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ON THE THEORY OF INFINITE SYSTEMS OF LINEAR ALGEBRAIC
EQUATIONS∗

F.M.FEDOROV 1

Abstract. The work provides an overview of the author’s papers, which formed the basis of

the new theory of general infinite systems of linear algebraic equations. In these papers the

author extended the Gaussian elimination and Cramer’s rule to infinite systems. The special

particular solution, so-called strictly particular solution, of inhomogeneous infinite systems was

received. This strictly particular solution is written as a series. The divergence of this series

demonstrates incompatibility of the original system. The necessary and sufficient conditions for

the existence of nontrivial solutions of the homogeneous infinite systems are considered.
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1. Introduction

The theory of infinite systems of linear algebraic equations with an infinite number of the
unknowns started to be developed since the late 19th century with joint efforts of such great
mathematicians as Poincare, Fredholm, Hilbert, Riesz. Although previously it was Fourier
(1807), who tried to solve one particular infinite system in order to expand the function with
some properties in a trigonometric series. Infinite systems attracted these great mathematicians
with absolutely different positions; while Fredholm and Hilbert sparked interest in connection
with the solution of integral equations, Poincare and G. Hill were actually interested in terms of
solutions of ordinary differential equations; as for Fourier, he applied them to the expansion of a
trigonometric series with a view to solve the boundary value problems of mathematical physics.
Naturally, such a wide range of applications of infinite systems could not be generate interest
of mathematicians around the world. However, being extremely complex on the one hand, this
theory, on the other hand, has a very rich content and a wide range of applications in many fields
of mathematics. All this made mathematicians go the way of research of particular classes of
infinite systems. For more than one hundred years of infinite systems study extensive literature
has been accumulated. Until now, however, the theory of infinite systems has not completely
formed yet. Currently almost a dozen of infinite systems classes have been completely studied:
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normal systems, regular and completely regular systems, multiplicative systems, with difference-
index and others. Recently, the author has discovered and described in detail a new class of
infinite systems, called the class of periodic infinite systems [9]. The theory of periodic infinite
systems enabled the study of general infinite systems and allowed to move on from the crisis
point in recent years. In the author’s recent monograph [10] classes of infinite systems have been
studied systematically since their emergence as independent theory.

Basic information, concepts and definitions of infinite systems and matrices, determinants
sufficiently are available from the sources [9, 10, 28, 19, 20, 7, 27].

In this paper we highlight the main aspects of the general theory of infinite systems proposed
and promoted by us [9, 10, 14, 8, 12, 13, 15, 16, 11]. The extensive literature on infinite systems is
reviewed in monograph [10]. This overview allow to argue that the theory of infinite systems had
been developed only for a narrow class at the time when the monograph [10] was published (there
are 201 bibliographies). In particular, it is pointed out, for example, in works [29, 2, 22, 1, 5, 23].
This tendency is also observed at the present time [30, 4, 25, 3, 24, 6].

It must be emphasized that one chapter of monograph [10] is devoted to research on the infinite
systems with difference-index (index of coefficients of the system is the difference between i and j;
also it is called “discrete Wiener-Hopf equations” [21, 18]). These systems are the simplest type
of periodic systems and they are completely investigated in monograph [9]. We note that even
homogeneous infinite systems with difference-index cannot be studied by the methods of work
similar to [21, 18] not to mention a general infinite systems. The research of inhomogeneous and
homogeneous infinite systems is based on fundamentally different approaches. Furthermore the
convergence of approximate methods (such as method of successive approximations or projection
method) for solving a inhomogeneous infinite systems does not guarantee a real solution of these
systems. The approximate solutions can be the real solutions of these systems if only the systems
are consistent. Otherwise it is not possible to check whether these solutions satisfy the infinite
systems (in report [26] there are some examples which point out this statement).

