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EXISTENCE OF MILD SOLUTION FOR HYBRID DIFFERENTIAL

EQUATIONS WITH ARBITRARY FRACTIONAL ORDER

NAZIM MAHMUDOV1, MOHAMMED M. MATAR2

Abstract. We investigate in this article the existence problems of mild solutions for hybrid

differential equations involving fractional Caputo derivative of arbitrary order. Different types

of fixed point theorems are applied for solving the existence problem. An example is given to

explain the applicability of all theorems.
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1. Introduction

This paper deals with the existence and uniqueness of mild solutions for a class of hybrid

differential equations of arbitrary fractional order of the form
CDq

t0

(
u(t)

h(t,u(t))

)
= f(t, u(t)), t ∈ J = [t0, T ],(

u(t)
h(t,u(t))

)(k)∣∣∣∣
t=t0

= bk ∈ R, k = 0, 1, 2, ..., n− 1,
(1)

where CDq
t0

denotes the Caputo fractional derivative of order q ∈ (n − 1, n), n = [q] + 1,

h : J × R → R\{0}, and f : J × R → R are given continuous functions. Fractional differ-

ential equations have recently played a significant role in the recent developments of special

functions and integral transforms, biology, control theory, bioengineering and biomedical, eco-

nomics, variational problems, etc. For further details, see [1, 2, 9, 13, 16] and references cited

therein.

As a result of these investigations, the existence problem of solution for fractional differential

equations of such models has gained an attention of many mathematical scientists. Therefore,

many articles have been appeared in the literature on existence of solutions for initial, boundary

and nonlocal fractional equations using different types of fractional derivatives (see [3-5, 8, 14,

15] and references therein). For some noteworthy papers are dealing with the integral operator

and the arbitrary fractional order differential operator, see [3, 4, 14].

An interesting class of problems involves hybrid fractional differential equations appearing

recently, we refer to [6, 7, 19, 20, 21] and the references cited therein for more details in this

topic.

The basic tool for dealing with the nonlinear differential equations is using an appropriate

fixed point theorem applied on an operator equation. Some cases, one needs to define more

than one operator as in the case of Krasnoselskii’s fixed point theorem for the sum of two
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operators. Recently, Dhage [10] established a new fixed point theorem involving the product of

two operators.

Being motivated by the works in the literature, we consider a class of hybrid differential

equations of arbitrary fractional order in the form of (1), and obtain sufficient conditions of the

existence and uniqueness of their solutions in accordance with Dhage’s, Banach’s, and Schauder’s

fixed point theorems.

This paper is organized as follows. In Section 2, we recall some preliminaries about fractional

calculus and the solution of problem (1). Section 3 deals with the existence and uniqueness of a

solution for the problem (1). We close this article by an example to illustrate the applicability

of the theorems.

2. Preliminaries

First of all, we fix our terminology and recall some basic ideas of fractional calculus following

[12], and some preliminaries for the results in the sequel.

Definition 2.1. The Riemann-Liouville fractional integral of order q > 0, for a continuous

function h is defined as

Iqt0h(t) =
1

Γ(q)

t∫
t0

(t− s)q−1 h(s)ds.

Definition 2.2. The Caputo derivative of fractional order q > 0, for nth differentiable function

h is defined as

cDq
t0
h(t) = In−q

t0
h(n)(t) =

1

Γ(n− q)

t∫
t0

(t− s)n−q−1h(n)(s)ds, n− 1 < q < n.

The next result is a recurrence relation indicating the nth derivative of a quotient function

[17], [11].

Lemma 2.1. The nth derivative of the quotient u
v is given by(u

v

)(k)
=

1

v

u(k) − k!
k∑

j=1

v(k+1−j)

(k + 1− j)!

(
u
v

)(j−1)

(j − 1)!

 . (2)

Let C(J,R) be the Banach space of all continuous real valued functions defined on J endowed

with the norm defined by ∥x∥ = sup {|x(t)| , t ∈ J} , and Cn(J,R) be the Banach space of all n

times continuously differentiable functions on J.

Definition 2.3. A function u ∈ C(J,R), is said to be a mild solution of (1) if it satisfies

the equation CDq
t0

(
u(t)

h(t,u(t))

)
= f(t, u(t)) on J, and the condition

(
u(t)

h(t,u(t))

)(k)∣∣∣∣
t=t0

= bk, k =

0, 1, 2, ..., n− 1.

