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DIFFERENT TYPES OF IDEALS

AND HOMOMORPHISMS OF (m,n)-SEMIRINGS

BIJAN DAVVAZ1, FAHIME MOHAMMADI1

Abstract. In this article, we develop some more of the theory of (m,n)-semirings. In partic-
ular, we study ideals, primary ideals, and subtractive ideals of (m,n)-semirings and Γ-(m,n)-
semirings. We describe the functions between (m,n)-semirings that preserve the (m,n)-semiring
structure. Also, we look at another way of forming new (m,n)-semiring from existing ones.
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1. Introduction to (m,n)-semirings

The notion of a semiring was introduced by Vandiver in 1934 [19]. Semirings are studied by
many authors in various directions. One of the main directions of such studies is investigation
of properties of ideals, for example see [3, 4, 5, 8, 10, 18]. Crombez [6] in 1972 generalized
rings and named it as (n,m)-rings. It was further studied by Crombez and Timm [7], Leeson
and Butson [11, 12], Dudek [9], Mirvakili and Davvaz [13, 14, 15]. Alam, Rao and B. Davvaz
[1] proposed a new class of mathematical structures called (m,n)-semirings (which generalize
the usual semirings) and described their basic properties. They gave the definition of partial
ordering and initiated the generalization of congruence and homomorphism for (m,n)-semirings.
Also, see , Pop [16], Pop and Lauran [17], Asadi et al. [2].

Let R be a non-empty set and f : Rm → R be a map, that is, f is an m-ary operation. A non-
empty set R with an m-ary operation f is called an m-ary groupoid and is denoted by (R, f). We
use the following general convention. The sequence xi, xi+1, . . . , xm is denoted by xmi where 1 ≤
i ≤ j ≤ m. For all 1 ≤ i ≤ j ≤ m, the following term f(x1, x2, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zm)

is represented as f(xi1, y
j
i+1, z

m
j+1). In the case when yi+1 = yi+2 = . . . = yj = y, the term

is expressed as f(xi1, y
(j−i), zmj+1). An m-ary groupoid (R, f) is called an m-ary semigroup

if f is associative, that is, if f(xi−1
1 , f(xm+i−1

i ), x2m−1
m+i ) = f(xj−1

1 , f(xm+j−1
j ), x2m−1

m+j ), for all
x1, x2, . . . , x2m−1 ∈ R where 1 ≤ i ≤ j ≤ m. We say f is commutative if

f(x1, x2, . . . , xm) = f(xη(1), xη(2), . . . , xη(m))

for every permutation η of {1, 2, . . . ,m}, x1, x2, . . . , xm ∈ R. Let R be a non-empty set and f, g
be m-ary and n-ary operations on R, respectively. The n-ary operation g is distributive with
respect to the m-ary operation f if

g(xi−1
1 , f(am1 ), xni+1) = f(g(xi−1

1 , a1, x
n
i+1), . . . , g(x

i−1
1 , am, xni+1)),

for every am1 , xn1 in R and 1 ≤ i ≤ n. An m-ary semigroup (R, f) is called a semi-abelian or
(1,m)-commutative if

f(x, a, . . . , a︸ ︷︷ ︸
m−2

, y) = f(y, a, . . . , a︸ ︷︷ ︸
m−2

, x).
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for all a, x, y ∈ R.
Definition 1.1. Let R be a non-empty set and f, g be m-ary and n-ary operations on R,

respectively. Then (R, f, g) is called an (m,n)-semiring if the following conditions hold:

(1) (R, f) is an m-ary semigroup;
(2) (R, g) is an n-ary semigroup;
(3) The n-ary operation g is distributive with respect to the m-ary operation f .

One can find many examples of (m,n)-semirings in [1].
Let (R, f, g) be an (m,n)-semiring. Then, m-ary semigroup (R, f) has an identity element 0

if

x = f(0, . . . , 0︸ ︷︷ ︸
i−1

, x, 0, . . . , 0︸ ︷︷ ︸
m−i

),

for all x ∈ R and 1 ≤ i ≤ m. We call 0 as an identity element of (m,n)-semiring (R, f, g).
Similarly, n-ary semigroup (R, g) has an identity element 1 if

y = g(1, . . . , 1︸ ︷︷ ︸
j−1

, y, 1, . . . , 1︸ ︷︷ ︸
n−j

),

for all y ∈ R and 1 ≤ j ≤ n.

2. Ideals of (m,n)-semirings

In this paper f is an addition m-ary operation and g is a multiplication n-ary operation.
Definition 2.1. Let I be a non-empty subset of an (m,n)-semiring (R, f, g) and 1 ≤ i ≤ n.

We call I an i-ideal of R if

(1) I is a subsemigroup of m-ary semigroup (R, f);
(2) For every a1, a2, . . . , an ∈ R, g(a1, a2, . . . , ai−1, I, ai+1, . . . , an) ⊆ I.

I is called an ideal of R if for every 1 ≤ i ≤ n, I is an i-ideal.
Lemma 2.1. If A1, . . . , An are ideals of (m,n)-semiring (S, f, g), then

(1) A1 ∩ . . . ∩An is an ideal of (S, f, g);
(2) f(A1, . . . , Am) is an ideal of (S, f, g);
(3) g(A1, . . . , An) is an ideal of (S, f, g).

Definition 2.2.

(1) A proper ideal I of an (m,n)-semiring (R, f, g) is said to be prime if for any ideals
A1, . . . , An of R, g(A1, . . . , An) ⊆ I implies Ai ⊆ I for some 1 ≤ i ≤ n.

(2) A proper ideal I of an (m,n)-semiring (R, f, g) is said to be weakly prime if for any ideals
A1, . . . , An of R, {0} ̸= g(A1, . . . , An) ⊆ I implies Ai ⊆ I for some 1 ≤ i ≤ n.

(3) An ideal I of an (m,n)-semiring (R, f, g) is called subtractive or k-ideal if for any elements
a1, . . . , an−1 ∈ I and an ∈ R, g(a1, . . . , an) ∈ I, then an ∈ I.

Theorem 2.1. An ideal of an (m,n)-semiring (S, f, g) is weakly prime if and only if for any
ideals A1, A2, . . . , An of S, we have:

either g(A1, A2, . . . , An) = A1 or . . . or g(A1, A2, . . . , An) = An or g(A1, A2, . . . , An) = 0.

