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1. Introduction. 

The theory of boundedness of classical operators of the real analysis, such 

as the maximal operator, fractional maximal operator, Riesz potential and the 

singular integral operators etc, from one Lebesgue space to another one is well 

studied by now. These results have good applications in the theory of partial 

differential equations. However, in the theory of partial differential equations, 

along with Lebesgue spaces, Orlicz spaces also play an important role.  

The Orlicz space were first introduced by Orlicz in [26,27] as 

generalizations of Lebesgue spaces ( )n

p RL . Since then, the theory of Orlicz 

spaces themselves has been well developed and the spaces have been widely used 

in probability, statistics, potential theory, partial differential equations, as well as 

harmonic analysis and some other fields of analysis. 

It is well-known that the commutator is an important integral operator and 

it plays a key role in harmonic analysis. In 1965, Calderon [2,3] studied a kind of 

commutators, appearing in Cauchy integral problems of Lip-line. Let T be a 

Calderon-Zygmund singular integral operator and ( )nRBMOb . A celebrated 

result of Coifman, Rochberg and Weiss [6] states that the commutator operator 

  ( ) bTfbfTfTb −=,  is bounded on ( )n

p RL  for  p1 . The commutator of 

Calderon-Zygmund operators plays an important role in the study of regularity of 

solutions of elliptic partial differential equations of second order (see, for example, 

[4, 5, 10, 11, 13, 14]). 

Consider the half-space ( )= −

+ ,01nn RR . For ( ) n

n Rxxx += ,' , let 

( )nxxx −= ,'~  be the "reected point". Let 
nRx + . The nonsingular integral 

operator T
~

 is defined by 
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( )
( )

( )
+

−=
−

=
nR

nn
xxxdy

yx

yf
xfT ,'~,

~

~
.                                    (1) 