The integral form that is equivalent to problem (1) is given by the following.

Lemma 2.2. Assume that u(t)

h̃(t)
∈ Cn(J,R), then the hybrid linear differential equation

CDq
t0

(
u(t)

h̃(t)

)
= f̃(t), t ∈ J,(

u(t)

h̃(t)

)(k)∣∣∣∣
t=t0

= bk, k = 0, 1, 2, ..., n− 1,
(3)
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is equivalent to

u(t) = h̃(t)
n−1∑
k=0

bk
k!

(t− t0)
k + h̃(t)Iqt0 f̃(t), t ∈ J. (4)

Proof. The nth differentiability of u(t)

h̃(t)
implies the continuity of CDq

t0

(
u(t)

h̃(t)

)
, hence the continuity

of the fractional integral Iqt0 f̃(t) for any t ∈ J. Applying the fractional operator Iqt0 to the equation

(3), and using the identity [12]

IqCt0 Dq
t0
x(t) = x(t) +

n−1∑
j=0

cj (t− t0)
j ,

we have

u(t)

h̃(t)
+

n−1∑
j=0

cj (t− t0)
j = Iqt0 f̃(t), t ∈ J, (5)

where the constant cj can be evaluated using the given initial conditions. For this, Differentiating

equation (5) k times and using the formula (2), we have

u(k)(t)

h̃(t)
− k!

h̃(t)

k∑
j=1

h̃(k+1−j)(t)

(k + 1− j)!

(
u(t)

h̃(t)

)(j−1)

(j − 1)!

+
n−1∑
j=k

j!

(j − k)!
cj (t− t0)

j−k = Iq−k
t0

f̃(t).

In virtue of nth differentiability of u(t)

h̃(t)
, the functions u(k)(t), g̃(k)(t), and Iq−k

t0
f̃(t) are continuous

for any t ∈ J, and k = 0, 1, 2, ..., n− 1. In accordance with initial conditions, substituting t = t0,

it follows that

u(k)(t0)

h̃(t0)
− k!

h̃(t0)

k∑
j=1

h̃(k+1−j)(t0)

(k + 1− j)!

(
u(t)

h̃(t)

)(j−1)
∣∣∣∣
t=t0

(j − 1)!
+ k!ck = 0,

which implies

ck = −bk
k!
, k = 0, 1, 2, ..., n− 1.

Substituting ck in ( 5) leads to equation (4). On the other hand, applying the fractional derivative

to equation (5), and noting that CDq
t0

(
n−1∑
j=0

cj (t− t0)
j

)
= 0, we deduce equation (3). This

finishes the proof. �

3. Existence results

We obtain in this section the main results on existence theorems based on Dhage’s, Schauder’s

and Banach’s fixed point theorems. Consequently, we transform the integral form (4) into an

operator equation by which we obtain the fixed point principle. Thus, this fixed point is the

required solution of the problem (1).

The following fixed point theorem due to Dhage [10] is the essential tool for the proof of the

first result.
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Theorem 3.1. Let Ω be a nonempty bounded closed convex subset of a Banach algebra X. Let

Φ : Ω → X and Θ : X → X be continuous operators satisfying:

(a) Φ is completely continuous,

(b) Θ is Lipschitzian with a Lipschitz constants kΘ,

(c) x = ΦyΘx implies x ∈ Ω for all y ∈ Ω, and

(d)MkΘ < 1, where M = sup{∥Φx∥ : x ∈ Ω}.
Then the operator equation x = ΦxΘx has a solution in Ω.

The first result of existence problem is based on Theorem 3.1.

Theorem 3.2. Assume that:

(H1): There exist positive continuous functions µ and ν with bounds ∥µ∥ , and ∥ν∥ respec-

tively, such that {
|h(t, u)− h(t, v)| ≤ µ(t) |u− v| ,
|f(t, u)| ≤ ν(t),

for t ∈ J, u, v ∈ R.

Then the problem (1) has a solution on J, whenever

ω =

(
n−1∑
k=0

|bk|
k!

