, p_{2}^{(m-2)}\right), \ldots, f\left(a_{n}, p_{n}^{(m-1)}\right)\right) \in P
$$

Hence, either $f\left(a_{1}, p_{1}^{(m-1)}\right) \in P$ or $f\left(p_{2}, a_{2}, p_{2}^{(m-2)}\right) \in P$ or \ldots or $f\left(a_{n}, p_{n}^{(m-1)}\right) \in P$, and so $a_{i} \in P$ for some $1 \leq i \leq n$, a contradiction. Hence, $P^{n}=\{0\}$.
Corollary 2.1. Let P be a weakly prime ideal of (m, n)-semiring (S, f, g). If P is not a prime ideal of S, then $P \subseteq$ Nil S.

A subtractive ideal in a commutative (m, n)-semiring (S, f, g), satisfying $P^{n}=\{0\}$ may not be weakly prime.

Lemma 2.3. Let h be a homomorphism from (m, n)-semiring (S_{1}, f, g) onto (m, n)-semiring $\left(S_{2}, f^{\prime}, g^{\prime}\right)$. Then, each of the following statements is true:
(1) If I is an ideal (subtractive ideal) in S_{1}, then $h(I)$ is an ideal (subtractive ideal) in S_{2}.
(2) If J is an ideal (subtractive ideal) in S_{2}, then $h^{-1}(J)$ is an ideal (subtractive ideal) in S_{1}.
Theorem 2.3. If $h: S_{1} \longrightarrow S_{2}$ is a homomorphism of (m, n)-semirings and P is a prime ideal of S_{2}, then $h^{-1}(P)$ is a prime ideal of S_{1}.
Proof. By the previous lemma $h^{-1}(P)$ is an ideal of $\left(S_{1}, f, g\right)$. Let $g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in h^{-1}(P)$. Then, $h\left(g\left(a_{1}, a_{2}, \ldots, a_{n}\right)\right) \in P$ implies $g^{\prime}\left(h\left(a_{1}\right), h\left(a_{2}\right), \ldots, h\left(a_{n}\right)\right) \in P$. Since P is a prime ideal of S_{2}, it follows that $h\left(a_{i}\right) \in P$ for some $1 \leq i \leq n$. Thus, $a_{i} \in h^{-1}(P)$ for some $1 \leq i \leq n$. Hence, $h^{-1}(P)$ is a prime ideal of S_{1}.
Theorem 2.4. Let (S, f, g) be an (m, n)-semiring such that $S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ for $k=$ $\max \{n, m\}$ is a finitely generated ideal of S. Then, each proper k-ideal A of S is contained in a maximal k-ideal of S.
Proof. Let β be the set of all k-ideals B of S satisfying $A \subseteq B \subset S$, partially ordered by inclusion. Consider a chain $\left\{B_{i} \mid i \in I\right\}$ in β. One easily checks that $B=\bigcup B_{i}$ is a k-ideal of S, because if $a_{1}, a_{2}, \ldots, a_{n-1}, f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in B$ then as defined B, there is $i_{1}, i_{2}, \ldots, i_{n-1}, j \in I$ such that $a_{1} \in B_{i_{1}}, a_{2} \in B_{i_{2}}, \ldots, a_{n-1} \in B_{i_{n-1}}, f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in B_{j}$, as B_{i} partially ordered by inclusion, then $B_{j} \subseteq B_{i_{1}}$ or $B_{i_{1}} \subseteq B_{j}$. Without loss of generality assuming that $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{n-1}} \subseteq B_{j}$, then $a_{1}, a_{2}, \ldots, a_{n-1}, f\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in B_{j}$ because B_{j} is a k-ideal. Therefore, $a_{n} \in B_{j}$ and $B_{j} \subseteq B$; so $a_{n} \in B$ which means B is a k-ideal, and $S=\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ implies $B \neq S$, and hence $B \in \beta$. By Zorn's lemma, β has a maximal element as we were to show.

Corollary 2.2. Let (S, f, g) be an (m, n)-semiring with identity 1 . Then, each proper k-ideal of S is contained in a maximal k-ideal of S.

Proof. The proof is immediate by $S=\langle 1\rangle$.
Lemma 2.4. If A, B are two k-ideals of an (m, n)-semiring (S, f, g), then $A \cap B$ is a k-ideal.
Proof. Suppose that A, B are two k-ideals of S. Then, $A \cap B$ is an ideal. Now, let $x \in S$ such that $f\left(a_{1}^{m-1}, x\right) \in A \cap B$ for some $a_{1}, a_{2}, \ldots, a_{m-1} \in A \cap B$. Then $a_{1}, a_{2}, \ldots, a_{m-1} \in A$, $a_{1}, a_{2}, \ldots, a_{m-1} \in B, f\left(a_{1}^{m-1}, x\right) \in B$ and $f\left(a_{1}^{m-1}, x\right) \in A$. So, $x \in A$ and $x \in B$ as A, B are k-ideals. Hence, $x \in A \cap B$.

Definition 2.3. An equivalence relation ρ on an (m, n)-semiring (S, f, g) is called a congruence on S if for any $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in S$ such that $a \rho b$, then
(1) $f\left(a, a_{2}^{m}\right) \rho f\left(b, a_{2}^{m}\right)$;
(2) $g\left(a, b_{2}^{n}\right) \rho g\left(b, b_{2}^{n}\right)$;
(3) $g\left(b_{2}^{n}, a\right) \rho g\left(b_{2}^{n}, b\right)$.

Let ρ be a congruence on an (m, n)-semiring (S, f, g). Then, the congruence class of $x \in S$ is denoted by $x \rho$ and is defined by $x \rho=\{y \in S \mid(x, y) \in \rho\}$. The set of all congruence classes of S is denoted by S / ρ. Now, we define two operations on S / ρ as follows:

$$
f\left(a_{1} \rho, \ldots, a_{m} \rho\right)=f\left(a_{1}^{m}\right) \rho \text { and } g\left(b_{1} \rho, \ldots, b_{n} \rho\right)=g\left(b_{1}^{n}\right) \rho
$$

for all $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n} \in S$.
Theorem 2.5. Let (S, f, g) be an (m, n)-semiring. Then, $(S / \rho, f, g)$ is an (m, n)-semiring under the above operations.

