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EQUI-AFFINE DIFFERENTIAL INVARIANTS OF A PAIR OF CURVES

YASEMIN SAĞIROĞLU1

Abstract. Let G = SAff(n, R) be the group of all transformations in Rn as F (x) = gx + b

such that g ∈ SL(n, R) and b ∈ Rn. The system of generators for the differential algebra of all

G-invariant differential polynomials of a pair of curves is found for the group SAff(n, R). The

conditions for G-equivalence of a pair of curves is obtained.
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1. Introduction

The concept of affine geometry was introduced by Felix Klein in Erlangen Programme in 1872.
According to this programme, affine geometry deals with the properties of curves and surfaces
which are invariant under affine maps. Since that time, affine differential invariants of curves
and surfaces have been investigated.

The theory of differential invariants consists of three fundamental theorems. The first of
these is finding the generators for invariant functions. The second is finding the conditions of
equivalence for curves (similarly for surfaces) and the third one is finding the relations (if they
exist) between of these generators.

The fundamental theorems of curves and hypersurfaces in centro-affine is investigated in [4].
The complete system of global differential and integral invariants for one curves is found in [8] for
equi-affine geometry and in [14] for centro-equiaffine curves. In [17], it is obtained differential
invariants for some groups in according to one curve. For two curves, it is investigated the
differential invariants and its applications to ruled surfaces for the group SL(n, R) in [13].

In [3], it was provided a rigorous theoretical justification of Cartan’s method of moving frames
for arbitrary finite-dimensional Lie group actions on manifolds. The method given there also
leads to complete classification of generating systems of differential invariants. This paper
provides a new approach to the construction of differential invariants and equivalence of curves
for the group SAff(n,R).

In this paper, we investigate the differential invariants of a pair of curves for the group
SAff(n,R). In section 1, we give some introductory definitions. In section 2, the generator
system of differential invariants is found for the polynomials of a pair of curves. Then the
conditions of equivalence for two pairs of curves is given by the differential invariants. Also it is
shown that the set of generator invariants is minimal.

Let R be the field of real numbers and Rn be n-dimensional Euclidean space. The set
SAff(n,R) which defined by

{F : F (x) = Ax + b , A is a real nxn matrix which detA = 1 and b ∈ Rn}
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is a group in according to composition of transformations.

Definition 1.1. A C∞−function x : I → Rn will be called a parametric curve or briefly a curve
in Rn.

This paper treats the case of parametrized curves. The unparametrized case is more chal-
lenging. Olver, completely classified equi-affine joint differential invariants for unparametrized
curves in 2− and 3−dimensions.([11])

Definition 1.2. Let {x1, x2} and {y1, y2} be two pairs of curves. If yi = Axi + b , i = 1, 2 for
some A ∈ SL (n,R) , b ∈ Rn, then these curve families will be called SAff (n,R)−equivalent
and denoted by {x1, x2}G

≈ {y1, y2} for the group G = SAff(n,R).

Definition 1.3. Let x1 and x2 be two curve in Rn. The polynomial

P {x1, x2} = P (x1, x2, x
′
1, x

′
2, . . . , x

(m)
1 , x

(m)
2 )

for some finite natural number m will be called a differential polynomial of x1 and x2.

The derivation of P {x1, x2} will be denoted by P ′ and this derivation is obtained as follows:
Since x1, x2 are variables, then the derivative of P is taken in according to the functional variables
x1, x2 in the polynomial.

Definition 1.4. If P {Ax1 + b, Ax2 + b} = P {x1, x2} for some A ∈ SL (n,R) , b ∈ Rn, the
differential polynomial P is called an equi-affine invariant differential polynomial.

The set of all differential polynomials will be denoted by R{x1, x2} . It is a differential
R-algebra. Let G be the group SAff(n,R). The set of all equi-affine invariant differential
polynomials will be denoted by R {x1, x2}G. R {x1, x2}G is a differential subalgebra of R{x1, x2}.
Definition 1.5. Let f1, f2, . . . , fk ∈ R {x1, x2}G. If the differential algebra generated by these
functions is equal to R {x1, x2}G, then these functions will be called the generator set of R {x1, x2}G.

2. Equi-affine invariants of a pair of curves

Let x1, x2, . . . , xn ∈ Rn. We will be denoted the determinant

∣∣∣∣∣∣

x11 . . . xn1

. . . . . . . . .

x1n . . . xnn

∣∣∣∣∣∣
by [x1 . . . xn].