(T − t0)
k +

∥ν∥ (T − t0)
q

Γ(q + 1)

)
∥µ∥ < 1.

Proof. Define a subset Ω of C(J,R) as Ω = {u ∈ C(J,R) : ∥u∥ ≤ r} , where

r ≥ hmaxω

∥µ∥ (1− ω)
.

Here hmax = maxt∈J |h(t, 0)| . Clearly Ω is closed, convex, and bounded subset of C(J,R). By
Lemma 2.2, the problem (1) has a solution given by

u(t) = h(t, u(t))

(
n−1∑
k=0

bk
k!

(t− t0)
k + Iqt0f(t, u(t))

)
, t ∈ J. (6)

Define the operators Φ : Ω → C(J,R) by

Φu(t) =
n−1∑
k=0

bk
k!

(t− t0)
k + Iqt0f(t, u(t)), t ∈ J, u ∈ C(J,R),

and Θ : C(J,R) → C(J,R) by

Θu(t) = h(t, u(t)), t ∈ J, u ∈ C(J,R).

Then (6) is transformed into operator equation u(t) = Θu(t)Φu(t), t ∈ J. We shall prove that

the operators Φ, and Θ satisfy the conditions of Theorem 3.1. For the sake of clarity, we split

the proof into a sequence of steps.
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Step 1. We show that Φ is completely continuous. First we show that Φ is continuous on Ω.

Let {um} be a sequence converging to u in Ω. In virtue of dominated convergence theorem,

lim
m→∞

Φum(t) = lim
m→∞

[
n−1∑
k=0

bk
k!

(t− t0)
k + Iqt0f(t, um(t))

]

=
n−1∑
k=0

bk
k!

(t− t0)
k + Iqt0

(
lim

m→∞
f(t, um(t))

)

=

n−1∑
k=0

bk
k!

(t− t0)
k + Iqt0f(t, u(t)) = Φu(t),

for all t ∈ J. Next we show that Φ is a compact operator on Ω. It is enough to show that Φ(Ω)

is uniformly bounded and equicontinuous in C(J,R). In view of (H1), we have

|Φu(t)| ≤
n−1∑
k=0

|bk|
k!

(t− t0)
k + Iqt0 |f(t, u(t))|

≤
n−1∑
k=0

|bk|
k!

(t− t0)
k + ∥ν∥ (t− t0)

q

Γ(q + 1)
,

for all t ∈ J, u ∈ Ω. Taking the supremum over J, we emphasize the uniform boundedness of Φ.

For equicontinuity of Φ on Ω, let t1 < t2 be both in J , then

|Φu(t2)− Φu(t1)| ≤
n−1∑
k=0

|bk|
k!

[
(t2 − t0)

k − (t1 − t0)
k
]

+
1

Γ(q)

t1∫
t0

(
(t2 − s)q−1 − (t1 − s)q−1

)
ν(s)ds

+
1

Γ(q)

t2∫
t1

(t2 − s)q−1 ν(s)ds

≤
n−1∑
k=0

|bk|
k!

[
(t2 − t0)

k − (t1 − t0)
k
]

+
∥ν∥

Γ(q + 1)
((t2 − t0)

q − (t1 − t0)
q) .

Obviously, the right hand side of the above inequality tends to zero independently of any u ∈ Ω,

as t2 approaches to t1, this shows the equicontinuity of Φ on Ω. Therefore, it follows from the

Arzela Ascoli theorem that Φ is a completely continuous operator on Ω.

Step 2. We show that Θ is Lipschitzian with a Lipschitz constant kΘ = ∥µ∥. Indeed, for any
u, v ∈ C(J,R), and t ∈ J , we have

|Θu(t)−Θv(t)| = |h(t, u(t))− h(t, v(t)))| ≤ µ(t) |u(t)− v(t)| ,

which implies after taking the supremum over J,

∥Θu−Θv∥ ≤ ∥µ∥ ∥u− v∥ .
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Step 3. We show that u ∈ Ω, whenever u = ΘuΦv and v ∈ Ω. Let v ∈ Ω, then

|u(t)| ≤ |h(t, u(t))− h(t, 0) + h(t, 0)|

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

∣∣Iqt0f(t, v(t))∣∣
)

≤ (µ(t) |u(t)|+ h(t, 0))

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

∥ν∥ (t− t0)
q

Γ(q + 1)

)
.