Proof. Suppose that $a_{1} \rho, a_{2} \rho, \ldots, a_{m} \rho$ are elements of S / ρ. Then, for every permutation η at $\{1,2, \ldots, m\}$,

$$
\begin{aligned}
f\left(a_{1} \rho, a_{2} \rho, \ldots, a_{m} \rho\right) & =f\left(a_{1}, \ldots, a_{m}\right) \rho=f\left(a_{\eta(1)}, a_{\eta(2)}, \ldots, a_{\eta(m)}\right) \rho \\
& =f\left(a_{\eta(1)} \rho, a_{\eta(2)} \rho, \ldots, a_{\eta(m)} \rho\right)
\end{aligned}
$$

So, S / ρ is commutative under addition.
For each $1 \leq i \leq j \leq m$, we have

$$
\begin{aligned}
& f\left(a_{1} \rho, a_{2} \rho, \ldots, a_{i-1} \rho, f\left(a_{i} \rho, a_{i+1} \rho, \ldots, a_{m+i-1} \rho\right), a_{m+i} \rho, a_{m+i+1} \rho, a_{2 m-1} \rho\right) \\
& =f\left(a_{1} \rho, a_{2} \rho, \ldots, a_{j-1} \rho, f\left(a_{j} \rho, a_{j+1} \rho, \ldots, a_{m+j-1} \rho\right), a_{m+j} \rho, a_{m+j+1} \rho, \ldots, a_{2 m-1} \rho\right)
\end{aligned}
$$

So, addition is associative on S / ρ. Similarly, multiplication is associative.
Finally, we have the distributive law,

$$
\begin{aligned}
& g\left(a_{1} \rho, a_{2} \rho, \ldots, a_{i-1} \rho, f\left(b_{1} \rho, b_{2} \rho, \ldots, b_{m} \rho\right), a_{i+1} \rho, a_{i+2} \rho, \ldots, a_{n} \rho\right) \\
& =f\left(g\left(a_{1} \rho, a_{2} \rho, \ldots, a_{i-1} \rho, b_{1} \rho, a_{i+1} \rho, \ldots, a_{n} \rho\right), g\left(a_{1} \rho, a_{2} \rho, \ldots, a_{i-1} \rho, b_{2} \rho, a_{i+1} \rho, \ldots, a_{n} \rho\right)\right. \\
& \left.\ldots, g\left(a_{1} \rho, a_{2} \rho, \ldots, a_{i-1} \rho, b_{m} \rho, a_{i+1} \rho, \ldots, a_{n} \rho\right)\right)
\end{aligned}
$$

Therefore, S / ρ is an (m, n)-semiring.
Lemma 2.5. Let (R, f, g) be an (m, n)-semiring with $1 \neq 0$. Then, R has at least one k-maximal ideal.

Proof. Since $\{0\}$ is a proper k-ideal of R, it follows that the set Δ of all proper k-ideals of R is not empty. Of course, the relation of inclusion, \subseteq, is a partial order on Δ, and by using Zorn's lemma, a maximal k-ideal of R is just a maximal member of the partially ordered set (Δ, \subseteq).

3. Primary ideal

Definition 3.1. Let (R, f, g) be an (m, n)-semiring and I be an ideal of R. The union of all ideals B such that $B^{s} \subseteq I$ for some positive integer l where $s=l(2 n-1)$ or $s=l(2 n+1)$ is an ideal of R and is called the radical of I which we shall denote by $N(I)$.

Definition 3.2. Let (R, f, g) be an (m, n)-semiring and I an ideal of R. The set of all elements $x \in R$ such that $x^{s} \in I$ for some positive integer l where $s=l(2 n-1)$ or $s=l(2 n+1)$ is said to be the nil-radical of I which we shall denote by $P(I)$.

If I is 0 in the previous definitions we use the symbols N and P for the radicals (radical and nil-radical) of 0 .

From the above preliminary discussion and definitions, we introduce the following definition.
Definition 3.3. A proper ideal I of an (m, n)-semiring (R, f, g) is called i - N-primary provided $a_{1}, a_{2}, \ldots, a_{n} \in R$ with $g\left(a_{1} \ldots a_{n}\right) \in I$ implies $a_{i} \in I$ or $j \neq i$ and $j \in\{1,2, \ldots, n\}, a_{j} \in N(I)$.

The ideal I is said to be N-primary provided it is i - N-primary for all $i \in\{1,2, \ldots, n\}$.
If we substitute the symbol P for N in the definition, we have the definitions of i - P-primary and P-primary.

Remark 3.1. It is clear that prime ideal in an (m, n)-semiring (R, f, g) is N-primary, but the converse is not true in general (similarly, for P-primary).

Definition 3.4. A proper ideal I of an (m, n)-semiring (R, f, g) is called weakly i - N-primary provided $a_{1}, a_{2}, \ldots, a_{n} \in R$ with $0 \neq g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in I$ implies $a_{i} \in I$ or $j \neq i$ and $j \in$ $\{1,2, \ldots, n\}, a_{j} \in N(I)$.

The ideal I is called weakly N-primary provided it is weakly i - N-primary for all $i \in\{1,2, \ldots, n\}$.
If we substitute the symbol P for N in the definition, we have the definitions of weakly $i-P$-primary and weakly P-primary.

Remark 3.2. It is easy to see N-primary ideal is weakly N-primary, but the converse is not true, because 0 is always weakly N-primary ideal (by definition) but not necessarily N-primary. So, weakly N-primary ideal need not to be N-primary (similarly, for P-primary ideal).

Remark 3.3. It is clear that every weakly prime ideal of an (m, n)-semiring (R, f, g) is weakly N-primary, but the converse is not true in general (similarly, for weakly P-primary ideal).

Lemma 3.1. Let I be a weakly P-primary subtractive ideal of an (m, n)-semiring (R, f, g). If I is not a P-primary ideal, then $I^{n}=\left\{g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2}, \ldots, a_{n} \in I\right\}=0$.
Proof. Suppose that $I^{n} \neq 0$. We show that I is a P-primary ideal of R. Suppose that $g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in I$ where $a_{1}, a_{2}, \ldots, a_{n} \in R$. If $g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \neq 0$, then there exist $i \in$ $\{1,2, \ldots, n\}, a_{i} \in I$ or $a_{i} \in P(I)$. Assume that $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$. If $0 \neq g\left(a_{1}, a_{2}, \ldots, a_{n-1}, I\right) \subseteq$ I, then there is an element d_{n} of I such that $g\left(a_{1}, a_{2}, \ldots, a_{n-1}, d_{n}\right) \neq 0$. Hence,

$$
0 \neq g\left(a_{1}, a_{2}, \ldots, a_{n-1}, d_{n}\right)=g\left(a_{1}, a_{2}, \ldots, a_{n-1}, f\left(d_{n}, a_{n}^{(m-1)}\right) \in I\right.
$$

Then, either $a_{i} \in I$ for $i \in\{1,2, \ldots, n-1\}$ or $f\left(d_{n}, a_{n}^{(m-1)}\right) \in P(I)$. Thus, $a_{i} \in I$ for $i \in$ $\{1,2, \ldots, n-1\}$ or $a_{n} \in P(I)$. Therefore, I is a P-primary ideal.