Let the infinite system of linear algebraic equations with an infinite number of unknowns
[10, 20] be given by:

a1,1x1 + a1,2x2 + ... + a1,nxn + ... = b1,

a2,1x1 + a2,2x2 + ... + a2,nxn + ... = b2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

an,1x1 + an,2x2 + ... + an,nxn + ... = bn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





(1)

where ai,k are known coefficients, bi are the constant terms and xk – unknown from some field
F .

Set of numerical values of the variables x1, x2, ... is called a solution of system (1) if, after
substituting these values in the left-hand side of (1) we obtain a convergent series, and all these
equalities are satisfied.

In the case of the solvability, the infinite system is called consistent, otherwise – inconsistent.
In the future, the system (1) will be called simply infinite system (1).
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Under the infinite matrix we consider the table of coefficients of an infinite system (1):

A = (ai,j) = A(ai,j)∞1 =




a1,1 a1,2 ... a1,n ...

a2,1 a2,2 ... a2,n ...

. . ... . ...

. . ... . ...

. . ... . ...

an,1 an,2 ... an,n ...

. . ... . ...




, (2)

which is called the (general) coefficient matrix of the system (1), and matrix

A =




b1 a1,1 a1,2 ... a1,n ...

b2 a2,1 a2,2 ... a2,n ...

. . . ... . ...

. . . ... . ...

. . . ... . ...

bn an,1 an,2 ... an,n ...

. . . ... . ...




, (3)

– the augmented matrix of the system (1). Then, an infinite system (1) is equivalent to a matrix
equation of the form

AX = B, (1′)

where the X is a column vector of unknowns and B is a column vector of constant terms of (1).
Having highlighted the elements contained in the first n columns and the first n rows of the

matrix A, we may obtain the determinant of n-th order – Dn = |An|. Value of this determinant,
obviously depends on n, i.e., on the order of the obtained determinant. And the Dn = |An| is
called the main determinant of n-th order generated by the matrix A.

If the value of the main determinant tends to certain limit |A| as its order n increases without
limit, then we say that there is an infinite determinant of coefficient matrix A, and that |A| is
the value of this determinant [19, 20, 27].

We do not do any restrictive assumptions on the coefficients and the constant terms of system
(1). In all known modern studies [10, 20] it is assumed that constant terms are limited altogether,
i.e. |bj | ≤ K > 0. In addition, for the coefficients of system there is the weakest restrictive that

is assumed, is concluded in the following:
∞∑

i=1

|di,j | < ∞, ai,i = 1 + di,i, ai,j = di,j . Systems, for

which these assumptions are not fulfilled, a priori are excluded as subject of investigation, and
this ultimately led to critical situation. There is an example of such system:

∞∑

p=0

(2j + 2p)!
(2p)!

xj+p = bj , j = 0,∞, b = const > 0. (4)

It is obvious that in each equation of (4) the sum of the absolute value of the coefficient is infinite

∞∑

p=0

|aj,j+p| =
∞∑

p=0

(2j + 2p)!
(2p)!

= ∞, ∀ j = 0, 1, 2, ...,

besides, the constant terms bj for b > 1 are not bounded. Nevertheless, this system has a
solution. Moreover, we were able to find a particular solution of the inhomogeneous system (4)
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and the fundamental solution of homogeneous (b = 0) system (4) [9, 10]:

x
(k)
i =

bi

(2i)!ch(
√

b)
+

(−1)iπ2i(2k + 1)2ix0

(2i)!22i
, i, k = 0, 1, 2, ... , (5)

and hence we have found out its general solution.
It should be emphasized, that the systems of type (4) appeared in solving of quite real

boundary value problems of mathematical physics by the boundary method similar to work [8],
i.e., they are not some kind of abstract systems.

Several examples of this type are given in [9, 10, 14, 8]. In these papers we solved some
boundary value problems of mathematical physics by use of boundary method [8].

Thus, in our investigations we will avoid any restrictive assumptions on the coefficients and
the constant terms of system (1) in advance. Only some necessary algebraic assumptions may
be possible.

Our the main task is to extend the Gaussian elimination to infinite systems (1).