Proof. Suppose that every ideal of S is weakly prime. Let A1, A2, . . . , An be ideals of S. If
g(A1, A2, . . . , An) ̸= S, then g(A1, A2, . . . , An) is weakly prime. If {0} ̸= g(A1, A2, . . . , An) ⊆
g(A1, A2, . . . , An), then we have Ai ⊆ g(A1, A2, . . . , An) for some i (since g(A1, A2, . . . , An) is
weakly prime ideal of S). Hence, Ai = g(A1, A2, . . . , An) for some i. If g(A1, A2, . . . , An) = S,
then A1 = A2 = . . . = An = S.
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Conversely, let I be any proper ideal of S and suppose that {0} ̸= g(A1, A2, . . . , An) ⊆ I for
ideals A1, A2, . . . , An of S. Then, we have Ai = g(A1, A2, . . . , An) ⊆ I for some i. �

Lemma 2.2. Let P be a subtractive ideal of (m,n)-semiring (S, f, g). Let P be a weakly
prime ideal but not a prime ideal of S. If g(a1, a2, . . . , an) = 0 for some a1, a2, . . . , an ̸∈ P , then

g(a1, P
(n−1)) = g(P, a2, P

(n−2)) = . . . = g(P (n−1), an) = {0}.

Proof. Suppose that g(a1, p
(n−1)) ̸= 0 for some p1, p2, . . . , pn−1 ∈ P . Then, we obtain

0 ̸= g(a1, f(g(1, a2, a3, . . . , an), (g(1, p1, p2, . . . , pn−1))
(m−1)), 1(n−2)) ∈ P.

Since P is a weakly prime ideal of S, it follows that a1 ∈ P or

f(g(1, a2, a3, . . . , an), (g(1, p1, p2, . . . , pn−1))
(m−1)) ∈ P,

that is, ai ∈ P for some 1 ≤ i ≤ n, a contradiction. Therefore, g(a1, P
(n−1)) = {0}. Similarly,

we can show that g(P, a2, P
(n−2)) = . . . = g(P (n−1), an) = {0}. �

Theorem 2.2. Let P be a subtractive ideal of an (m,n)-semiring (S, f, g). If P is a weakly
prime ideal but not prime, then Pn = {0}.
Proof. Suppose that g(p1, p2, . . . , pn) ̸= 0 for some p1, p2, . . . , pn ∈ P and g(a1, a2, . . . , an) = 0
for some a1, a2, . . . , an ̸∈ P , where P is not a prime ideal of S. Then, by Lemma 2.5,

0 ̸= g(f(a1, p
(m−1)
1 ), f(p2, a2, p

(m−2)
2 ), . . . , f(an, p

(m−1)
n )) ∈ P.

Hence, either f(a1, p
(m−1)
1 ) ∈ P or f(p2, a2, p

(m−2)
2 ) ∈ P or . . . or f(an, p

(m−1)
n ) ∈ P , and so

ai ∈ P for some 1 ≤ i ≤ n, a contradiction. Hence, Pn = {0}. �
Corollary 2.1. Let P be a weakly prime ideal of (m,n)-semiring (S, f, g). If P is not a prime
ideal of S, then P ⊆ Nil S.

A subtractive ideal in a commutative (m,n)-semiring (S, f, g), satisfying Pn = {0} may not
be weakly prime.

Lemma 2.3. Let h be a homomorphism from (m,n)-semiring (S1, f, g) onto (m,n)-semiring
(S2, f

′, g′). Then, each of the following statements is true:

(1) If I is an ideal (subtractive ideal) in S1, then h(I) is an ideal (subtractive ideal) in S2.
(2) If J is an ideal (subtractive ideal) in S2, then h−1(J) is an ideal (subtractive ideal) in

S1.

Theorem 2.3. If h : S1 −→ S2 is a homomorphism of (m,n)-semirings and P is a prime ideal
of S2, then h−1(P ) is a prime ideal of S1.

Proof. By the previous lemma h−1(P ) is an ideal of (S1, f, g). Let g(a1, a2, . . . , an) ∈ h−1(P ).
Then, h(g(a1, a2, . . . , an)) ∈ P implies g′(h(a1), h(a2), . . . , h(an)) ∈ P . Since P is a prime ideal
of S2, it follows that h(ai) ∈ P for some 1 ≤ i ≤ n. Thus, ai ∈ h−1(P ) for some 1 ≤ i ≤ n.
Hence, h−1(P ) is a prime ideal of S1. �
Theorem 2.4. Let (S, f, g) be an (m,n)-semiring such that S = ⟨a1, a2, . . . , ak⟩ for k =
max{n,m} is a finitely generated ideal of S. Then, each proper k-ideal A of S is contained
in a maximal k-ideal of S.

Proof. Let β be the set of all k-ideals B of S satisfying A ⊆ B ⊂ S, partially ordered by inclusion.
Consider a chain {Bi | i ∈ I} in β. One easily checks that B =

∪
Bi is a k-ideal of S, because if

a1, a2, . . . , an−1, f(a1, a2, . . . , an) ∈ B then as defined B, there is i1, i2, . . . , in−1, j ∈ I such that
a1 ∈ Bi1 , a2 ∈ Bi2 , . . . , an−1 ∈ Bin−1 , f(a1, a2, . . . , an) ∈ Bj , as Bi partially ordered by inclusion,
then Bj ⊆ Bi1 or Bi1 ⊆ Bj . Without loss of generality assuming that Bi1 , Bi2 , . . . , Bin−1 ⊆ Bj ,
then a1, a2, . . . , an−1, f(a1, a2, . . . , an) ∈ Bj because Bj is a k-ideal. Therefore, an ∈ Bj and
Bj ⊆ B; so an ∈ B which means B is a k-ideal, and S = ⟨a1, a2, . . . , ak⟩ implies B ̸= S, and
hence B ∈ β. By Zorn’s lemma, β has a maximal element as we were to show. �
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Corollary 2.2. Let (S, f, g) be an (m,n)-semiring with identity 1. Then, each proper k-ideal
of S is contained in a maximal k-ideal of S.

Proof. The proof is immediate by S = ⟨1⟩. �

Lemma 2.4. If A,B are two k-ideals of an (m,n)-semiring (S, f, g), then A∩B is a k-ideal.

Proof. Suppose that A,B are two k-ideals of S. Then, A ∩ B is an ideal. Now, let x ∈ S
such that f(am−1

1 , x) ∈ A ∩ B for some a1, a2, . . . , am−1 ∈ A ∩ B. Then a1, a2, . . . , am−1 ∈ A,

a1, a2, . . . , am−1 ∈ B, f(am−1
1 , x) ∈ B and f(am−1

1 , x) ∈ A. So, x ∈ A and x ∈ B as A,B are
k-ideals. Hence, x ∈ A ∩B. �

Definition 2.3. An equivalence relation ρ on an (m,n)-semiring (S, f, g) is called a congru-
ence on S if for any a1, . . . , am, b1, . . . , bn ∈ S such that aρb, then

(1) f(a, am2 )ρf(b, am2 );
(2) g(a, bn2 )ρg(b, b

n
2 );

(3) g(bn2 , a)ρg(b
n
2 , b).