Suppose that $g\left(a_{1}, a_{2}, \ldots, a_{n-1}, I\right)=0$. If $g\left(a_{1}, a_{2}, \ldots, a_{n-2}, I, a_{n}\right) \neq 0$, then there exists $d_{n-1} \in I$ such that $g\left(a_{1}, a_{2}, \ldots, a_{n-2}, d_{n-1}, a_{n}\right) \neq 0$. Now, we have

$$
0 \neq g\left(a_{1}, a_{2}, \ldots, a_{n-2}, f\left(a_{n-1}^{(m-1)}, d_{n-1}\right), a_{n}\right) \in I
$$

So, we obtain $a_{i} \in I$ for $i \in\{1,2, \ldots, n-2, n\}$ or $a_{n-1} \in P(I)$, and hence I is a P-primary ideal. Thus, we assume that

$$
g\left(a_{1}, a_{2}, \ldots, a_{n-2}, I, a_{n}\right)=0
$$

Also, we can prove that $g\left(I, a_{2}, \ldots, a_{n-2}, a_{n-1}, a_{n}\right)=0$. Since $I^{n} \neq 0$, it follows that there are elements $c_{1}, c_{2}, \ldots, c_{n} \in I$ such that $g\left(c_{1}, c_{2}, \ldots, c_{n}\right) \neq 0$. Then, $0 \neq g\left(c_{1}, c_{2}, \ldots, c_{n}\right)=$ $g\left(f\left(a_{1}^{(m-1)}, c_{1}\right), f\left(a_{2}^{(m-1)}, c_{2}\right), \ldots, f\left(a_{n}^{(m-1)}, c_{n}\right) \in I\right.$, so either $a_{i} \in I$ or $a_{i} \in P(I)$ for $i \in$ $\{1,2, \ldots, n\}$, and hence I is a P-primary ideal.

Theorem 3.1. Let I be a proper subtractive ideal of an (m, n)-semiring (R, f, g). If for ideals $A_{1}, A_{2}, \ldots, A_{n}$ of R with $0 \neq g\left(A_{1}, A_{2}, \ldots, A_{n}\right) \subseteq I$ implies $A_{i} \subseteq I$ or for some positive integer $k, s=k(2 n-1)$ or $s=k(2 n+1), A_{i}^{s}=\left\{a_{i}^{s} \in R \mid a_{i} \in A_{i}\right\} \subseteq I$, then I is a weakly P-primary ideal of R.

Proof. Suppose that I is a proper subtractive ideal of an (m, n)-semiring (R, f, g) and let $0 \neq$ $g\left(a_{1}, a_{2}, \ldots a_{n}\right) \in I$, where $a_{1}, a_{2}, \ldots, a_{n} \in R$. Then, $0 \neq g\left(\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle, \ldots,\left\langle a_{n}\right\rangle\right) \subseteq I$. Hence, $\left\langle a_{i}\right\rangle \subseteq I$ or $\left\langle a_{i}^{s}\right\rangle \subseteq I$ for some positive integer k, where $s=k(2 n-1)$ or $s=k(2 n+1)$. So, $a_{i} \in I$ or $a_{i}^{s} \in I$ for some positive integer k, where $s=k(2 n-1)$ or $s=k(2 n+1)$. This implies that $a_{i} \in P(I)$. Therefore, I is a weakly P-primary ideal of R.

Lemma 3.2. If I is a weakly P-primary subtractive ideal that is not a P-primary over a semiring R, then $P(I)=P$.

Proof. Assume that I is a weakly P-primary subtractive ideal that is not a P-primary over an (m, n)-semiring (R, f, g). Then, it is clear that $P \subseteq P(I)$. Now, by Lemma 3.5, $I^{n}=0$ gives $I \subseteq P$, and hence $P(I) \subseteq P$. Therefore, $P(I)=P$.

4. Homomorphism of (m, n)-semirings

We recall the following definition from [1].
Definition 4.1. A mapping η from an (m, n)-semiring (R, f, g) into an (m, n)-semiring ($R^{\prime}, f^{\prime}, g^{\prime}$) is called a homomorphism if

$$
\begin{aligned}
& g\left(a_{1}, a_{2}, \ldots, a_{n}\right) \eta=g^{\prime}\left(a_{1} \eta, a_{2} \eta, \ldots, a_{n} \eta\right) \\
& f\left(a_{1}, a_{2}, \ldots, a_{m}\right) \eta=f^{\prime}\left(a_{1} \eta, a_{2} \eta, \ldots, a_{m} \eta\right),
\end{aligned}
$$

for each $a_{1}, \ldots, a_{m} \in R$.
An isomorphism is a one-to-one homomorphism. The semirings R and R^{\prime} are called isomorphic (denoted by $R \cong R^{\prime}$) if there exists an isomorphism from R onto R^{\prime}.

Definition 4.2. A homomorphism η from the semiring (R, f, g) onto the semiring ($R^{\prime}, f^{\prime}, g^{\prime}$) is said to be maximal if for each $a \in R^{\prime}$ there exists $c_{a} \in \eta^{-1}(\{a\})$ such that

$$
f\left(x, \operatorname{ker}(\eta)^{(m-1)}\right) \subset f\left(c_{a}, \operatorname{ker}(\eta)^{(m-1)}\right),
$$

for each $x \in \eta^{-1}(\{a\})$, where $\operatorname{ker}(\eta)=\{x \in R \mid x \eta=0\}$.
Lemma 4.1. Let η be a homomorphism from the semiring (R, f, g) onto the semiring $\left(R^{\prime}, f^{\prime}, g^{\prime}\right)$. If η is maximal, then $\operatorname{ker}(\eta)$ is a Q-ideal, where $Q=\left\{c_{a}\right\}_{a \in R^{\prime}}$.

Proof. It is clear that $\bigcup_{a \in R} f\left(c_{a}, \operatorname{ker}(\eta)^{(m-1)}\right)=R$. Let c_{a} and c_{b} be distinct elements in Q and $a \neq b$. Assume that

$$
f\left(c_{a}, \operatorname{ker}(\eta)^{(m-1)}\right) \cap f\left(c_{b}, \operatorname{ker}(\eta)^{(m-1)}\right) \neq \emptyset .
$$

Thus, there exist $k_{1}, \ldots, k_{m-1}, k_{1}^{\prime}, \ldots, k_{m-1}^{\prime} \in \operatorname{ker}(\eta)$ such that $f\left(c_{a}, k_{1}^{m-1}\right)=f\left(c_{b}, k_{1}^{\prime m-1}\right)$. Hence, we have

$$
\begin{aligned}
a & =f^{\prime}\left(c_{a} \eta, k_{1} \eta, \ldots, k_{m-1} \eta\right)=\left(f\left(c_{a}, k_{1}, \ldots, k_{m-1}\right)\right) \eta \\
& =\left(f\left(c_{b}, k_{1}^{\prime}, \ldots, k_{m-1}^{\prime}\right)\right) \eta=f^{\prime}\left(c_{b} \eta, k_{1}^{\prime} \eta, \ldots, k_{m-1}^{\prime} \eta\right)=b,
\end{aligned}
$$

a contradiction. Now, it follows that $\operatorname{ker}(\eta)$ is a Q-ideal.
Lemma 4.2. Let R, R^{\prime}, η and Q be as stated in Lemma 4.3 and $c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{m}}, c_{a_{m+1}}$ elements in Q.
(1) If $f\left(f\left(c_{a_{1}}, \ldots, c_{a_{m}}\right), \operatorname{ker}(\eta)^{(m-1)}\right) \subset f\left(c_{a_{m+1}}, \operatorname{ker}(\eta)^{(m-1)}\right)$, then $f\left(a_{1}, a_{2}, \ldots, a_{m}\right)=a_{m+1}$.
(2) If $f\left(g\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right), \operatorname{ker}(\eta)^{(m-1)}\right) \subset f\left(c_{a_{n+1}}, \operatorname{ker}(\eta)^{(m-1)}\right)$, then $g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ a_{n+1}.