In here, k. column of this determinant is consist of the components of xk, which are xk1, xk2, . . . , xkn.

Lemma 2.1. Let x0, x1, . . . , xn, y2, . . . , yn be vectors in Rn. Then the following equality holds:

[x1x2 . . . xn] [x0y2 . . . yn]− [x0x2 . . . xn] [x1y2 . . . yn]− . . .

− [x1x2 . . . x0] [xny2 . . . yn] = 0
(1)

Proof. Page 173 in [8]. ¤

Definition 2.1. A curve x in Rn will be called SAff(n,R)-regular (briefly regular) if
[
x′x′′ . . . x(n)

] 6=
0. Hence for all t ∈ I,

[
x′(t)x′′(t) . . . x(n)(t)

] 6= 0.

Let G be the group SAff(n,R).
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Theorem 2.1. Let x1 and x2 be two curve in Rn such that x1 is regular. Then the generator
set of R {x1, x2}G is [

x′1x
′′
1 . . . x

(n)
1

]
,
[
x′1 . . . x

(i−1)
1 x

(n+1)
1 x

(i+1)
1 . . . x

(n)
1

]
,

[
x′1 . . . x

(i−1)
1 x2 − x1 x

(i+1)
1 . . . x

(n)
1

]

for i = 1, . . . , n.

Proof. The equi-affine differential polynomial P is in the form of

P{x1, x2} = P (x1, x2, x
′
1, x

′
2, . . . , x

(k)
1 , x

(k)
2 )

for some k ∈ N . Since P is G−invariant, we get

P {gx1 + b, gx2 + b} = P (gx1 + b, gx2 + b, gx′1, gx′2, . . . , gx
(k)
1 , gx

(k)
2 ) =

= P (x1, x2, x
′
1, x

′
2, . . . , x

(k)
1 , x

(k)
2 )

for all g ∈ SL(n,R) and b ∈ Rn. If we take g as identity element of nxn matrix e, then

P (x1 + b, x2 + b, x′1, x
′
2, . . . , x

(k)
1 , x

(k)
2 ) = P (x1, x2, x

′
1, x

′
2, . . . , x

(k)
1 , x

(k)
2 ).

We want to show that the differential polynomial P (x1 + b, x2 + b, x′1, x
′
2, . . . , x

(k)
1 , x

(k)
2 ) is equal

to ϕ(x2−x1, x
′
1, x

′
2, . . . , x

(k)
1 , x

(k)
2 ) for some differential polynomial ϕ. Then we get the invariance

condition as

ϕ(g(x2 − x1), gx′1, gx′2, . . . , gx
(k)
1 , gx

(k)
2 ) = ϕ((x2 − x1), x′1, x

′
2, . . . , x

(k)
1 , x

(k)
2 ).

Let y2 = x2 − x1 and y1 = x′1. So we have from above equality

ϕ(y1, y2, y
′
1, y

′
2, . . . , y

(k)
1 , y

(k)
2 ) = ϕ(gy1, gy2, gy′1, gy′2, . . . , gy

(k)
1 , gy

(k)
2 ).

We get that the invariance condition depend only on g. Since g ∈ SL(n,R) and invariant
generator set of {y1, y2} for the group SL(n,R) in [13] is given by[

y1y
′
1 . . . y

(n−1)
1

]
,

[
y1 . . . y

(i−1)
1 y

(n)
1 y

(i+1)
1 . . . y

(n−1)
1

]
,

[
y1 . . . y

(i−1)
1 y2 y

(i+1)
1 . . . y

(n−1)
1

]

for i = 0, . . . , n−1. Since y2 = x2−x1 and y1 = x′1 , we get that the generator set of R {x1, x2}G

is [
x′1x

′′
1 . . . x

(n)
1

]
,

[
x′1 . . . x

(i−1)
1 x

(n+1)
1 x

(i+1)
1 . . . x

(n)
1

]
,

[
x′1 . . . x

(i−1)
1 x2 − x1 x

(i+1)
1 . . . x

(n)
1

]

for i = 1, . . . , n. ¤

Theorem 2.2. Let G = SAff(n, R) and {x1, x2} , {y1, y2} be two curve families such that x1

and y1 are regular. If for i = 1, . . . , n

[
x′1x

′′
1 . . . x

(n)
1

]
=

[
y′1y

′′
1 . . . y

(n)
1

]
,

[
x′1 . . . x

(i−1)
1 x

(n+1)
1 x

(i+1)
1 . . . x

(n)
1

]
=

[
y′1 . . . y

(i−1)
1 y

(n+1)
1 y

(i+1)
1 . . . y

(n)
1

]
, (2)