2. Gaussian elimination

It is known [19, 17], that the infinite matrix A has finite rank only in exceptional cases,
moreover, the infinite matrix can have finite rank if and only if its determinant equals zero, and
that is not always so.

Let the infinite determinant |A| of system (1) is nonzero, then, obviously, the infinite matrix
A has infinite rank.

Using the theory of Gauss method for finite systems, as set out in the monograph of F.R.
Gantmakher [17], we obtained the theorem that extends the Gaussian elimination to infinite
systems (1) [12]:

Theorem 2.1. Every matrix A(ai,k)∞1 of infinite rank, which has the sequence of principal
minors, that are non-zero, i.e., Dk 6= 0 (k = 1, 2, ...,∞) can be represented as a product of
triangular matrix B by Gaussian infinite matrix C (ci,i 6= 0):

A = BC =




b1,1 0 ... 0 ...

b2,1 b2,2 ... 0 ...

. . ... . ...

bn,1 bn,2 ... bn,n ...

. . ... . ...







c1,1 c1,2 ... c1,n ...

0 c2,2 ... c2,n ...

. . ... . ...

0 0 ... cn,n ...

. . ... . ...




. (6)

In this

b1,1c1,1 = D1, b2,2c2,2 =
D2

D1
, ..., bn,ncn,n =

Dn

Dn−1
... , (7)

bj,k = bk,k

A

(
1 2 ... k − 1 j

1 2 ... k − 1 k

)

A

(
1 2 ... k

1 2 ... k

) , cj,k = ck,k

A

(
1 2 ... k − 1 k

1 2 ... k − 1 j

)

A

(
1 2 ... k

1 2 ... k

) (8)

(j = k, k + 1, ...,∞; k = 1, 2, ...,∞),

where

A

(
i1i2...ip
k1k2...kp

)
=

∣∣∣∣∣∣∣∣

ai1,k1 ai1,k2 ... ai1,kp

ai2,k1 ai2,k2 ... ai2,kp

. . ... .

aip,k1 aip,k2 ... aip,kp

∣∣∣∣∣∣∣∣
, Dn = A

(
1 2 ... n

1 2 ... n

)
, n = 1, 2, ...,∞.
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Diagonal elements of the matrices B and C can be an arbitrary numbers satisfying conditions
in (7). It should be noted that all diagonal elements bi,i, ai,i of matrices B and C are not equal
to zero, since it is assumed that the matrix A has a nonzero determinant.

Corollary 2.1. Elements of columns of the matrix B and rows of the matrix C are associated
with the the matrix A elements by recurrence relations:

bi,k =

ai,k −
k−1∑

j=1

bi,jcj,k

ck,k
, i ≥ k; i = 1, 2, ...,∞; k = 1, 2, ...,∞, (9)

ci,k =

ai,k −
i−1∑

j=1

bi,jcj,k

bi,i
, i ≤ k; i = 1, 2, ...,∞; k = 1, 2, ...,∞. (10)

In work [7] for systems (1) with a triangular matrix the following theorem is proved:

Theorem 2.2. Infinite system (1) with a triangular matrix having all elements of the main
diagonal being not equal to zero, has the unique right side inverse matrix, which is a triangular
matrix with all diagonal elements are equal 1

ai,i
respectively.

It should be noted that:
Note 1. Let A be the triangular matrix and ai,i 6= 0 for all i, so by Theorem 2.2 it has a

unique right side inverse matrix X. Then X is also left side inverse matrix to A, and hence it
is the unique two-side inverse matrix to A.

Corollary 2.2. If the diagonal elements bi,i (i = 1, 2, ...∞) of the matrix B are equal to the
unity, we obtain the Gaussian elimination for infinite systems.

Proof. Since the matrix B is triangular, then according to Note 1 it has the unique two-side
inverse matrix B−1. Therefore, based on the matrix equation (1′), the following ratio is valid:
AX = BCX = F and B−1BCX = B−1F , where CX = B−1F and, besides on the basis of
Theorem 2.1 the matrix C is a Gaussian matrix.