Proof. (1) Since

$$
f\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{m}}\right) \in f\left(f\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{m}}\right), \operatorname{ker}(\eta)^{(m-1)}\right) \subset f\left(c_{a_{m+1}}, \operatorname{ker}(\eta)^{(m-1)}\right)
$$

it follows that there exists $k_{1}, \ldots, k_{m-1} \in \operatorname{ker}(\eta)$ such that $f\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{m}}\right)=f\left(c_{a_{m+1}}, k_{1}^{m-1}\right)$. Thus, we obtain

$$
\begin{aligned}
f^{\prime}\left(a_{1}, a_{2}, \ldots, a_{m}\right) & =f^{\prime}\left(c_{a_{1}} \eta, c_{a_{2}} \eta, \ldots, c_{a_{m}} \eta\right)=\left(f\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{m}}\right)\right) \eta \\
& =\left(f\left(c_{a_{m+1}}, k_{1}^{m-1}\right)\right) \eta=f^{\prime}\left(c_{a_{m+1}} \eta, k_{1} \eta, \ldots, k_{m-1} \eta\right)=a_{m+1} .
\end{aligned}
$$

(2) Since

$$
g\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right) \in f\left(g\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right), \operatorname{ker}(\eta)^{(m-1)}\right) \subseteq f\left(c_{a_{n+1}}, \operatorname{ker}(\eta)^{(m-1)}\right)
$$

it follows that there exists $k_{1}, \ldots, k_{m-1} \in \operatorname{ker}(\eta)$ such that $g\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right)=f\left(c_{a_{n+1}}, k_{1}^{m-1}\right)$. Thus, we have

$$
\begin{aligned}
g^{\prime}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & =g^{\prime}\left(c_{a_{1}} \eta, c_{a_{2}} \eta, \ldots, c_{a_{n}} \eta\right)=\left(g\left(c_{a_{1}}, c_{a_{2}}, \ldots, c_{a_{n}}\right)\right) \eta \\
& =\left(f\left(c_{a_{n+1}}, k_{1}^{m-1}\right)\right) \eta=f^{\prime}\left(c_{a_{n+1}} \eta, k_{1} \eta, \ldots, k_{m-1} \eta\right)=a_{n+1} .
\end{aligned}
$$

5. Γ - (m, n)-SEMIRING

We begin with the following definition.
Definition 5.1. Let (S, f) be a commutative m-semigroup and Γ be a non-empty set. Then, S is called a Γ - (m, n)-semiring, if (S, f, g) is a Γ-semigroup, that is, S satisfies the identities for all $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m} \in S$ and $x_{1}, x_{2}, \ldots, x_{m} \in \Gamma$,

$$
\begin{gathered}
g\left(g\left(a_{1}^{n-2}, x, a_{n}\right), y, b_{3}^{n}\right)=g\left(a_{1}^{n-2}, x, g\left(a_{n}, y, b_{3}^{n}\right)\right) \\
g\left(a_{1}^{n-2}, x, f\left(b_{1}, b_{2}, \ldots, b_{m}\right)\right)=f\left(g\left(a_{1}^{n-2}, x, b_{1}\right), g\left(a_{1}^{n-2}, x, b_{2}\right), \ldots, g\left(a_{1}^{n-2}, x, b_{m}\right)\right) \\
g\left(f\left(b_{1}, b_{2}, \ldots, b_{m}\right), x, a_{3}^{n}\right)=f\left(g\left(b_{1}, x, a_{3}^{n}\right), g\left(b_{2}, x, a_{3}^{n}\right), \ldots, g\left(b_{m}, x, a_{3}^{n}\right)\right) \\
g\left(a_{1}^{i-1}, f\left(x_{1}, x_{2}, \ldots, x_{m}\right), a_{i+1}^{n}\right)=f\left(g\left(a_{1}^{i-1}, x_{1}, a_{i+1}^{n}\right), g\left(a_{1}^{i-1}, x_{2}, a_{i+1}^{n}\right), \ldots, g\left(a_{1}^{i-1}, x_{1}, a_{i+1}^{n}\right)\right) .
\end{gathered}
$$

A Γ - (m, n)-semiring S is called commutative, if for all $a_{1}, a_{2}, \ldots, a_{n} \in S, \alpha \in \Gamma, i \in\{1, \ldots, n\}$ and every permutation η,

$$
g\left(a_{1}^{i-1}, \alpha, a_{i+1}^{n}\right)=g\left(a_{\eta(1)}, a_{\eta(2)}, \ldots, a_{\eta(i-1)} \alpha, a_{\eta(i+1)}, \ldots, a_{\eta(n)}\right) .
$$

Example 5.1. We have known that (\mathbb{N}, f) is a semigroup. Let $\Gamma=\{1,2,3\}$. For all $i \in\{1, \ldots, n\}$ define a mapping

$$
h: \underbrace{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}_{i-1} \times \Gamma \times \underbrace{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}_{n-i} \longrightarrow \mathbb{N}
$$

by $h\left(a_{1}^{i-1}, r, a_{i+1}^{n}\right)=g\left(a_{1}^{i-1}, r, a_{i+1}^{n}\right)$ for all $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{N}$ and $r \in \Gamma$. Then, \mathbb{N} is a Γ - (m, n) semiring.

Example 5.2. Let R be the additive commutative semiring of all $m \times n$ matrices over the set of all non-negative integers and let Γ be the additive commutative semigroup of all $n \times m$ matrices over the same set. Then, we observe that R is a Γ - $(2,2)$-semiring.

Example 5.3. Let (S, f, g) be an arbitrary (m, n)-semiring and Γ be a non-empty set. We define a mapping

$$
h: \underbrace{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}_{i} \times \Gamma \times \underbrace{\mathbb{N} \times \mathbb{N} \times \ldots \times \mathbb{N}}_{n-i} \longrightarrow \mathbb{N}
$$

by $h\left(a_{1}^{i}, r, a_{i+1}^{n}\right) \longrightarrow g\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all $a_{1}, a_{2}, \ldots, a_{n} \in S$ and $r \in \Gamma$. It is easy to see that S is a Γ - (m, n)-semiring.

Thus, an (m, n)-semiring can be considered as a Γ - (m, n)-semiring.
Example 5.4. Let (S, f, g) be a Γ - (m, n)-semiring and r a fixed element in Γ. We define $h\left(a_{1}, a_{2}, \ldots, a_{n}\right)=g\left(a_{1}^{i-1}, r, a_{i+1}^{n}\right)$ for all $a_{1}, a_{2}, \ldots, a_{n} \in S$. We can show that (S, f, g) is an (m, n)-semiring.

Definition 5.1. A proper ideal P of a Γ - (m, n)-semiring (S, f, g) is said to be prime if for any n ideals $H_{1}, H_{2}, \ldots, H_{n}$ of S and $i \in\{1, \ldots, n\}, g\left(H_{1}^{i-1}, \Gamma, H_{i+1}^{n}\right) \subseteq P$ implies that $H_{i} \subseteq P$ for some i.