[
x′1 . . . x

(i−1)
1 x2 − x1 x

(i+1)
1 . . . x

(n)
1

]
=

[
y′1 . . . y

(i−1)
1 y2 − y1 y

(i+1)
1 . . . y

(n)
1

]
,

then for some g ∈ SL(n,R) and b ∈ Rn, y1 (t) = gx1 (t) + b , y2 (t) = gx2 (t) + b, ∀t ∈ I. So
{x1, x2} G

≈ {y1, y2}.
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Proof. Let us take x′1 = z1 , y′1 = w1 , x2 − x1 = z2 , y2 − y1 = w2. Therefore the preceding
equations imply

[
z1z

′
1 . . . z

(n−1)
1

]
=

[
w1w

′
1 . . . w

(n−1)
1

]
,

[
z1 . . . z

(i−1)
1 z

(n)
1 z

(i+1)
1 . . . z

(n−1)
1

]
=

[
w1 . . . w

(i−1)
1 w

(n)
1 w

(i+1)
1 . . . w

(n−1)
1

]
,

[
z1 . . . z

(i−1)
1 z2 z

(i+1)
1 . . . z

(n−1)
1

]
=

[
w1 . . . w

(i−1)
1 w2 w

(i+1)
1 . . . w

(n−1)
1

]

for i = 0, . . . , n− 1. If we divide these equations,

[
z1 . . . z

(i−1)
1 z

(n)
1 z

(i+1)
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] =

[
w1 . . . w

(i−1)
1 w

(n)
1 w

(i+1)
1 . . . w

(n−1)
1

]
[
w1w′1 . . . w

(n−1)
1

] ,

[
z1 . . . z

(i−1)
1 z2 z

(i+1)
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] =

[
w1 . . . w

(i−1)
1 w2 w

(i+1)
1 . . . w

(n−1)
1

]
[
w1w′1 . . . w

(n−1)
1

] .

Since x1 and y1 are regular, we can write the above equalities. Take the matrices

Az1 =




z11(t) . . . z
(n−1)
11 (t)

. . . . . . . . .

z1n(t) . . . z
(n−1)
1n (t)


 and A′z1

=




z′11(t) . . . z
(n)
11 (t)

. . . . . . . . .

z′1n(t) . . . z
(n)
1n (t)


 .

Since
(
Aw1 ·A−1

z1

)′ = 0, we get Aw1 = gAz1 and detg 6= 0, g is constant. Therefore w1 (t) =
gz1 (t) , ∀t ∈ I. If we write this equality in first equality in 2.2, we get

[
z′1z

′′
1 . . . z

(n)
1

]
=

[
w′1w

′′
1 . . . w

(n)
1

]
=

[
(gz1)′(gz1)′′ . . . (gz1)

(n)
]

=
[
gz′1gz′′1 . . . gz1

(n)
]

=

= detg.
[
z′1z

′′
1 . . . z

(n)
1

]

and then detg = 1, so g must be element of the group SL(n,R)., Let us take the matrix

Dz2 =




z11(t) . . . z
(n−2)
11 (t) z21(t)

. . . . . . . . . . . .

z1n(t) . . . z
(n−2)
1n (t) z2n(t)


 .

Take A−1
z1
·Dz2 = H = ‖hij‖ , i, j = 1, . . . , n. Let us find the elements of this matrix. We have

that Dz2 = Az1 ·H. Then we get the following system of differential equations:

z11h11 + · · ·+ z
(n−1)
11 hn1 = z11,

z12h11 + · · ·+ z
(n−1)
12 hn1 = z12,

. . .

z1nh11 + · · ·+ z
(n−1)
1n hn1 = z1n.
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The solution of this equation system in according to Cramer’s rule;

h11 =

[
z1z

′
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] = 1, h21 =

[
z1z1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] = 0, . . . , hn1 = 0.