3. Method of reduction

Infinite systems work analysis [10] showed that the most effective way to solve the system (1) is
a combination of the simple reduction method and successive approximations method. However,
in this case the convergence of method of reduction becomes dependent on the convergence of
the method of successive approximations. To eliminate such situation, one must clearly separate
these processes. Such opportunity is given by the Gaussian elimination for infinite system (1).
Thus, in the conditions of Theorem 2.1 instead of the general system (1) we can consider the
infinite system in the Gaussian form (aj,j 6= 0 for all j):

∞∑

p=0

aj,j+pxj+p = bj , j = 0, 1, 2, ... . (11)

On the one hand, when we apply the simple reduction method to system (11) it becomes
possible to find an exact solution of a finite truncated system of n-th order without use of the
successive approximations method. On the other hand, this exact solution can be expressed by
iterative method (on order of reduction n).

Before applying the simple reduction method to system (11), the following should be noted.
We introduced a different interpretation of the reduction method [9, 10]. If in the reduction
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method for solving infinite systems of algebraic equations the number of unknowns and the
number of equations remain the same in the truncated system, then we can say that reduction
method is understood in the narrow sense (simple reduction method), and if the number of
unknowns is greater than the number of equations, then we say that the method of reduction is
understood in a broad sense. Such separation proved to be necessary as it is impossible to find
a nontrivial solution of the homogeneous infinite system by simple reduction method if it exists.

Let the infinite system (11) is truncated by the reduction method in the narrow sense:

n−j∑

p=0

aj,j+p
n
xj+p= bj , aj,j 6= 0, j = 0, n. (12)

Theorem 3.1. Solution of the finite system (12) is the expression:
n
xj= Bn−j , j = 0, 1, ..., n, (13)

Bn−j =
bj

aj,j
−

n−j−1∑

p=0

aj,n−p

aj,j
Bp, B0 =

bn

an,n
, j = 0, n− 1. (14)

Suppose that in (14) it is possible to pass term-by-term to the limit in the next formula

lim
n→∞

n∑

p=j+1

aj,p

aj,j
Bn−p =

∞∑

p=j+1

aj,p

aj,j
lim

n→∞Bn−p. (14′)

In [13] the concept of strictly particular solution of inhomogeneous infinite systems was firstly
introduced.

Further we assume the next condition is hold: a) let the limit lim
n→∞Bn−j = B(j) exists, besides

not all of B(j) equal 0.

Theorem 3.2. Let the condition a) and the equality (14’) hold then the limit value B(j) is a
particular solution of infinite system (11)

Definition 1. Particular solution xj = B(j) of inhomogeneous infinite Gaussian system (11)
is called strictly particular solution of system (11).

Theorem 3.3. Under the fulfillment of the condition a), the passage to the limit in (14) is
possible if and only if the set of B(j), j = 0, 1, . . . is a strictly particular solution of infinite
Gaussian system (11).

Theorem 3.4. The inhomogeneous infinite Gaussian system (11) is consistent if and only if
the strictly particular solution of it exists.

Only the limits lim
n→∞Bn−j = B(j) should be found. In [15, 16] it is shown that the (14)

actually defines a special determinant:

Bn−j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bj bj+1 bj+2 ... bn−2 bn−1

aj,j+1 1 0 ... 0 0
aj,j+2 aj+1,j+2 1 ... 0 0

. . . ... . .

aj,j+k aj+1,j+k aj+2,j+k ... 0 0
. . . ... . .

aj,n−2 aj+1,n−2 aj+2,n−2 ... 1 0
aj,n−1 aj+1,n−1 aj+2,n−1 ... an−2,n−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (15)
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where B0 = bn. Here, without loss of generality, we puted aj,j = 1, and in the general case,
instead of bj+p in (15) we mean bj+p

aj+p,j+p
, and instead of aj+p,j+k we mean aj+p,j+k

aj+p,j+p
, p = 0, 1, ..., n−

j − 1, k = 1, 2, ..., n− j − 1.
Determinant (15) in the infinite case, if it exists, will obviously have the form

B(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bj bj+1 bj+2 ... bn−1 .

aj,j+1 1 0 ... 0 .

aj,j+2 aj+1,j+2 1 ... 0 .