Let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of a Γ - (m, n)-semiring (S, f, g) and $\Delta \subseteq \Gamma$. We denote by $g\left(A_{1}^{i-1}, \Delta, A_{i+1}^{n}\right)$ the subset of S consisting of all finite sums of the form

$$
\sum g\left(a_{1_{j}}, a_{2_{j}}, \ldots, a_{i-1_{j}}, \alpha_{j}, a_{i+1_{j}}, \ldots, a_{n_{j}}\right)
$$

where $a_{1_{j}} \in A_{1}, a_{2_{j}} \in A_{2}, \ldots, a_{i-1_{j}} \in A_{i-1}, a_{i+1_{j}} \in A_{i+1}, \ldots, a_{n_{j}} \in A_{n}$ and $\alpha_{j} \in \Gamma$.
Definition 5.2. A non-empty subset T of a Γ - (m, n)-semiring (S, f, g) is called a $\operatorname{sub} \Gamma$ - (m, n) semiring of S if T is a subsemigroup of (S, f) and $g\left(a_{1}^{i-1}, r, a_{i+1}^{n}\right) \in T$ for all $a_{1}, a_{2}, \ldots, a_{n} \in T$ and $r \in \Gamma$.

Definition 5.3. Let S be a Γ - (m, n)-semiring. An element $e \in S$ is called an identity of S if $g\left(e^{(i-1)}, \alpha, e^{(n-i)}\right)=e$ for all $\alpha \in \Gamma$.

Definition 5.4. Let X be a non-empty subset of a Γ - (m, n)-semiring S. By the term left ideal $(X)_{l}$ (resp. right ideal $(X)_{r}$, ideal $\left.(X)_{i}\right)$ of S generated by X, we mean the smallest left ideal (resp. right ideal, ideal) of S containing X, that is the intersection of all left ideals (resp. right ideals, ideals) of S containing X.

Definition 5.5. Let S be a Γ - (m, n)-semiring (S, f, g). By a quasi-ideal Q we mean a subsemigroup Q of (S, f) such that $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, Q\right) \cap g\left(Q, S^{(i-2)}, \Gamma, S^{(n-i)}\right) \subseteq Q$.

It is clear that each quasi-ideal of S is a sub Γ - (m, n)-semiring of S. In fact, $g\left(Q^{(i-1)}, \Gamma, Q^{(n-i)}\right) \subseteq$ $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, Q\right) \cap g\left(Q, S^{(i-2)}, \Gamma, S^{(n-i)}\right) \subseteq Q$.

Definition 5.6. Let \mathbb{N} be a set of natural numbers and $\Gamma=2 \mathbb{N}$. Then, \mathbb{N} is a $\Gamma-(m, n)$ semiring and $A=3 \mathbb{N}$ is a quasi-ideal of $\Gamma-(m, n)$-semiring \mathbb{N}.

Definition 5.7. Let X be a non-empty subset of a Γ - (m, n)-semiring S. By quasi-ideal $(X)_{q}$ of S generated by X, we mean the smallest quasi-ideal of S containing X, that is the intersection of all quasi-ideals of S containing X.

Definition 5.8. A Γ - (m, n)-semiring S is said to be a quasi-simple Γ - (m, n)-semiring if S is the unique quasi-ideal of S, then S has no proper quasi-ideal.

Definition 5.9. Let Q be a quasi-ideal of Γ - (m, n)-semiring (S, f, g). Then, Q is said to be minimal quasi-ideal of Γ - (m, n)-semiring (S, f, g) if Q does not contain any other proper quasi-ideal of S.
Theorem 5.1. For each non-empty subset X of S the following statements hold:
(1) $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ is a left ideal,
(2) $g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right)$ is a right ideal,
(3) $g\left(S^{(i)}, \Gamma, S^{(j)}, X, S^{(k)}, \Gamma, S^{(n-i-j-k-3)}\right)$ is an ideal of S.

Proof. (1) Suppose that

$$
\begin{aligned}
& g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right) \\
& =\left\{\sum_{j=1}^{m} g\left(a_{1_{j}}, a_{2_{j}}, \ldots, a_{(i-1)_{j}}, \alpha_{j}, a_{(i+1)_{j}}, a_{(i+2)_{j}}, \ldots, a_{(n-1)_{j}}, x_{i}\right) \mid a_{i_{j}} \in S,\right. \\
& \left.i=1,2,3, \ldots, n, \alpha_{i} \in \Gamma, x_{i} \in X\right\} .
\end{aligned}
$$

Let $a_{1}, a_{2}, \ldots, a_{m} \in g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$. Then,

$$
\begin{aligned}
& f\left(a_{1}, a_{2}, \ldots, a_{m}\right) \\
& =\sum_{j=1}^{k} f\left(g\left(b_{1_{1 j}}, b_{1_{2 j}}, \ldots, b_{1_{(i-1) j}}, \alpha_{1_{j}}, b_{1_{(i+1) j}}, \ldots, b_{1_{(n-1) j}}, x_{j}\right),\right. \\
& \left.\ldots, \sum_{l=1}^{s} g\left(b_{m_{1 j}}, b_{m_{2 j}}, \ldots, b_{m_{(i-1) j}}, \alpha_{1_{j}}, b_{m_{(i+1) j}}, \ldots, b_{m_{(n-1) j}} x_{j}\right)\right),
\end{aligned}
$$

implies $f\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is a finite sum. Hence, $f\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ and this shows $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ is a subsemigroup of (S, f). For $t_{1}, t_{2}, \ldots, t_{n} \in S, a \in$
$g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ and $\beta \in \Gamma$, we have

$$
\begin{aligned}
g\left(t_{1}^{i-1}, \beta, t_{i+1}^{n-1}, a\right) & =g\left(t_{1}^{i-1}, \beta, t_{i+1}^{n-1}, \sum_{j=1}^{k} g\left(b_{1 j}, b_{2 j}, \ldots, b_{(i-1) j}, \alpha_{1 j}, b_{(i+1) j}, \ldots, b_{(n-1) j}, x_{j}\right)\right) \\
& =\sum_{j=1}^{k} g\left(t_{1}^{i-1}, \beta, t_{i+1}^{n-1}, g\left(b_{1 j}, b_{2 j}, \ldots, b_{(i-1) j}, \alpha_{1 j}, b_{(i+1) j}, \ldots, b_{(n-1) j}, x_{j}\right)\right) \\
& \left.=\sum_{j=1}^{k} g\left(g\left(t_{1}^{i-1}, \beta, t_{i+1}^{n-1}, b_{1 j}\right), b_{2 j}, \ldots, b_{(i-1) j}, \alpha_{1 j}, b_{(i+1) j}, \ldots, b_{(n-1) j}, x_{j}\right)\right) \\
& \in g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right) .
\end{aligned}
$$