If we go on finding solutions in this way, we obtain;

H =




1 0 . . . 0 h1n

0 1 . . . 0 h2n

. . . . . . . . . . . . . . .

0 0 . . . 0 hnn




and where the entries of the last column are;

h1n =

[
z2z

′
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] , h2n =

[
z1z2 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] , . . . , hnn =
[z1z

′
1 . . . z2][

z1z′1 . . . z
(n−1)
1

] .

So the matrix H is equal to A−1
z1
· Dz2 = A−1

w1
· Dw2 . Therefore we have that Dz2 = g−1 · Dw2

and Dw2 = g ·Dz2 . This equation implies that

w21 = g11z21 + · · ·+ g1nz2n,

w22 = g21z21 + · · ·+ g2nz2n,

. . .

w2n = gn1z21 + · · ·+ gnnz2n

and we get w2 = gz2 , g ∈ SL(n, R). On the other hand, we know that w1 = gz1 ,

g ∈ SL(n,R). Since w1 = y′1 , z1 = x′1 , taking integral, we have that

y1 = gx1 + b , b ∈ Rn. (3)

And since w2 = y2 − y1 , y2 = x2 − x1 and w2 = gz2 , we get

y2 − y1 = g(x2 − x1),

then

y2 = gx2 + b , b ∈ Rn, (4)

we get from 3 and 4 for the same g ∈ SL(n,R) and b ∈ Rn that {x1, x2} G
≈ {y1, y2}. ¤

Theorem 2.3. Let G = SAff(n,R) and f0 (t) 6= 0, fi (t) , gi (t) , i = 1, . . . , n be C∞-functions.
Then there exist curves x1, x2 which x1 is regular such that

[
x′1x

′′
1 . . . x

(n)
1

]
= f0 (t) ,

[
x′1 . . . x

(i−1)
1 x

(n+1)
1 x

(i+1)
1 . . . x

(n)
1

]
= fi (t) , i = 1, . . . , n , (5)

[
x′1 . . . x

(i−1)
1 x2 − x1 x

(i+1)
1 . . . x

(n)
1

]
= gi (t) , i = 1, . . . , n.
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Proof. Let x′1 = y1 and x2 − x1 = y2. Then from the equalities 5, we get
[
y1y

′
1 . . . y

(n−1)
1

]
= f0 (t) ,

[
y1 . . . y

(i−1)
1 y

(n)
1 y

(i+1)
1 . . . y

(n−1)
1

]
= fi (t) , i = 0, . . . , n− 1,

[
y1 . . . y

(i−1)
1 y2 y

(i+1)
1 . . . y

(n−1)
1

]
= gi (t) , i = 0, . . . , n− 1.

If we divide these equalities, we have that

[
y1 . . . y

(i−1)
1 y

(n)
1 y

(i+1)
1 . . . y

(n−1)
1

]
[
y1y′1 . . . y

(n−1)
1

] =
fi+1(t)
f0(t)

= hi+1 (t) , i = 0, . . . , n− 2, (6)

[
y1 . . . y

(i−1)
1 y2 y

(i+1)
1 . . . y

(n−1)
1

]
[
y1y′1 . . . y

(n−1)
1

] =
gi+1(t)
f0(t)

= ki+1 (t) , i = 0, . . . , n− 1, (7)

[
y1y

′
1 . . . y

(n−1)
1

]′
[
y1y′1 . . . y

(n−1)
1

] =
f0(t)′

f0(t)
= h0(t). (8)

In the same way with the previous proof, we get the matrix B, taking y instead of x such
that A′y1

= Ay1 · B . Then we have the following system of differential equations from this
multiplication;

y11h1 (t) + y′11h2 (t) + · · ·+ y
(n−1)
11 hn (t)− y

(n)
11 = 0,

y12h1 (t) + y′12h2 (t) + · · ·+ y
(n−1)
12 hn (t)− y

(n)
12 = 0,

. . .

y1nh1 (t) + y′1nh2 (t) + · · ·+ y
(n−1)
1n hn (t)− y

(n)
1n = 0.

Let we take y1i = z , i = 1, . . . , n . So we can write the above system of differential equations
as

h1 (t) z + h2 (t) z′ + · · ·+ hn (t) z(n−1) − z(n) = 0.