Taking the supremum over J , we deduce that

∥u∥ ≤
hmax

(
n−1∑
k=0

|bk|
k! (T − t0)

k + ∥ν∥(T−t0)
q

Γ(q+1)

)
1− ∥µ∥

(
n−1∑
k=0

|bk|
k! (T − t0)

k + ∥ν∥(T−t0)
q

Γ(q+1)

) ≤ r.

Hence u ∈ Ω.

Step 4. Finally, we show that MkΘ < 1, where M = sup{∥Φu∥ : u ∈ Ω}. This is obvious,

since

|Φu(t)| kΘ ≤

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

∥ν∥ (t− t0)
q

Γ(q + 1)

)
∥µ∥ ≤ ω < 1, t ∈ J.

Thus all conditions of Theorem 3.1 are satisfied, hence the operator equation u = ΦuΘu has a

solution in Ω. In consequence, the problem (1) has a solution on J. The proof is completed. �

The second result is based on the Banach’s contraction principle.

Theorem 3.3. Assume that:

(H2): For any u, v ∈ R, and t ∈ J, there exist positive constants Ah, and Af such that{
|h(t, u)− h(t, v)| ≤ Ah |u− v| ,
|f(t, u)− f(t, v)| ≤ Af |u− v| .

(H3): For any (t, u) ∈ J × R, there exist positive constants Bh, and Bf such that{
|h(t, u))| ≤ Bh,

|f(t, u)| ≤ Bf .

Then there exists a unique solution for the problem (1), whenever

γ = Ah

n−1∑
k=0

|bk|
k!

(T − t0)
k +

AhBf (T − t0)
q

Γ(q + 1)
+

AfBh (T − t0)
q

Γ(q + 1)
< 1.

.

Proof. Define the operator Ψ on C(J,R) by

Ψu(t) = h(t, u(t))
n−1∑
k=0

bk
k!

(t− t0)
k + h(t, u(t))Iqt0f(t, u(t)). (7)

Using the dominated convergence theorem, and the continuity of f and h imply the continuity

of Ψ at any x ∈ C(J,R). Hence Ψ (C(J,R)) ⊂ C(J,R). Let G = {u ∈ C(J,R) : ∥u∥ ≤ R}, where

R ≥
hmax

(
n−1∑
k=0

|bk|
k! (T − t0)

k +
Bf (T−t0)

q

Γ(q+1)

)
1−Ah

(
n−1∑
k=0

|bk|
k! (T − t0)

k +
Bf (T−t0)

q

Γ(q+1)

) .
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The fact that Ah

(
n−1∑
k=0

|bk|
k! (T − t0)

k +
Bf (T−t0)

q

Γ(q+1)

)
< 1 follows from the assumption γ < 1.

Accordingly,

|Ψu(t)| ≤ (|h(t, u(t))− h(t, 0)|+ |h(t, 0)|)

×

(
n−1∑
k=0

|bk|
k!

(t− t0)
k + Iqt0 |(f(t, u(t))|

)

≤ (Ah |u(t)|+ hmax)

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

Bf (t− t0)
q

Γ(q + 1)

)

≤ Ah |u(t)|

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

Bf (t− t0)
q

Γ(q + 1)

)

+hmax

(
n−1∑
k=0

|bk|
k!

(t− t0)
k +

Bf (t− t0)
q

Γ(q + 1)

)
≤ R.

This shows that Ψ maps G into itself. For the contraction principle, let u, v ∈ C(J,R), and
t ∈ J , we have

|Ψu(t)−Ψv(t)| ≤ |h(t, u(t))− h(t, v(t))|
n−1∑
k=0

bk
k!

(t− t0)
k

+
∣∣h(t, u(t))Iqt0f(t, u(t))− h(t, v(t))Iqt0f(t, v(t))

∣∣
≤ |h(t, u(t))− h(t, u(t))|

n−1∑
k=0

bk
k!

(t− t0)
k

+ |h(t, u(t))− h(t, v(t))|
∣∣Iqt0f(t, u(t))∣∣

+ |h(t, v(t))|
∣∣Iqt0f(t, u(t))− Iqt0f(t, v(t))

∣∣
≤ Ah |u(t)− v(t)|

n−1∑
k=0

|bk|
k!