Given a function b  locally integrable on 
nR  and the nonsingular integral 

operator T
~

, we consider the linear commutator of nonsingular integral operator 

 Tb
~

,  defined by setting, for smooth, compactly supported functions f , 

 ( ) ( ) ( )bfTfTbfTb
~~~

, −=  . 

The operator T
~

 and its commutator  Tb
~

,  appear in [4, 5, 10, 21, 22, 23, 

24, 25] in connection with boundary estimates for solutions to elliptic equations.  

The main purpose of this paper is mainly to study the boundedness of the 

commutator of nonsingular integral operator  Tb
~

,  on weighted Orlicz spaces 

( )nRL +



 . 

By BA
~
  we mean that CBA  with some positive constant C  

independent of appropriate quantities. If BA
~
  and BA

~
 , we write BA   and 

say that A  and B  are equivalent. 

 

 

2. Definitions and Preliminary Results. 

 

Even though the ( )n

p RA  class is well known, for completeness, we offer 

the definition of  pA  weight functions. Here and everywhere in the sequel ( )rxB ,  

is the ball in 
nR  of radius r  centered at x  and ( ) n

nrvrxB =,  is its Lebesgue 

measure, where nv  is the volume of the unit ball in 
nR . Let  

( ) 0,:, = rRxrxB n
. 

Definition 2.1. For,  p1 , a locally integrable function 

 )→ ,0: nR  is said to be an pA  weight if 

( ) ( ) 



























−

−
−




1

1

111
sup

p

B

p

B
B

dxx
B

dxx
B

 . 

A locally integrable function  )→ ,0: nR  is said to be an 1A  weight if 

( ) ( ) 
B

BxeaxCdyy
B

..,
1
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for some constant 0C . We define ( ) ( )
1

 =
p

n

p

n RARA . 

For any A  and any Lebesgue measurable set E , we write 

( ) ( )=
E

dxxE  . 

We recall the definition of Young functions. 

Definition 2.2. A function  )  → ,0,0:  is called a Young function, if   is 

convex, left-continuous, ( ) ( ) 00lim
0

==
+→

r
r

 and ( ) =
→

r
r
lim . 

The convexity and the condition ( ) 00 =  force any Young function to be 

increasing. In particular, if there exists ( ) ,0s  such that ( ) = s , then it 

follows that ( ) = r  for sr  . 

Let Y  be the set of all Young functions   such that 

( )  r0       for        r0 . 

If  , then   is absolutely continuous on every closed interval in  ),0  and 

bijective from  ),0  to itself. For a Young function   and  s0 , let 

( ) ( )  ( )=− 0inf:0inf1 srrs . 

A Young function   is said to satisfy the 2 -condition, denoted by 

2 , if 

( ) ( ) 0,2  rrkr  

for some 1k . If 2 , then  . A Young function   is said to satisfy 

the 2 -condition, denoted also by 2 , if 

( ) ( ) 0,
2

1
 rkr

k
r  

for some 1k . The function ( ) rr =  satisfies the 2 -condition and it fails the 

2 -condition. If  p1 , then ( ) prr =  satisfies both the conditions. The 

function ( ) 1−−= rer r
 satisfies the 2 -condition but it fails the 2 -

condition. 

For a Young function  , the complementary function ( )r
~

 is defined by 

( )
( )  )   )





=

−


.

,0,0:sup~

rif

rifssrs
r  

The complementary function 
~

 is also a Young function and it satisfies =
~~

. 

Note that 2  if and only if 2

~
 . 

It is also known that 
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( ) ( ) 0,2
~ 11  −− rrrrr .                                       (2)  

We recall an important pair of indices used for Young functions. For any Young 

function , write 

( )
( )
( )

0,sup
0





=


 t

s

st
th

s

. 

The lower and upper dilation indices of   are defined by 

( )
t

th
i

t log

log
lim

0



→
 +
= and     

( )
t

th
I

t log

log
lim 

→
 =  

respectively. 

A Young function   is said to be of upper type p  (resp. lower type p ) 

for some  ) ,0p , if there exists a positive constant C  such that, for all 

 ) ,1t  (resp.  1,0t ) and  ) ,0s , 

( ) ( )sCtst p . 

Remark 2.1. It is well known that if   is of lower type 0p  and upper type 1p  

with  101 pp , then 
~

 is of lower type 1p  and upper type 0p  and   is 

lower type 0p  and upper type 1p  with  101 pp  if and only if 

22  . 

Definition 2.3. For a Young function   and A , the set 

( ) ( )( ) ( )












− 


nR

n ksomefordxxxfkmeasurablefRL 0:   

is called the weighted Orlicz space. The local weighted Orlicz space ( )nloc RL ,

  is 

defined as the set of all functions f  such that ( )n

B RLf    for all balls
nRB . 

Note that ( )nRL  is a Banach space with respect to the norm 

( )
( )

( )


























= 

n

n

R

LRL
dxx

xf
ff 1:0inf 






 

and  

( )
( ) 
















nR L

dxx
f

xf
1



.                                        (3) 

The following analogue of the Hölder inequality is known. 

( ) ( ) ( )  ~2



LL

R

gfdxxxgxf
n

.                             (4) 
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For the proof of (2) and (4), see, for example [29]. 

For a weight  , a measurable function f  and 0t , let 

( ) ( ) ( )txfRxtfm n = :,,  . 

Definition 2.4. The weak weighted Orlicz space 

( )  −= 




 WL

n fmeasurablefRWL :  

is defined by the norm 

( ) ( )
















=



 1,,sup:0inf
0

t
f

mtff
t

WLRWL n






. 

We can prove the following by a direct calculation: 

( )( )



==

−−
 B

B
WLBLB ,

1
11 




, 

where B  denotes the characteristic function of the B . 

The Hardy-Littlewood maximal operator M  is defined by 

( )
( )

( )
( )
 =


rxB

n

r

Rxdyyf
rxB

xMf
,

0

,
|,|

1
sup  