Let ρ be a congruence on an (m,n)-semiring (S, f, g). Then, the congruence class of x ∈ S is
denoted by xρ and is defined by xρ = {y ∈ S | (x, y) ∈ ρ}. The set of all congruence classes of
S is denoted by S/ρ. Now, we define two operations on S/ρ as follows:

f(a1ρ, . . . , amρ) = f(am1 )ρ and g(b1ρ, . . . , bnρ) = g(bn1 )ρ,

for all a1, . . . , am, b1, . . . , bn ∈ S.

Theorem 2.5. Let (S, f, g) be an (m,n)-semiring. Then, (S/ρ, f, g) is an (m,n)-semiring under
the above operations.

Proof. Suppose that a1ρ, a2ρ, . . . , amρ are elements of S/ρ. Then, for every permutation η at
{1, 2, . . . ,m},

f(a1ρ, a2ρ, . . . , amρ) = f(a1, . . . , am)ρ = f(aη(1), aη(2), . . . , aη(m))ρ
= f(aη(1)ρ, aη(2)ρ, . . . , aη(m)ρ).

So, S/ρ is commutative under addition.
For each 1 ≤ i ≤ j ≤ m, we have

f(a1ρ, a2ρ, . . . , ai−1ρ, f(aiρ, ai+1ρ, . . . , am+i−1ρ), am+iρ, am+i+1ρ, a2m−1ρ)
= f(a1ρ, a2ρ, . . . , aj−1ρ, f(ajρ, aj+1ρ, . . . , am+j−1ρ), am+jρ, am+j+1ρ, . . . , a2m−1ρ).

So, addition is associative on S/ρ. Similarly, multiplication is associative.
Finally, we have the distributive law,

g(a1ρ, a2ρ, . . . , ai−1ρ, f(b1ρ, b2ρ, . . . , bmρ), ai+1ρ, ai+2ρ, . . . , anρ)
= f(g(a1ρ, a2ρ, . . . , ai−1ρ, b1ρ, ai+1ρ, . . . , anρ), g(a1ρ, a2ρ, . . . , ai−1ρ, b2ρ, ai+1ρ, . . . , anρ),
. . . , g(a1ρ, a2ρ, . . . , ai−1ρ, bmρ, ai+1ρ, . . . , anρ)).

Therefore, S/ρ is an (m,n)-semiring. �

Lemma 2.5. Let (R, f, g) be an (m,n)-semiring with 1 ̸= 0. Then, R has at least one
k-maximal ideal.

Proof. Since {0} is a proper k-ideal of R, it follows that the set ∆ of all proper k-ideals of R is
not empty. Of course, the relation of inclusion, ⊆, is a partial order on ∆, and by using Zorn’s
lemma, a maximal k-ideal of R is just a maximal member of the partially ordered set (∆,⊆). �
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3. Primary ideal

Definition 3.1. Let (R, f, g) be an (m,n)-semiring and I be an ideal of R. The union of all
ideals B such that Bs ⊆ I for some positive integer l where s = l(2n− 1) or s = l(2n+ 1) is an
ideal of R and is called the radical of I which we shall denote by N(I).

Definition 3.2. Let (R, f, g) be an (m,n)-semiring and I an ideal of R. The set of all
elements x ∈ R such that xs ∈ I for some positive integer l where s = l(2n− 1) or s = l(2n+1)
is said to be the nil-radical of I which we shall denote by P (I).

If I is 0 in the previous definitions we use the symbols N and P for the radicals (radical and
nil-radical) of 0.

From the above preliminary discussion and definitions, we introduce the following definition.
Definition 3.3. A proper ideal I of an (m,n)-semiring (R, f, g) is called i-N -primary pro-

vided a1, a2, . . . , an ∈ R with g(a1 . . . an) ∈ I implies ai ∈ I or j ̸= i and
j ∈ {1, 2, . . . , n}, aj ∈ N(I).

The ideal I is said to be N -primary provided it is i-N -primary for all i ∈ {1, 2, . . . , n}.
If we substitute the symbol P for N in the definition, we have the definitions of i-P -primary

and P -primary.
Remark 3.1. It is clear that prime ideal in an (m,n)-semiring (R, f, g) is N -primary, but

the converse is not true in general (similarly, for P -primary).
Definition 3.4. A proper ideal I of an (m,n)-semiring (R, f, g) is called weakly i-N -primary

provided a1, a2, . . . , an ∈ R with 0 ̸= g(a1, a2, . . . , an) ∈ I implies ai ∈ I or j ̸= i and j ∈
{1, 2, . . . , n}, aj ∈ N(I).

The ideal I is called weakly N -primary provided it is weakly i-N -primary for all i ∈ {1, 2, . . . , n}.
If we substitute the symbol P for N in the definition, we have the definitions of weakly

i-P -primary and weakly P -primary.
Remark 3.2. It is easy to see N -primary ideal is weakly N -primary, but the converse is not

true, because 0 is always weakly N -primary ideal (by definition) but not necessarily N -primary.
So, weakly N -primary ideal need not to be N -primary (similarly, for P -primary ideal).

Remark 3.3. It is clear that every weakly prime ideal of an (m,n)-semiring (R, f, g) is weakly
N -primary, but the converse is not true in general (similarly, for weakly P -primary ideal).

Lemma 3.1. Let I be a weakly P -primary subtractive ideal of an (m,n)-semiring (R, f, g).
If I is not a P -primary ideal, then In = {g(a1, a2, . . . , an) | a1, a2, . . . , an ∈ I} = 0.

Proof. Suppose that In ̸= 0. We show that I is a P -primary ideal of R. Suppose that
g(a1, a2, . . . , an) ∈ I where a1, a2, . . . , an ∈ R. If g(a1, a2, . . . , an) ̸= 0, then there exist i ∈
{1, 2, . . . , n}, ai ∈ I or ai ∈ P (I). Assume that g(a1, a2, . . . , an) = 0. If 0 ̸= g(a1, a2, . . . , an−1, I) ⊆
I, then there is an element dn of I such that g(a1, a2, . . . , an−1, dn) ̸= 0. Hence,

0 ̸= g(a1, a2, . . . , an−1, dn) = g(a1, a2, . . . , an−1, f(dn, a
(m−1)
n ) ∈ I.

Then, either ai ∈ I for i ∈ {1, 2, . . . , n − 1} or f(dn, a
(m−1)
n ) ∈ P (I). Thus, ai ∈ I for i ∈

{1, 2, . . . , n− 1} or an ∈ P (I). Therefore, I is a P -primary ideal.
Suppose that g(a1, a2, . . . , an−1, I) = 0. If g(a1, a2, . . . , an−2, I, an) ̸= 0, then there exists

dn−1 ∈ I such that g(a1, a2, . . . , an−2, dn−1, an) ̸= 0. Now, we have

0 ̸= g(a1, a2, . . . , an−2, f(a
(m−1)
n−1 , dn−1), an) ∈ I.

So, we obtain ai ∈ I for i ∈ {1, 2, . . . , n − 2, n} or an−1 ∈ P (I), and hence I is a P -primary
ideal. Thus, we assume that

g(a1, a2, . . . , an−2, I, an) = 0.