Therefore, $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ is a left ideal of S.
(2) As in (1), we can prove that $g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right)$ is a right ideal of S.
(3) By (1), $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)$ is a left ideal of S. Hence, we have
$g\left(S^{(i)}, \Gamma, S^{(j)}, X, S^{(k)}, \Gamma, S^{(n-i-j-k-3)}\right)$ is a right ideal of S by (2).
Similarly, by $(2), g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right)$ is a right ideal of S. Hence, $g\left(S^{(i)}, \Gamma, S^{(j)}, X, S^{(k)}, \Gamma, S^{(n-i-j-k-3)}\right)$ is a left ideal of S by (1).
Therefore, we conclude that $g\left(S^{(i)}, \Gamma, S^{(j)}, X, S^{(k)}, \Gamma, S^{(n-i-j-k-3)}\right)$ is an ideal of S.
Theorem 5.2. Arbitrary intersection of quasi-ideals of S is either empty or a quasi-ideal of S. Proof. Suppose that $T=\bigcap_{i \in \Delta}\left\{Q_{i} \mid Q_{i}\right.$ is a quasi-ideal of $\left.S\right\}$, where Δ denotes any indexing set, is a non-empty set. T is a subsemigroup of (S, f). Furthermore,

$$
\begin{aligned}
& g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, T\right) \cap g\left(T, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \\
& =g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)},\left(\bigcap_{i \in \Delta} Q_{i}\right)\right) \cap g\left(\left(\bigcap_{i \in \Delta} Q_{i}\right), S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \\
& \subseteq g\left(Q_{i}, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \cap g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, Q_{i}\right) \subseteq Q_{i},
\end{aligned}
$$

for all $i \in \Delta$. Hence, we have

$$
g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, T\right) \cap g\left(T, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \subseteq \bigcap_{i \in \Delta} Q_{i}=T
$$

This shows that T is a quasi-ideal of S.
Theorem 5.3. For each non-empty subset X of S, the set

$$
g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right) \cap g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right)
$$

is a quasi-ideal of S.
Proof. Suppose that

$$
\begin{aligned}
& g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right)\right) \\
& \cap g\left(g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right), S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \\
& =g\left(g\left(S^{(i-1)}, \Gamma, S^{(n-i)}\right), S^{(i-2)}, \Gamma, S^{(n-i-1)}, X\right) \\
& \cap g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-2)}, g\left(S^{(i)}, \Gamma, S^{(n-i-1)}\right)\right) \\
& \subseteq g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right) \cap g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) .
\end{aligned}
$$

Therefore, $g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, X\right) \cap g\left(X, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right)$ is a quasi-ideal of S.
Theorem 5.4. If Q is a quasi-ideal of Γ - (m, n)-semiring (S, f, g) and T is a sub $-(m, n)$-semiring of Γ - (m, n)-semiring (S, f, g), then $Q \cap T$ is a quasi-ideal of T.

Proof. Since $Q \cap T$ is a subsemigroup of (S, f) and $Q \cap T \subseteq T$, we get $Q \cap T$ is subsemigroup of (T, f). Furthermore, we have

$$
\begin{aligned}
& g\left(T^{(i-1)}, \Gamma, T^{(n-i-1)},(T \cap Q)\right) \cap g\left((T \cap Q), T^{(i-1)}, \Gamma, T^{(n-i-1)}\right) \\
& \subseteq g\left(T^{(i-1)}, \Gamma, T^{(n-i-1)}, Q\right) \cap g\left(Q, T^{(i-1)}, \Gamma, T^{(n-i-1)}\right) \\
& \subseteq g\left(S^{(i-1)}, \Gamma, S^{(n-i-1)}, Q\right) \cap g\left(Q, S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \subseteq Q
\end{aligned}
$$

and

$$
\begin{aligned}
& g\left(T^{(i-1)}, \Gamma, T^{(n-i-1)},(T \cap Q)\right) \cap g\left((T \cap Q), T^{(i-1)}, \Gamma, T^{(n-i-1)}\right) \\
& \subseteq g\left(T^{(i-1)}, \Gamma, T^{(n-i)}\right) \cap g\left(T^{(i)}, \Gamma, T^{(n-i-1)}\right) \subseteq T \cap T=T .
\end{aligned}
$$

These imply that

$$
g\left(T^{(i-1)}, \Gamma, S^{(n-i-1)},(T \cap Q)\right) \cap g\left((T \cap Q), T^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \subseteq Q \cap T
$$

This shows that $Q \cap T$ is a quasi-ideal of T.
Theorem 5.5. Intersection of a right ideal and a left ideal of Γ - (m, n)-semiring S is a quasiideal of S.

Proof. Suppose that R is a right ideal and L is a left ideal of S. Then, $R \cap L$ is a subsemigroup of (S, f). Furthermore, we have

$$
\begin{aligned}
& g\left(S^{(i)}, \Gamma, S^{(n-i-2)},(L \cap R)\right) \cap g\left((L \cap R), S^{(j)}, \Gamma, S^{(n-j-2)}\right) \\
& =g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, R\right) \cap g\left(L, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \cap g\left(R, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \\
& \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(R, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq L \cap R .
\end{aligned}
$$

Hence, $R \cap L$ is a quasi-ideal of S.
Theorem 5.6. Let L be a left ideal of Γ - (m, n)-semiring S. Then, for any idempotent element e of $S, g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right)$ is a quasi-ideal of S.
Proof. First, we prove that $g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right)=L \cap g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)$. We know that

$$
g(\underbrace{g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right), \ldots, g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)}_{n}) \subseteq g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right) .
$$

Hence, $g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)$ is a subsemigroup of (S, f). Since

$$
\begin{aligned}
& g\left(g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right), S^{(i-1)}, \Gamma, S^{(n-i-1)}\right) \\
& =g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, g\left(S^{(i)}, \Gamma, S^{(n-i-1)}\right)\right) \subseteq g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right),
\end{aligned}
$$

$g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)$ is a right ideal of S. Since $e \in S$ and L is a left ideal of S, it follows that $g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right) \subseteq L$. Furthermore, $g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right) \subseteq g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)$. This implies that

$$
g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right) \subseteq L \cap g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)
$$

For the reverse inclusion let $a \in L \cap g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)$. Hence,

$$
a=\sum_{j=1}^{n} g\left(e, x_{2_{j}}, x_{3 j}, \ldots, x_{(i-1) j}, \alpha_{j}, x_{(i+1) j}, \ldots, x_{n j}\right) .
$$

Thus, we obtain

$$
\begin{aligned}
& a=\sum_{j=1}^{n} g\left(e, x_{2 j}, x_{3 j}, \ldots, x_{(i-1) j}, \alpha_{j}, x_{(i+1) j}, \ldots, x_{n j}\right) \\
& =\sum_{j=1}^{n} g\left(g\left(e^{(i-1)}, \alpha, e^{(n-i)}\right), x_{2_{j}}, x_{3_{j}}, \ldots, x_{(i-1) j}, \alpha_{j}, x_{(i+1) j}, \ldots, x_{n j}\right) \\
& =g\left(e^{(i-1)}, \alpha, e^{(n-i-1)}, \sum_{j=1}^{n} g\left(e, x_{2 j}, x_{3 j}, \ldots, x_{(i-1) j}, \alpha_{j}, x_{(i+1) j}, \ldots, x_{n j}\right)\right. \\
& =g\left(e^{(i-1)}, \alpha, e^{(n-i-1)}, a\right) \in g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right) .
\end{aligned}
$$

This shows that

$$
L \cap g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right) \subseteq g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right)
$$

Hence, $L \cap g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)=g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right)$. Since L is a left ideal and

$$
g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right)
$$

is a right ideal of S, we conclude that $g\left(e, S^{(i-2)}, \Gamma, S^{(n-i-1)}, L\right)$ is a quasi-ideal of S.