It is known that the theory of differential equations, there exist one solution of this differential
equation. Let (w1, w2, . . . , wn) be the solution. Put y1 (t) = (w1, w2, . . . , wn) . Then the curve
y1 (t) provide the equalities 6 and 8.

Take the matrix

A2 =




y11 . . . y
(n−2)
11 y21

y12 . . . y
(n−2)
12 y22

. . . . . . . . . . . .

y1n . . . y
(n−2)
1n y2n




and let A−1
y1
·A2 = H. Then the matrix H satisfies the equality A2 = Ay1 ·H. Hence

y21 = y11k1 (t) + y′11k2(t) + · · ·+ y
(n−1)
11 kn(t),

y22 = y12k1 (t) + y′12k2(t) + · · ·+ y
(n−1)
12 kn(t),

. . .

y2n = y1nk1 (t) + y′1nk2(t) + · · ·+ y
(n−1)
1n kn(t).
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So we have the curve y2. Take
[
y1y

′
1 · · · y(n−1)

1

]
= ϕ (t). By detAy1 6= 0, we get ϕ (t) 6= 0 for

all t ∈ I. Let d′ (t) = ϕ′(t)
ϕ(t) = f0(t)′

f0(t) = h0(t). Taking integral, we have that d (t) =
t∫
0

h0 (t) dt + c,

c ∈ Rn. So lnϕ (t) =
t∫
0

h0 (t) dt + c . Therefore

ϕ (t) = e

t∫
0

h0(t)dt+c
= ec.e

t∫
0

h0(t)dt
= λ1.e

t∫
0

h0(t)dt
, ec = λ1 6= 0.

In the same way, there exists λ2 6= 0 such that f0 (t) = λ2. e
∫ t
0 h0(t)dt. Let us take λ = λ2

λ1
6= 0.

So f0 (t) = λ.ϕ(t). Let g ∈ GL(n,R) and detg = λ. Therefore
[
(gy1)(gy1)′ · · · (gy1)

(n−1)
]

=
[
gy1gy′1 · · · gy1

(n−1)
]

= detg.
[
y1y

′
1 · · · y(n−1)

1

]
= f0(t).

If we take gy1 = z1 and gy2 = z2, these curves satisfy required conditions. Because

f0 (t) =
[
x′1x

′′
1 · · ·x(n)

1

]
= λ.

[
y1y

′
1 · · · y(n−1)

1

]
=

[
z1z

′
1 · · · z(n−1)

1

]
6= 0.

Then the curve z1(t) is regular. On the other hand for i = 0, . . . , n− 1
[
z1 . . . z

(i−1)
1 z

(n)
1 z

(i+1)
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] = hi+1 (t)

and [
z1 . . . z

(i−1)
1 z2 z

(i+1)
1 . . . z

(n−1)
1

]
[
z1z′1 . . . z

(n−1)
1

] = ki+1 (t) .

So we have the following equalities:
[
z1z

′
1 . . . z

(n−1)
1

]
= f0 (t) 6= 0,

[
z1 . . . z

(i−1)
1 z

(n)
1 z

(i+1)
1 . . . z

(n−1)
1

]
= fi (t) , i = 0, . . . , n− 1,

[
z1 . . . z

(i−1)
1 z2 z

(i+1)
1 . . . z

(n−1)
1

]
= gi (t) , i = 0, . . . , n− 1.

Hence the curves z1 and z2 satisfy the above equalities. So there exist the curves z1 and z2 such
that the above equalities are hold. Since x′1 = y1 and x2 − x1 = y2, we get

x1 (t) =

t∫

0

y1 (t) dt + b,

x2 (t) = y2 (t) + x1 (t) = y2 (t) +

t∫

0

y1 (t) dt + b.

Then the curves x1(t) and x2(t) satisfy the hypotheses of the theorem. So the proof is completed.
¤
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[8] Khadjiev, Dj., Pekşen, Ö., (2004), The complete system of global integral and differential invariants for

equi-affine curves, Diff. Geom. and its Appl., 20, pp.167-175.

[9] Klingenberg, W., (1978), A Course in Differential Geometry, Springer-Verlag, New York.

[10] Nomizu, K., Sasaki, T., (1994), Affine Differential Geometry, Cambridge Univ. Pres.

[11] Olver, P.J., (2001), Joint invariant signatures, Found. Comput. Math. 1(1), pp.3-67.
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