Also, we can prove that g(I, a2, . . . , an−2, an−1, an) = 0. Since In ̸= 0, it follows that there
are elements c1, c2, . . . , cn ∈ I such that g(c1, c2, . . . , cn) ̸= 0. Then, 0 ̸= g(c1, c2, . . . , cn) =

g(f(a
(m−1)
1 , c1), f(a

(m−1)
2 , c2), . . . , f(a

(m−1)
n , cn) ∈ I, so either ai ∈ I or ai ∈ P (I) for i ∈

{1, 2, . . . , n}, and hence I is a P -primary ideal. �
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Theorem 3.1. Let I be a proper subtractive ideal of an (m,n)-semiring (R, f, g). If for ideals
A1, A2, . . . , An of R with 0 ̸= g(A1, A2, . . . , An) ⊆ I implies Ai ⊆ I or for some positive integer
k, s = k(2n − 1) or s = k(2n + 1), As

i = {asi ∈ R| ai ∈ Ai} ⊆ I, then I is a weakly P -primary
ideal of R.

Proof. Suppose that I is a proper subtractive ideal of an (m,n)-semiring (R, f, g) and let 0 ̸=
g(a1, a2, . . . an) ∈ I, where a1, a2, . . . , an ∈ R. Then, 0 ̸= g(⟨a1⟩, ⟨a2⟩, . . . , ⟨an⟩) ⊆ I. Hence,
⟨ai⟩ ⊆ I or ⟨asi ⟩ ⊆ I for some positive integer k, where s = k(2n−1) or s = k(2n+1). So, ai ∈ I
or asi ∈ I for some positive integer k, where s = k(2n − 1) or s = k(2n + 1). This implies that
ai ∈ P (I). Therefore, I is a weakly P -primary ideal of R. �

Lemma 3.2. If I is a weakly P -primary subtractive ideal that is not a P -primary over a
semiring R, then P (I) = P .

Proof. Assume that I is a weakly P -primary subtractive ideal that is not a P -primary over an
(m,n)-semiring (R, f, g). Then, it is clear that P ⊆ P (I). Now, by Lemma 3.5, In = 0 gives
I ⊆ P , and hence P (I) ⊆ P . Therefore, P (I) = P . �

4. Homomorphism of (m,n)-semirings

We recall the following definition from [1].
Definition 4.1. A mapping η from an (m,n)-semiring (R, f, g) into an (m,n)-semiring

(R′, f ′, g′) is called a homomorphism if

g(a1, a2, . . . , an)η = g′(a1η, a2η, . . . , anη),
f(a1, a2, . . . , am)η = f ′(a1η, a2η, . . . , amη),

for each a1, . . . , am ∈ R.
An isomorphism is a one-to-one homomorphism. The semiringsR andR′ are called isomorphic

(denoted by R ∼= R′) if there exists an isomorphism from R onto R′.
Definition 4.2. A homomorphism η from the semiring (R, f, g) onto the semiring (R′, f ′, g′)

is said to be maximal if for each a ∈ R′ there exists ca ∈ η−1({a}) such that

f(x, ker(η)(m−1)) ⊂ f(ca, ker(η)
(m−1)),

for each x ∈ η−1({a}), where ker(η) = {x ∈ R | xη = 0}.
Lemma 4.1. Let η be a homomorphism from the semiring (R, f, g) onto the semiring

(R′, f ′, g′). If η is maximal, then ker(η) is a Q-ideal, where Q = {ca}a∈R′ .

Proof. It is clear that
∪

a∈R f(ca, ker(η)
(m−1)) = R. Let ca and cb be distinct elements in Q and

a ̸= b. Assume that

f(ca, ker(η)
(m−1)) ∩ f(cb, ker(η)

(m−1)) ̸= ∅.

Thus, there exist k1, . . . , km−1, k
′
1, . . . , k

′
m−1 ∈ ker(η) such that f(ca, k

m−1
1 ) = f(cb, k

′m−1
1 ).

Hence, we have

a = f ′(caη, k1η, . . . , km−1η) = (f(ca, k1, . . . , km−1))η
= (f(cb, k

′
1, . . . , k

′
m−1))η = f ′(cbη, k

′
1η, . . . , k

′
m−1η) = b,

a contradiction. Now, it follows that ker(η) is a Q-ideal. �

Lemma 4.2. Let R,R′, η and Q be as stated in Lemma 4.3 and ca1 , ca2 , . . . , cam , cam+1

elements in Q.

(1) If f(f(ca1 , . . . , cam), ker(η)
(m−1)) ⊂ f(cam+1 , ker(η)

(m−1)), then f(a1, a2, . . . , am) = am+1.

(2) If f(g(ca1 , ca2 , . . . , can), ker(η)
(m−1)) ⊂ f(can+1 , ker(η)

(m−1)), then g(a1, a2, . . . , an) =
an+1.
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Proof. (1) Since

f(ca1 , ca2 , . . . , cam) ∈ f(f(ca1 , ca2 , . . . , cam), ker(η)
(m−1)) ⊂ f(cam+1 , ker(η)

(m−1)),

it follows that there exists k1, . . . , km−1 ∈ ker(η) such that f(ca1 , ca2 , . . . , cam) = f(cam+1 , k
m−1
1 ).

Thus, we obtain

f ′(a1, a2, . . . , am) = f ′(ca1η, ca2η, . . . , camη) = (f(ca1 , ca2 , . . . , cam))η
= (f(cam+1 , k

m−1
1 ))η = f ′(cam+1η, k1η, . . . , km−1η) = am+1.

(2) Since

g(ca1 , ca2 , . . . , can) ∈ f(g(ca1 , ca2 , . . . , can), ker(η)
(m−1)) ⊆ f(can+1 , ker(η)

(m−1)),

it follows that there exists k1, . . . , km−1 ∈ ker(η) such that g(ca1 , ca2 , . . . , can) = f(can+1 , k
m−1
1 ).

Thus, we have

g′(a1, a2, . . . , an) = g′(ca1η, ca2η, . . . , canη) = (g(ca1 , ca2 , . . . , can))η
= (f(can+1 , k

m−1
1 ))η = f ′(can+1η, k1η, . . . , km−1η) = an+1.

�

5. Γ-(m,n)-semiring

We begin with the following definition.
Definition 5.1. Let (S, f) be a commutative m-semigroup and Γ be a non-empty set. Then,

S is called a Γ-(m,n)-semiring, if (S, f, g) is a Γ-semigroup, that is, S satisfies the identities for
all a1, a2, . . . , an, b1, b2, . . . , bm ∈ S and x1, x2, . . . , xm ∈ Γ,

g(g(an−2
1 , x, an), y, b

n
3 ) = g(an−2

1 , x, g(an, y, b
n
3 ))

g(an−2
1 , x, f(b1, b2, . . . , bm)) = f(g(an−2

1 , x, b1), g(a
n−2
1 , x, b2), . . . , g(a

n−2
1 , x, bm))

g(f(b1, b2, . . . , bm), x, an3 ) = f(g(b1, x, a
n
3 ), g(b2, x, a

n
3 ), . . . , g(bm, x, an3 ))

g(ai−1
1 , f(x1, x2, . . . , xm), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), g(a

i−1
1 , x2, a

n
i+1), . . . , g(a

i−1
1 , x1, a

n
i+1)).