Theorem 5.7. Let R be a right ideal of $\Gamma-(m, n)$-semiring (S, f, g). Then, for any idempotent element e of S,

$$
g\left(R, S^{(i-2)}, \Gamma, S^{(n-i-1)}, e\right)
$$

is a quasi-ideal of S.
Proof. The proof is similar to the proof of Proposition 5.6.
Theorem 5.8. Let S be a Γ-(m,n)-semiring. Then, for any idempotent elements e, f of S,

$$
g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right)
$$

is a quasi-ideal of S.
Proof. First, we prove that

$$
\begin{aligned}
g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right) & =g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \cap g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right) \\
g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right) & =g\left(g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right), S^{(j-1)}, \Gamma, S^{(n-j-2)}, f\right) \\
& \subseteq g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right) & =g\left(e, S^{(i)}, \Gamma, S^{(n-i-3)}, g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)\right) \\
& \subseteq g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)
\end{aligned}
$$

Thus, we obtain

$$
g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right) \subseteq g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \cap g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)
$$

Suppose that $a \in g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right) \cap g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$. Then,

$$
\begin{aligned}
& a=\sum_{i=1}^{n} g\left(x_{1_{i}}, x_{2_{i}}, \ldots, x_{j_{i}}, \alpha_{i}, x_{(j+1)_{i}}, \ldots, x_{(n-2)_{i}}, f\right) \\
& =\sum_{i=1}^{n} g\left(x_{1_{i}}, x_{2_{i}}, \ldots, x_{j_{i}}, \alpha_{i}, x_{(j+1)_{i}}, \ldots, x_{(n-2)_{i}}, g\left(f^{(k)}, \alpha, f^{(n-k-1)}\right)\right) \\
& =\sum_{i=1}^{n} g\left(g\left(x_{1_{i}}, x_{2_{i}}, \ldots, x_{j_{i}}, \alpha_{i}, x_{(j+1)_{i}}, \ldots, x_{(n-2)_{i}}, f\right), f^{(k-1)}, \alpha, f^{(n-k-1)}\right) \\
& =g\left(a, f^{(k-1)}, \alpha, f^{(n-k-1)}\right)
\end{aligned}
$$

Hence, $a=g\left(a, f^{(k-1)}, \alpha, f^{(n-k-1)}\right)$ for all $\alpha \in \Gamma$. Since $a \in g\left(e, S^{(i-2)}, \Gamma, S^{(n-i)}\right), \alpha \in \Gamma$, it follows that

$$
a=g\left(a, f^{(k-1)}, \alpha, f^{(n-k-1)}\right) \in g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right)
$$

We obtain

$$
g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \cap g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right) \subseteq g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right)
$$

Thus, we have

$$
g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \cap g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)=g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right)
$$

Since $g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)$ is a left ideal and $g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a right ideal of S, we get

$$
g\left(e, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \cap g\left(S^{(j)}, \Gamma, S^{(n-j-2)}, f\right)=g\left(e, S^{(i)}, \Gamma, S^{(j-i-2)}, \Gamma, S^{(n-j-2)}, f\right)
$$

is a quasi-ideal of S.
Theorem 5.9. If (S, f, g) is a Γ-(m, n)-semiring, then S is a quasi-simple Γ - (m, n)-semiring if and only if $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right)=S$ for all $a \in S$.

Proof. Suppose that S is a quasi-simple Γ - (m, n)-semiring. For every $a \in S, g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$ and $g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right)$ are left and right ideals of S, respectively. Therefore,

$$
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right)
$$

is a quasi-ideal of S. Furthermore, $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \subseteq S$ and $g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq S$ imply $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq S$. Since S is a quasi-simple Γ - $(m, n)-$ semiring, it follows that $S=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$.

Conversely, suppose that $S=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(j)}, \Gamma, S^{(n-j-2)}\right)$. Let Q be a quasiideal of S. For any $q \in Q$, by assumption we have,

$$
\begin{aligned}
& S=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, q\right) \cap g\left(q, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq \\
& g\left(S^{(i)}, \Gamma, S^{(n-j-2)}, Q\right) \cap g\left(Q, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq Q .
\end{aligned}
$$

Therefore, $S \subseteq Q$. Thus $S=Q$. Hence, S is a quasi-simple Γ - (m, n)-semiring.
Theorem 5.10. The intersection of a minimal right ideal and a minimal left ideal of a $\Gamma-(m, n)-$ semiring S is a minimal quasi-ideal of S.

Proof. Let R and L denote the minimal right ideal and the minimal left ideal of S, respectively. Define $Q=R \cap L$. Then, Q is a quasi-ideal of S. Let Q_{1} be a quasi-ideal of S such that $Q_{1} \subseteq Q$. Then, $g\left(S^{(i)} \Gamma, S^{(n-i-2)}, Q_{1}\right)$ is a left ideal and $g\left(Q_{1}, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a right ideal of S. So, $Q_{1} \subseteq L$ implies

$$
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q_{1}\right) \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \subseteq L
$$

Also, $Q_{1} \subseteq R$ implies

$$
g\left(Q_{1}, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq g\left(R, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq R .
$$

By the minimality of R and L, we have

$$
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q_{1}\right)=L
$$

and

$$
g\left(Q_{1}, S^{(j)}, \Gamma, S^{(n-j-2)}\right)=R
$$

Therefore, we have

$$
Q=R \cap L=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q_{1}\right) \cap g\left(Q_{1}, S^{(j)}, \Gamma, S^{(n-j-2)}\right) \subseteq Q_{1} .
$$

Hence, $Q_{1}=Q$. This shows that Q is a minimal quasi-ideal of S.
Theorem 5.11. If Q is a minimal quasi-ideal of Γ - (m, n)-semiring S, then any two non-zero elements of Q generate the same left (right) ideal of S.
Proof. Let Q be a minimal quasi-ideal of S and x be a non-zero element of Q. Then, $(x)_{l}$, the left ideal generated by x, is a quasi-ideal of S. Hence, $(x)_{l} \cap Q$ is a quasi-ideal of S. As $(x)_{l} \cap Q \subseteq Q$ and Q is a minimal quasi-ideal of S we get $(x)_{l} \cap Q=Q$. Thus, $Q \subseteq(x)_{l}$. For any non-zero element y of $Q, y \in Q$ implies $y \in(x)_{l}$. Therefore, $(y)_{l} \subseteq(x)_{l}$. Similarly, we can show that $(x)_{l} \subseteq(y)_{l}$. Hence, $(x)_{l}=(y)_{l}$.