(t− t0)
k +Ah |u(t)− v(t)|

Bf (t− t0)
q

Γ(q + 1)

+Af ∥u− v∥ Bh (t− t0)
q

Γ(q + 1)
.

After taking the supremum over J, it follows that

∥Ψu−Ψv∥

≤

(
Ah

n−1∑
k=0

|bk|
k!

(T − t0)
k +

AhBf (T − t0)
q

Γ(q + 1)
+

AfBh (T − t0)
q

Γ(q + 1)

)
∥u− v∥

≤ γ ∥u− v∥ .

As γ < 1, we emphasize that Ψ satisfies the contraction principle, hence by Banach’s fixed point

Theorem, there exists a unique solution for the problem (1). This finishes the proof. �

Next result shows the completely continuity of the operator Ψ.

Lemma 3.1. The operator Ψ defined by (7) is completely continuous.

Proof. Let U be a bounded proper subset of C(J,R), then the continuity of h and f imply that

for any t ∈ J, and u ∈ U , there exist positive constants Lh, and Lf such that |h(t, u(t))| ≤ Lf
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and |f(t, u(t))| ≤ Lf . The rest of the proof is similar to that in the step 1 of the proof of

Theorem 3.2, hence we omit it. �

The last result is based on the Schauder’s fixed point theorem ([18]).

Theorem 3.4. If U is a closed , bounded, convex subset of a Banach space X and the mapping

∆ : U → U is completely continuous, then ∆ has a fixed point in U .

Accordingly, if we define a closed , bounded, convex subset U of C(J,R) on which Ψ, as

defined by (7), is completely continuous, then the problem (1) has a solution.

Theorem 3.5. Assume that:

(H4): There exist functions φh, φf ∈ C(J,R+) and continuous nondecreasing functions

ρh, ρf : [0,∞) → (0,∞) such that{
|h(t, u)| ≤ φh(t)ρh(|u|)
|f(t, u)| ≤ φf (t)ρf (|u|)

, (t, u) ∈ J × R.

Then the problem (1) has a solution.

Proof. Define a subset U ⊂ C(J,R) as U = {u ∈ C(J,R) : |u(t)| ≤ β, t ∈ J} . Hence, U is a closed,

bounded, and convex subset of C(J,R). If u ∈ U , then{
|h(t, u(t))| ≤ ∥φh∥ ρh(β),
|f(t, u(t))| ≤ ∥φf∥ ρf (β),

(8)

for any t ∈ J. The estimates in (8) make the applicability of Lemma 3 on Ψ is valid. Therefore,

Theorem 3.4 ensures that the problem (1) has a solution. This finishes the proof. �

We close this article by introducing the following example.

Example 3.1. Consider the following fractional hybrid differential equation
CD3.2

0

(
3u(t)

t sinu(t)

)
= t|u(t)|

4(1+|u(t)|) , t ∈ (0, 1],(
3u(t)

t sinu(t)

)(k)∣∣∣∣
t=0

= 1, k = 0, 1, 2, 3.
(9)

Here q = 3.2, f(t, u) = t|u|
4(1+|u|) , and h(t, u) = 1

3 t sinu. In view of Theorem 3.2, we have µ(t) = t
3 ,

and ν(t) = t
4 such that ∥µ∥ = 1

3 and ∥ν∥ = 1
4 . Moreover,

ω =
1

3

(
3∑

k=0

1

k!
+

1

4Γ(4.2)

)
≃ 0.8996 < 1.

Then the problem (9) has a solution in C([0, 1],R). Next we apply Theorem 3.3. The functions

h and f satisfy Lipschitz condition with constants Af = 1
4 , and Ah = 1

3 . Moreover, the functions

h and f are bounded with Bh = 1
3 , and Bf = 1

4 , therefore

γ =
1

3

3∑
k=0

1

k!
+

2

12Γ(4.2)
≃ 0.91 < 1.

Hence, the uniqueness of this solution is obtained. Finally, the result of Theorem 3.5 follows,

since φh(t) =
t
3 , φf (t) =

t
4 , and ρh(|u|) = ρf (|u|) = 1.
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