A Γ-(m,n)-semiring S is called commutative, if for all a1, a2, . . . , an ∈ S, α ∈ Γ, i ∈ {1, . . . , n}
and every permutation η,

g(ai−1
1 , α, ani+1) = g(aη(1), aη(2), . . . , aη(i−1)α, aη(i+1), . . . , aη(n)).

Example 5.1. We have known that (N, f) is a semigroup. Let Γ = {1, 2, 3}. For all
i ∈ {1, . . . , n} define a mapping

h : N× N× . . .× N︸ ︷︷ ︸
i−1

×Γ× N× N× . . .× N︸ ︷︷ ︸
n−i

−→ N

by h(ai−1
1 , r, ani+1) = g(ai−1

1 , r, ani+1) for all a1, a2, . . . , an ∈ N and r ∈ Γ. Then, N is a Γ-(m,n)-
semiring.

Example 5.2. Let R be the additive commutative semiring of all m × n matrices over the
set of all non-negative integers and let Γ be the additive commutative semigroup of all n ×m
matrices over the same set. Then, we observe that R is a Γ-(2, 2)-semiring.

Example 5.3. Let (S, f, g) be an arbitrary (m,n)-semiring and Γ be a non-empty set. We
define a mapping

h : N× N× . . .× N︸ ︷︷ ︸
i

×Γ× N× N× . . .× N︸ ︷︷ ︸
n−i

−→ N

by h(ai1, r, a
n
i+1) −→ g(a1, a2, . . . , an) for all a1, a2, . . . , an ∈ S and r ∈ Γ. It is easy to see that

S is a Γ-(m,n)-semiring.
Thus, an (m,n)-semiring can be considered as a Γ-(m,n)-semiring.
Example 5.4. Let (S, f, g) be a Γ-(m,n)-semiring and r a fixed element in Γ. We define

h(a1, a2, . . . , an) = g(ai−1
1 , r, ani+1) for all a1, a2, . . . , an ∈ S. We can show that (S, f, g) is an

(m,n)-semiring.
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Definition 5.1. A proper ideal P of a Γ-(m,n)-semiring (S, f, g) is said to be prime if for
any n ideals H1,H2, . . . , Hn of S and i ∈ {1, . . . , n}, g(H i−1

1 ,Γ,Hn
i+1) ⊆ P implies that Hi ⊆ P

for some i.
Let A1, A2, . . . , An be subsets of a Γ-(m,n)-semiring (S, f, g) and ∆ ⊆ Γ. We denote by

g(Ai−1
1 ,∆, An

i+1) the subset of S consisting of all finite sums of the form∑
g(a1j , a2j , . . . , ai−1j , αj , ai+1j , . . . , anj ),

where a1j ∈ A1, a2j ∈ A2, . . . , ai−1j ∈ Ai−1, ai+1j ∈ Ai+1,. . . , anj ∈ An and αj ∈ Γ.
Definition 5.2. A non-empty subset T of a Γ-(m,n)-semiring (S, f, g) is called a subΓ-(m,n)-

semiring of S if T is a subsemigroup of (S, f) and g(ai−1
1 , r, ani+1) ∈ T for all a1, a2, . . . , an ∈ T

and r ∈ Γ.
Definition 5.3. Let S be a Γ-(m,n)-semiring. An element e ∈ S is called an identity of S if

g(e(i−1), α, e(n−i)) = e for all α ∈ Γ.
Definition 5.4. Let X be a non-empty subset of a Γ-(m,n)-semiring S. By the term left

ideal (X)l (resp. right ideal (X)r, ideal (X)i) of S generated by X, we mean the smallest left
ideal (resp. right ideal, ideal) of S containing X, that is the intersection of all left ideals (resp.
right ideals, ideals) of S containing X.

Definition 5.5. Let S be a Γ-(m,n)-semiring (S, f, g). By a quasi-ideal Q we mean a

subsemigroup Q of (S, f) such that g(S(i−1),Γ, S(n−i−1), Q) ∩ g(Q,S(i−2),Γ, S(n−i)) ⊆ Q.

It is clear that each quasi-ideal of S is a subΓ-(m,n)-semiring of S. In fact, g(Q(i−1),Γ, Q(n−i)) ⊆
g(S(i−1),Γ, S(n−i−1), Q) ∩ g(Q,S(i−2),Γ, S(n−i)) ⊆ Q.

Definition 5.6. Let N be a set of natural numbers and Γ = 2N. Then, N is a Γ-(m,n)-
semiring and A = 3N is a quasi-ideal of Γ-(m,n)-semiring N.

Definition 5.7. Let X be a non-empty subset of a Γ-(m,n)-semiring S. By quasi-ideal (X)q
of S generated by X, we mean the smallest quasi-ideal of S containing X, that is the intersection
of all quasi-ideals of S containing X.

Definition 5.8. A Γ-(m,n)-semiring S is said to be a quasi-simple Γ-(m,n)-semiring if S is
the unique quasi-ideal of S, then S has no proper quasi-ideal.

Definition 5.9. Let Q be a quasi-ideal of Γ-(m,n)-semiring (S, f, g). Then, Q is said to
be minimal quasi-ideal of Γ-(m,n)-semiring (S, f, g) if Q does not contain any other proper
quasi-ideal of S.

Theorem 5.1. For each non-empty subset X of S the following statements hold:

(1) g(S(i−1),Γ, S(n−i−1), X) is a left ideal,

(2) g(X,S(i−1),Γ, S(n−i−1)) is a right ideal,

(3) g(S(i),Γ, S(j), X, S(k),Γ, S(n−i−j−k−3)) is an ideal of S.

Proof. (1) Suppose that

g(S(i−1),Γ, S(n−i−1), X)

= {
m∑
j=1

g(a1j , a2j , . . . , a(i−1)j , αj , a(i+1)j , a(i+2)j , . . . , a(n−1)j , xi) | aij ∈ S,

i = 1, 2, 3, . . . , n, αi ∈ Γ, xi ∈ X}.