In the same way, we can prove that any two non-zero elements of Q generate the same right ideal of S.

Theorem 5.12. Let Q be a quasi-ideal of Γ - (m, n)-semiring S. If Q itself is a quasi-simple Γ - (m, n)-semiring, then Q is a minimal quasi-ideal of S.
Proof. Since Q is a quasi-ideal of S, it follows that Q is a subГ- (m, n)-semiring of S. Suppose that Q is a quasi-simple Γ - (m, n)-semiring. Let Q_{1} be a quasi-ideal of S such that $Q_{1} \subseteq Q$. Then, we obtain

$$
\begin{gathered}
g\left(Q^{(i)}, \Gamma, Q^{(n-i-2)}, Q_{1}\right) \cap g\left(Q_{1}, Q^{(i)}, \Gamma, Q^{(n-i-2)}\right) \subseteq \\
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q_{1}\right) \cap g\left(Q_{1}, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \subseteq Q_{1} .
\end{gathered}
$$

Therefore, Q_{1} is a quasi-ideal of Q. Since $Q_{1} \subseteq Q, Q_{1}$ is a quasi-ideal of Q and Q is a quasisimple Γ - (m, n)-semiring, it follows that $Q_{1}=Q$. Therefore, Q is a minimal quasi-ideal of S.

Theorem 5.13. Every minimal quasi-ideal Q of Γ - (m, n)-semiring (S, f, g) is represented as

$$
Q=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right),
$$

where a is any element of $Q, g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$ and $g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a minimal left ideal and a minimal right ideal of S, respectively.

Proof. Suppose that Q is a minimal quasi-ideal of S and $a \in Q$. Then, $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$ and $g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a left ideal and a right ideal of S, respectively. Therefore, we conclude that $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a quasi-ideal of S. Then

$$
\begin{aligned}
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right) & \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q\right) \cap g\left(Q, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \\
& \subseteq Q .
\end{aligned}
$$

By the minimality of Q, we obtain $Q=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$. Now, in order to show that $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$ is a minimal left ideal, let L be a left ideal of S such that $L \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$. Then,

$$
\begin{gathered}
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \subseteq L \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right), \\
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)=Q .
\end{gathered}
$$

Since $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right)$ is a left ideal of S and $g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a right ideal of S, we conclude that $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a quasi-ideal of S. Furthermore, since $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \subseteq Q$ and Q is minimal quasi-ideal of S, we have $Q=g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \cap g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right) \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right)$. Now, we have

$$
\begin{aligned}
g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) & \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, Q\right) \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right)\right) \\
& =g\left(g\left(S^{(i)}, \Gamma, S^{(n-i-1)}\right), S^{(i-1)}, \Gamma, S^{(n-i-2)}, L\right) \\
& \subseteq g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, L\right) \subseteq L .
\end{aligned}
$$

This shows that $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right) \subseteq L$. Therefore, $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)=L$. Hence, $g\left(S^{(i)}, \Gamma, S^{(n-i-2)}, a\right)$ is a minimal left ideal of S. Similarly, we can prove that $g\left(a, S^{(i)}, \Gamma, S^{(n-i-2)}\right)$ is a minimal right ideal of S.

6. Conclusions

Semirings constitute a natural generalization of rings with broad applications in the mathematical foundation of computer sciences. The class of (m, n)-semirings is a generalization of semirings. We studied special ideals hand homomorphisms of (m, n)-semirings. In particular, we studied Γ - (m, n)-semirings and investigated their properties.

For future research, one may consider (m, n)-semihyperrings and related algebraic structures and study their properties.

References

[1] Alam, S., Rao, S., Davvaz, B., (2013), (m, n)-semirings and a generalized fault-tolerance algebra of systems, J. Appl. Math, Art. ID 482391, 10p.
[2] Asadi, A., Ameri, R., Norouzi, M., (2021), A categorical connection between categories (m, n)-hyperrings and (m, n)-ring via the fundamental relation Γ, Kragujevac J. Math., 45(3), pp.361-377.
[3] Ashour, A., AbedRabou, S.S.A., Hamoda, M., (2012), On weakly primary subtractive ideals over noncommutative semirings, Int. J. Contemp. Math. Sci., 32(7), pp.1519-1527.
[4] Bourne, S., (1952), On the homomorphism theorem for semirings, Proc. Nat. Acad. Sci. U.S.A., 38(2), pp.118-119.
[5] Chinram, R., (2008), A note on quasi-ideals in Γ-semirings, Int. Math. Fourm, 3(26), pp.1253-1259.
[6] Crombez, G., (1972), On (n, m)-rings, Abh. Math. Sem. Univ. Hamburg, 37, pp.180-199.
[7] Crombez, G., Timm, J., (1972), On (n, m)-quotient rings, Abh. Math. Sem. Univ. Hamburg, 37, pp.200-203.
[8] Dubey, M.K., (2012), Prime and weakly prime ideals in semirings, Quasigroups and Related Systems, 20, pp.197-202.
[9] Dudek, W.A., (1981), On the divisibility theory in (m, n)-rings, Demonstratio Math., 14(1), pp.19-32.
[10] Jagatap, R.D., Pawar, Y. S., (2009), Quasi-ideals and minimal quasi-ideals in Γ-semirings, Novi Sad J. Math., 39(2), pp.79-87.
[11] Leeson, J.J., Butson, A. T., (1980), Equationally complete (m, n)-rings, Algebra Universalis, 11(1), pp.28-41.
[12] Leeson, J.J., Butson, A. T., (1980), On the general theory of (m, n)-rings, Algebra Universalis, 11(1), pp.4276.
[13] Mirvakili, S., Davvaz, B., (2010), Relations on Krasner (m, n)-hyperrings, European J. Combin., 31, pp.790802.
[14] Mirvakili, S., Davvaz, B., (2015), Constructions of (m, n)-hyperrings, Mat. Vesnik, 67(1), pp.1-16.
[15] Mirvakili, S., Davvaz, B., (2015), Characterization of additive (m, n)-semihyperrings, Kyungpook Math. J., 55, pp.515-530.
[16] Pop, A., (2014), Some properties of idempotents of (n, m)-semirings, Creat. Math. Inform., 23(2) pp.235-242.
[17] Pop, A., Lauran, M., (2018), A note on the morphism theorems for (n, m)-semirings, Creat. Math. Inform., 27(1), pp.79-88.
[18] Rao, M.M., (1995), Г-semirings. I, Southeast Asian Bull. Math., 19(1), pp.49-54.
[19] Vandiver, H.S., (1934), Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Am. Math. Soc., 40, pp. 914920.

Bijan Davvaz, for a photograph and biography, see TWMS J. Pure Appl. Math., 8(1), 2017, p.82.

Fahime Mohammadi, is a M.Sc former student at the Department of Mathematics, Yazd University, Iran. She has been working on research related to semirings. Photograph is absent.

[^0]: ${ }^{1}$ Department of Mathematics, Yazd University, Yazd, Iran
 e-mail: davvaz@yazd.ac.ir
 Manuscript received November 20018.