for a locally integrable function f  on 
nR . 

Let 
M  be the sharp maximal function defined by 

( ) ( ) ( ) ( )

( )
 −=

−





rxB

rxB
r

dyfyfrxBxfM
,

,

1

0

,,sup  

where ( ) ( ) ( ) ( )
( )


−
=

rxB

txB dyyftxBxf
,

1

, , . 

Theorem 2.1. [20] Let  p1 . Then ( ) ( )npnp RLRLM  →:  if and only if 

( )n

p RA . 

Theorem 2.2. [17, Theorem 1] Let   be a Young function with 22  . 

Assume in addition ( )n

i RA


 . Then, there is a constant 1C  such that 

( )( ) ( ) ( )( ) ( )dxxxfCdxxxMf
n nR R

                                 (5) 

for any locally integrable function f . 

With [7, Remark 2.5] and [8, Remark 6.1.3] taken into account, the better 

boundedness result which was proved in [9] runs as follows. 

Theorem 2.3. [9] Let   be a Young function with 2 . Assume in addition 

( )n

i RA


 . Then the modular inequality (5) holds. 
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Remark 2.2. Note that the strong modular inequality (5) implies the corresponding 

norm inequality. Indeed, let (5) hold. Then, using the sublinearity of M , convexity 

of   and (3) we have 

( )
( ) ( ) ( )

( )
( )














































=




















n

nn

R L

R LR L

dxx
fC

xf
C

dxxx
fC

f
Mdxx

fC

xMf

,1







 

where C  is the constant in (5). This implies  
 LL

fMf
~

. 

The following theorem is valid (see, for example, [18, 28]). 

Theorem 2.4. [25] Let T
~

 be a nonsingular integral operator, defined by (1), 

( )  + pRLf np 1,  and ( )n

p RA . Then there exists a constant pC  

independent of f , such that 

( ) ( ) 
+



+


pfCfT nn RLp
RL

1,
~



 

and 

( ) ( )nn RLRWL
fCfT

++

 11 1

~



. 

Theorem 2.5. [25] Let   be a Young function, ( )n

i RA


  and T
~

 be a 

nonsingular integral operator, defined by (1). If 2 , then the operator T
~

 is 

bounded from ( )nRL +



  to ( )nRWL +



  and if 22  , then the operator T
~

 is 

bounded on ( )nRL +



 . 

 

3 . Commutatpr of nonsingular integral operators in the weighted Orlicz space 

( )nRL +



  

 

We recall the de_nition of the space of ( )nRBMO . 

Definition 3.1. Suppose that ( )n

loc RLb 1 , let 

( )
( ) ( )

( )
 −=




rxB

rxB
rRx

dybyb
rxB

b
n

,

,
0,

,
,

1
sup  

where 

( ) ( )
( )

( )
=

rxB

rxB dyyb
rxB

b
,

,
,

1
. 

Define 
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( ) ( ) =


bRLbBMORBMO n

loc

n :1
. 

Lemma 3.1. [16] Let BMOb . Then there is a constant 0C  such that 

( ) ( )
r

t
bCbb txBrxB ln,, 

−     for    tr  20 , 

where C  is independent of rxb ,,  and t . 

Lemma 3.2. [15] Let A , BMOb  and   be a Young function with 

2 . Then, 

( )( )( ) ( ) ( )( ) 

−−



−


bbbrxB
rxBLrxB

rRx n ~,,

11

0,

,sup


 . 

Theorem 3.1. [1, Theorem 1.13] Let ( )nRBMOb . Suppose that X  is a Banach 

space of measurable functions defined on 
nR . Moreover, assume that X  satisfies 

the lattice property, that is 

XX
fgfg

~
0   

Assume that M  is bounded on X . Then the operator bM  is bounded on X , and 

the inequality 

XXb fbCfM


  

holds with constant C  independent of f . 

Combining Theorems 2.3 and 3.1, we obtain the following statement. 

Corollary 3.1. Let   be a Young function with 2  and ( )nRBMOb . 

Assume in addition ( )n

i RA


 , then bM  is bounded on ( )BL

 . 

The space ( )n

p RL +  coincides with the space 

( ) ( ) ( ) ( )













 +

+

n

p

R

RLgallfordyygyfxf
n

':  

up to the equivalence of the norms 

( ) ( ) ( )
+

+ 


n

pL

n
p

R
g

RL
dyygyff

1
'

sup .                                  (6) 

The following statement holds: 

Lemma 3.3. Let  p1 . Then for all ( )n

p RLf +  and ( )n

p RLg + '  there 

holds  

( ) ( ) ( ) ( )
++


nn RR

dyyMgyfMCdyygyf  
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with a constant 0C  not depending on f . 

Lemma 3.4. Let  p1 , pA . Then 

( ) ( )npnp
RLRL

fMCf
++




 

with a constant 0C  not depending on f .  

Proof. By (6) we have 

( ) ( ) ( ) ( )
+








+

+ 


nnRpL

np

R
g

RL
dyyygyfCf 

 1
'

sup . 

According to Lemma 3.3, 

( ) ( ) ( )( )
+








+

+






nnRpL

np

R
g

RL
dyygMyfMCf 

 1
'

sup . 

By the Hölder inequality and Theorem 2.1, we derive 

( ) ( )
( )

( )

( ) ( ) ( )
.sup

sup

'

'

'

'

1

1

1

npn
p

np

nRpL

n
p

np

nRpL

np

RLRLRL
g

RLRL
g

RL

fMCgfMC

gMfMCf

+++







+

++







+

+





−













 

Theorem 3.2. Let T
~

 be a nonsingular integral operator, BMOb ,  p1  

and pA . Then the commutator operator  Tb
~

,  is bounded on the space 

( )np RL + . 

Proof. We are going to adapt an idea of Stromberg (see [30, pp. 417-418]). 

Observe that it is enough to prove 

 ( )( ) ( ) ( ) ( )













+










 xfMxfTMbCxfTbM r
rrr

11

~~
,                    (7) 

for all 1r ,  
nRx . 

To see this choose pr 1 , then (7) combined with Lemmas 2.1 and 3.4 

and with the  
pL  estimate on T

~
 implies 

  pppp LLLL
fbCffTbCfTb










 +

~~
, . 

From this result and [19, Theorem 2.7], we have the following 

boundedness of  Tb
~

,  on ( )nRL +



 . 
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Theorem 3.3. Let   be a Young function, 


 iA  and T
~

 be a nonsingular 

integral operator, defined by (1). If  22   and BMOb , then the 

commutator operator  Tb
~

,  is bounded on ( )nRL
+




. 
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