Let a1, a2, . . . , am ∈ g(S(i−1),Γ, S(n−i−1), X). Then,

f(a1, a2, . . . , am)

=
k∑

j=1
f(g(b11j , b12j , . . . , b1(i−1)j

, α1j , b1(i+1)j
, . . . , b1(n−1)j

, xj),

. . . ,
s∑

l=1

g(bm1j , bm2j , . . . , bm(i−1)j
, α1j , bm(i+1)j

, . . . , bm(n−1)j
xj)),

implies f(a1, a2, . . . , am) is a finite sum. Hence, f(a1, a2, . . . , am) ∈ g(S(i−1),Γ, S(n−i−1), X)

and this shows g(S(i−1),Γ, S(n−i−1), X) is a subsemigroup of (S, f). For t1, t2, . . . , tn ∈ S, a ∈
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g(S(i−1),Γ, S(n−i−1), X) and β ∈ Γ, we have

g(ti−1
1 , β, tn−1

i+1 , a) = g(ti−1
1 , β, tn−1

i+1 ,
∑k

j=1 g(b1j , b2j , . . . , b(i−1)j , α1j , b(i+1)j , . . . , b(n−1)j , xj))

=
k∑

j=1
g(ti−1

1 , β, tn−1
i+1 , g(b1j , b2j , . . . , b(i−1)j , α1j , b(i+1)j , . . . , b(n−1)j , xj))

=
k∑

j=1
g(g(ti−1

1 , β, tn−1
i+1 , b1j), b2j , . . . , b(i−1)j , α1j , b(i+1)j , . . . , b(n−1)j , xj))

∈ g(S(i−1),Γ, S(n−i−1), X).

Therefore, g(S(i−1),Γ, S(n−i−1), X) is a left ideal of S.

(2) As in (1), we can prove that g(X,S(i−1),Γ, S(n−i−1)) is a right ideal of S.

(3) By (1), g(S(i−1),Γ, S(n−i−1), X) is a left ideal of S. Hence, we have

g(S(i),Γ, S(j), X, S(k),Γ, S(n−i−j−k−3)) is a right ideal of S by (2).

Similarly, by (2), g(X,S(i−1),Γ, S(n−i−1)) is a right ideal of S. Hence,

g(S(i),Γ, S(j), X, S(k),Γ, S(n−i−j−k−3)) is a left ideal of S by (1).

Therefore, we conclude that g(S(i),Γ, S(j), X, S(k),Γ, S(n−i−j−k−3)) is an ideal of S. �
Theorem 5.2. Arbitrary intersection of quasi-ideals of S is either empty or a quasi-ideal of S.

Proof. Suppose that T =
∩
i∈∆

{Qi | Qi is a quasi-ideal of S }, where ∆ denotes any indexing set,

is a non-empty set. T is a subsemigroup of (S, f). Furthermore,

g(S(i−1),Γ, S(n−i−1), T ) ∩ g(T, S(i−1),Γ, S(n−i−1))

= g(S(i−1),Γ, S(n−i−1), (
∩
i∈∆

Qi)) ∩ g((
∩
i∈∆

Qi), S
(i−1),Γ, S(n−i−1))

⊆ g(Qi, S
(i−1),Γ, S(n−i−1)) ∩ g(S(i−1),Γ, S(n−i−1), Qi) ⊆ Qi,

for all i ∈ ∆. Hence, we have

g(S(i−1),Γ, S(n−i−1), T ) ∩ g(T, S(i−1),Γ, S(n−i−1)) ⊆
∩
i∈∆

Qi = T.

This shows that T is a quasi-ideal of S. �
Theorem 5.3. For each non-empty subset X of S, the set

g(S(i−1),Γ, S(n−i−1), X) ∩ g(X,S(i−1),Γ, S(n−i−1))

is a quasi-ideal of S.

Proof. Suppose that

g(S(i−1),Γ, S(n−i−1), g(S(i−1),Γ, S(n−i−1), X))

∩g(g(X,S(i−1),Γ, S(n−i−1)), S(i−1),Γ, S(n−i−1))

= g(g(S(i−1),Γ, S(n−i)), S(i−2),Γ, S(n−i−1), X)

∩g(X,S(i−1),Γ, S(n−i−2), g(S(i),Γ, S(n−i−1)))

⊆ g(S(i−1),Γ, S(n−i−1), X) ∩ g(X,S(i−1),Γ, S(n−i−1)).

Therefore, g(S(i−1),Γ, S(n−i−1), X) ∩ g(X,S(i−1),Γ, S(n−i−1)) is a quasi-ideal of S. �
Theorem 5.4. If Q is a quasi-ideal of Γ-(m,n)-semiring (S, f, g) and T is a
subΓ-(m,n)-semiring of Γ-(m,n)-semiring (S, f, g), then Q ∩ T is a quasi-ideal of T .

Proof. Since Q ∩ T is a subsemigroup of (S, f) and Q ∩ T ⊆ T , we get Q ∩ T is subsemigroup
of (T, f). Furthermore, we have

g(T (i−1),Γ, T (n−i−1), (T ∩Q)) ∩ g((T ∩Q), T (i−1),Γ, T (n−i−1))

⊆ g(T (i−1),Γ, T (n−i−1), Q) ∩ g(Q,T (i−1),Γ, T (n−i−1))

⊆ g(S(i−1),Γ, S(n−i−1), Q) ∩ g(Q,S(i−1),Γ, S(n−i−1)) ⊆ Q,
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and
g(T (i−1),Γ, T (n−i−1), (T ∩Q)) ∩ g((T ∩Q), T (i−1),Γ, T (n−i−1))

⊆ g(T (i−1),Γ, T (n−i)) ∩ g(T (i),Γ, T (n−i−1)) ⊆ T ∩ T = T.

These imply that

g(T (i−1),Γ, S(n−i−1), (T ∩Q)) ∩ g((T ∩Q), T (i−1),Γ, S(n−i−1)) ⊆ Q ∩ T.

This shows that Q ∩ T is a quasi-ideal of T . �
Theorem 5.5. Intersection of a right ideal and a left ideal of Γ-(m,n)-semiring S is a quasi-
ideal of S.

Proof. Suppose that R is a right ideal and L is a left ideal of S. Then, R∩L is a subsemigroup
of (S, f). Furthermore, we have

g(S(i),Γ, S(n−i−2), (L ∩R)) ∩ g((L ∩R), S(j),Γ, S(n−j−2))

= g(S(i),Γ, S(n−i−2), L) ∩ g(S(i),Γ, S(n−i−2), R) ∩ g(L, S(j),Γ, S(n−j−2)) ∩ g(R,S(j),Γ, S(n−j−2))

⊆ g(S(i),Γ, S(n−i−2), L) ∩ g(R,S(j),Γ, S(n−j−2)) ⊆ L ∩R.

Hence, R ∩ L is a quasi-ideal of S. �
Theorem 5.6. Let L be a left ideal of Γ-(m,n)-semiring S. Then, for any idempotent element

e of S, g(e, S(i−2),Γ, S(n−i−1), L) is a quasi-ideal of S.

Proof. First, we prove that g(e, S(i−2),Γ, S(n−i−1), L) = L∩g(e, S(i−2),Γ, S(n−i)). We know that

g(g(e, S(i−2),Γ, S(n−i)), . . . , g(e, S(i−2),Γ, S(n−i))︸ ︷︷ ︸
n

) ⊆ g(e, S(i−2),Γ, S(n−i)).

Hence, g(e, S(i−2),Γ, S(n−i)) is a subsemigroup of (S, f). Since

g(g(e, S(i−2),Γ, S(n−i)), S(i−1),Γ, S(n−i−1))

= g(e, S(i−2),Γ, S(n−i−1), g(S(i),Γ, S(n−i−1))) ⊆ g(e, S(i−2),Γ, S(n−i)),

g(e, S(i−2),Γ, S(n−i)) is a right ideal of S. Since e ∈ S and L is a left ideal of S, it follows that

g(e, S(i−2),Γ, S(n−i−1), L) ⊆ L. Furthermore, g(e, S(i−2),Γ, S(n−i−1), L) ⊆ g(e, S(i−2),Γ, S(n−i)).
This implies that

g(e, S(i−2),Γ, S(n−i−1), L) ⊆ L ∩ g(e, S(i−2),Γ, S(n−i)).

For the reverse inclusion let a ∈ L ∩ g(e, S(i−2),Γ, S(n−i)). Hence,

a =
n∑

j=1
g(e, x2j , x3j , . . . , x(i−1)j , αj , x(i+1)j , . . . , xnj).

Thus, we obtain

a =
n∑

j=1
g(e, x2j , x3j , . . . , x(i−1)j , αj , x(i+1)j , . . . , xnj)

=
n∑

j=1
g(g(e(i−1), α, e(n−i)), x2j , x3j , . . . , x(i−1)j , αj , x(i+1)j , . . . , xnj)

= g(e(i−1), α, e(n−i−1),
n∑

j=1
g(e, x2j , x3j , . . . , x(i−1)j , αj , x(i+1)j , . . . , xnj)

= g(e(i−1), α, e(n−i−1), a) ∈ g(e, S(i−2),Γ, S(n−i−1), L).

This shows that
L ∩ g(e, S(i−2),Γ, S(n−i)) ⊆ g(e, S(i−2),Γ, S(n−i−1), L).

Hence, L ∩ g(e, S(i−2),Γ, S(n−i)) = g(e, S(i−2),Γ, S(n−i−1), L). Since L is a left ideal and

g(e, S(i−2),Γ, S(n−i))

is a right ideal of S, we conclude that g(e, S(i−2),Γ, S(n−i−1), L) is a quasi-ideal of S. �
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Theorem 5.7. Let R be a right ideal of Γ-(m,n)-semiring (S, f, g). Then, for any idempotent
element e of S,

g(R,S(i−2),Γ, S(n−i−1), e)

is a quasi-ideal of S.

Proof. The proof is similar to the proof of Proposition 5.6. �

Theorem 5.8. Let S be a Γ-(m,n)-semiring. Then, for any idempotent elements e, f of S,

g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f)

is a quasi-ideal of S.

Proof. First, we prove that

g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f) = g(e, S(i),Γ, S(n−i−2)) ∩ g(S(j),Γ, S(n−j−2), f).

g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f) = g(g(e, S(i),Γ, S(n−i−2)), S(j−1),Γ, S(n−j−2), f)

⊆ g(e, S(i),Γ, S(n−i−2))

and

g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f) = g(e, S(i),Γ, S(n−i−3), g(S(j),Γ, S(n−j−2), f))

⊆ g(S(j),Γ, S(n−j−2), f).

Thus, we obtain

g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f) ⊆ g(e, S(i),Γ, S(n−i−2)) ∩ g(S(j),Γ, S(n−j−2), f).

Suppose that a ∈ g(S(j),Γ, S(n−j−2), f) ∩ g(e, S(i),Γ, S(n−i−2)). Then,

a =
n∑

i=1
g(x1i , x2i , . . . , xji , αi, x(j+1)i , . . . , x(n−2)i , f)

=
n∑

i=1
g(x1i , x2i , . . . , xji , αi, x(j+1)i , . . . , x(n−2)i , g(f

(k), α, f (n−k−1)))

=
n∑

i=1
g(g(x1i , x2i , . . . , xji , αi, x(j+1)i , . . . , x(n−2)i , f), f

(k−1), α, f (n−k−1))

= g(a, f (k−1), α, f (n−k−1)).

Hence, a = g(a, f (k−1), α, f (n−k−1)) for all α ∈ Γ. Since a ∈ g(e, S(i−2),Γ, S(n−i)), α ∈ Γ, it
follows that

a = g(a, f (k−1), α, f (n−k−1)) ∈ g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f).

We obtain

g(e, S(i),Γ, S(n−i−2)) ∩ g(S(j),Γ, S(n−j−2), f) ⊆ g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f).

Thus, we have

g(e, S(i),Γ, S(n−i−2)) ∩ g(S(j),Γ, S(n−j−2), f) = g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f).

Since g(S(j),Γ, S(n−j−2), f) is a left ideal and g(e, S(i),Γ, S(n−i−2)) is a right ideal of S, we get

g(e, S(i),Γ, S(n−i−2)) ∩ g(S(j),Γ, S(n−j−2), f) = g(e, S(i),Γ, S(j−i−2),Γ, S(n−j−2), f)

is a quasi-ideal of S. �

Theorem 5.9. If (S, f, g) is a Γ-(m,n)-semiring, then S is a quasi-simple Γ-(m,n)-semiring if

and only if g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(j),Γ, S(n−j−2)) = S for all a ∈ S.
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Proof. Suppose that S is a quasi-simple Γ-(m,n)-semiring. For every a ∈ S, g(S(i),Γ, S(n−i−2), a)

and g(a, S(j),Γ, S(n−j−2)) are left and right ideals of S, respectively. Therefore,

g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(j),Γ, S(n−j−2))

is a quasi-ideal of S. Furthermore, g(S(i),Γ, S(n−i−2), a) ⊆ S and g(a, S(j),Γ, S(n−j−2)) ⊆ S

imply g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(j),Γ, S(n−j−2)) ⊆ S. Since S is a quasi-simple Γ-(m,n)-

semiring, it follows that S = g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(i),Γ, S(n−i−2)).

Conversely, suppose that S = g(S(i),Γ, S(n−i−2), a)∩ g(a, S(j),Γ, S(n−j−2)). Let Q be a quasi-
ideal of S. For any q ∈ Q, by assumption we have,

S = g(S(i),Γ, S(n−i−2), q) ∩ g(q, S(j),Γ, S(n−j−2)) ⊆
g(S(i),Γ, S(n−j−2), Q) ∩ g(Q,S(j),Γ, S(n−j−2)) ⊆ Q.

Therefore, S ⊆ Q. Thus S = Q. Hence, S is a quasi-simple Γ-(m,n)-semiring. �
Theorem 5.10. The intersection of a minimal right ideal and a minimal left ideal of a Γ-(m,n)-
semiring S is a minimal quasi-ideal of S.

Proof. Let R and L denote the minimal right ideal and the minimal left ideal of S, respectively.
Define Q = R∩L. Then, Q is a quasi-ideal of S. Let Q1 be a quasi-ideal of S such that Q1 ⊆ Q.
Then, g(S(i),Γ, S(n−i−2), Q1) is a left ideal and g(Q1, S

(i),Γ, S(n−i−2)) is a right ideal of S. So,
Q1 ⊆ L implies

g(S(i),Γ, S(n−i−2), Q1) ⊆ g(S(i),Γ, S(n−i−2), L) ⊆ L.

Also, Q1 ⊆ R implies

g(Q1, S
(j),Γ, S(n−j−2)) ⊆ g(R,S(j),Γ, S(n−j−2)) ⊆ R.

By the minimality of R and L, we have

g(S(i),Γ, S(n−i−2), Q1) = L

and
g(Q1, S

(j),Γ, S(n−j−2)) = R.

Therefore, we have

Q = R ∩ L = g(S(i),Γ, S(n−i−2), Q1) ∩ g(Q1, S
(j),Γ, S(n−j−2)) ⊆ Q1.

Hence, Q1 = Q. This shows that Q is a minimal quasi-ideal of S. �
Theorem 5.11. If Q is a minimal quasi-ideal of Γ-(m,n)-semiring S, then any two non-zero
elements of Q generate the same left (right) ideal of S.

Proof. Let Q be a minimal quasi-ideal of S and x be a non-zero element of Q. Then, (x)l,
the left ideal generated by x, is a quasi-ideal of S. Hence, (x)l ∩ Q is a quasi-ideal of S. As
(x)l ∩Q ⊆ Q and Q is a minimal quasi-ideal of S we get (x)l ∩Q = Q. Thus, Q ⊆ (x)l. For any
non-zero element y of Q, y ∈ Q implies y ∈ (x)l. Therefore, (y)l ⊆ (x)l. Similarly, we can show
that (x)l ⊆ (y)l. Hence, (x)l = (y)l.

In the same way, we can prove that any two non-zero elements of Q generate the same right
ideal of S. �
Theorem 5.12. Let Q be a quasi-ideal of Γ-(m,n)-semiring S. If Q itself is a quasi-simple
Γ-(m,n)-semiring, then Q is a minimal quasi-ideal of S.

Proof. Since Q is a quasi-ideal of S, it follows that Q is a subΓ-(m,n)-semiring of S. Suppose
that Q is a quasi-simple Γ-(m,n)-semiring. Let Q1 be a quasi-ideal of S such that Q1 ⊆ Q.
Then, we obtain

g(Q(i),Γ, Q(n−i−2), Q1) ∩ g(Q1, Q
(i),Γ, Q(n−i−2)) ⊆

g(S(i),Γ, S(n−i−2), Q1) ∩ g(Q1, S
(i),Γ, S(n−i−2)) ⊆ Q1.
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Therefore, Q1 is a quasi-ideal of Q. Since Q1 ⊆ Q, Q1 is a quasi-ideal of Q and Q is a quasi-
simple Γ-(m,n)-semiring, it follows that Q1 = Q. Therefore, Q is a minimal quasi-ideal of
S. �

Theorem 5.13. Every minimal quasi-ideal Q of Γ-(m,n)-semiring (S, f, g) is represented as

Q = g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(i),Γ, S(n−i−2)),

where a is any element of Q, g(S(i),Γ, S(n−i−2), a) and g(a, S(i),Γ, S(n−i−2)) is a minimal left
ideal and a minimal right ideal of S, respectively.

Proof. Suppose that Q is a minimal quasi-ideal of S and a ∈ Q. Then, g(S(i),Γ, S(n−i−2), a) and

g(a, S(i),Γ, S(n−i−2)) is a left ideal and a right ideal of S, respectively. Therefore, we conclude

that g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(i),Γ, S(n−i−2)) is a quasi-ideal of S. Then

g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(i),Γ, S(n−i−2)) ⊆ g(S(i),Γ, S(n−i−2), Q) ∩ g(Q,S(i),Γ, S(n−i−2))
⊆ Q.

By the minimality of Q, we obtain Q = g(S(i),Γ, S(n−i−2), a) ∩ g(a, S(i),Γ, S(n−i−2)). Now, in

order to show that g(S(i),Γ, S(n−i−2), a) is a minimal left ideal, let L be a left ideal of S such

that L ⊆ g(S(i),Γ, S(n−i−2), a). Then,

g(S(i),Γ, S(n−i−2), L) ⊆ L ⊆ g(S(i),Γ, S(n−i−2), a),

g(S(i),Γ, S(n−i−2), L)∩g(a, S(i),Γ, S(n−i−2)) ⊆ g(S(i),Γ, S(n−i−2), a)∩g(a, S(i),Γ, S(n−i−2)) = Q.

Since g(S(i),Γ, S(n−i−2), L) is a left ideal of S and g(a, S(i),Γ, S(n−i−2)) is a right ideal of S, we

conclude that g(S(i),Γ, S(n−i−2), L) ∩ g(a, S(i),Γ, S(n−i−2)) is a quasi-ideal of S. Furthermore,

since g(S(i),Γ, S(n−i−2), L) ∩ g(a, S(i),Γ, S(n−i−2)) ⊆ Q and Q is minimal quasi-ideal of S, we

have Q = g(S(i),Γ, S(n−i−2), L) ∩ g(a, S(i),Γ, S(n−i−2)) ⊆ g(S(i),Γ, S(n−i−2), L). Now, we have

g(S(i),Γ, S(n−i−2), a) ⊆ g(S(i),Γ, S(n−i−2), Q) ⊆ g(S(i),Γ, S(n−i−2), g(S(i),Γ, S(n−i−2), L))

= g(g(S(i),Γ, S(n−i−1)), S(i−1),Γ, S(n−i−2), L)

⊆ g(S(i),Γ, S(n−i−2), L) ⊆ L.

This shows that g(S(i),Γ, S(n−i−2), a) ⊆ L. Therefore, g(S(i),Γ, S(n−i−2), a) = L. Hence,

g(S(i),Γ, S(n−i−2), a) is a minimal left ideal of S. Similarly, we can prove that g(a, S(i),Γ, S(n−i−2))
is a minimal right ideal of S. �

6. Conclusions

Semirings constitute a natural generalization of rings with broad applications in the math-
ematical foundation of computer sciences. The class of (m,n)-semirings is a generalization of
semirings. We studied special ideals hand homomorphisms of (m,n)-semirings. In particular,
we studied Γ-(m,n)-semirings and investigated their properties.

For future research, one may consider (m,n)-semihyperrings and related algebraic structures
and study their properties.
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