. . . ... . .

aj,j+k aj+1,j+k aj+2,j+k ... 0 .

. . . ... . .

aj,n−1 aj+1,n−1 aj+2,n−1 ... 1 .

. . . ... . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (16)

Thus, to find the limits lim
n→∞Bn−j we should calculate the infinite determinant (16). Deleting

the first row in the determinant (16), we form sequence of principal minors of the obtained
determinant, while we assume A0(j) = 1, and for the rest of n > 0, we obtain

An(j) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

aj,j+1 1 ... 0 0
aj,j+2 aj+1,j+2 ... 0 0

. . ... . .

. . ... . .

aj,j+n−1 aj+1,j+n−1 ... aj+n−2,j+n−1 1
aj,j+n aj+1,j+n ... aj+n−2,j+n aj+n−1,j+n

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (17)

The sequence of determinants (17) is called the characteristic sequence of Gaussian system
(11).

Theorem 3.5. Characteristic sequence (17) is calculated by recurrent relation:

Ap(j) =
p−1∑

k=0

(−1)p−1−kaj+k,j+pAk(j), A0(j) = 1. (18)

In work [16] the determinant (15) is calculated:

Theorem 3.6. The following takes place:

Bn−j =
n−j∑

p=0

(−1)pAp(j)bj+p, j = 0, 1, ...n , (19)

where Ap(j) is calculated by recurrent relation (18).

Theorem 3.7. Let the Gaussian system (11) be consistent, then the strictly particular solution
of (11) is expressed by the formula:

lim
n→∞

n
xj= xj = lim

n→∞Bn−j = B(j) =
∞∑

p=0

(−1)pAp(j)bj+p, , j = 0, ...,∞. (20)

Theorem 3.8. The strictly particular solution of (11) is expressed by Cramer’s formula:

xj = B(j) =
∞∑

p=0

(−1)pAp(j)bj+p =
∆(j+1)

∆
, j = 0, 1, ...∞ , (21)

where ∆ = |A| and ∆(j+1) is the determinant of matrix A, where j + 1-th column (j starts with
zero) is replaced by the column of constant terms of system (11).
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The numerical implementation of the formula (20) is given in [13].
It is worth mentioning the critical importance of strictly particular solution properties. This

solution possesses the following properties:
1) The strictly particular solution is obtained by the reduction in the narrow sense. Thus,

the existence of a strictly particular solution proves the convergence of the reduction method.
2) The strictly particular solution is unique and can be expressed by Cramer’s formula. It

follows that Cramer’s formula for infinite system is obtained from Cramer’s formula for finite
truncated Gaussian system by use of the passage to the limit.

3) The strictly particular solution does not contain a nontrivial solution of the corresponding
homogeneous system.

In the solution (5) of example (4), the first term on the right-hand side is a strictly particular
solution of the system (4), and a linear combination of the second terms in k is the general
solution of the homogeneous system. In connection with this we see the validity of the property
3) for a strictly particular solution of (4).

4) The strictly particular solution is the principal solution [20] of the infinite system.
Up to the present, the method of successive approximations was used to find the principal

solution without linking it with the consistency of the system (1).

4. The existence of solutions of infinite systems

By Theorem 3.4 to prove the existence of solution of infinite system is sufficient to investigate
the existence of its strictly particular solution.

Using characteristic determinants (17) Ap(j) we generate vectors
aj = {A0(j),−A1(j), ..., (−1)pAp(j), ...}, and using the constant terms bj – vectors
bj = {bj , bj+1, bj+2, ...}, j ≥ 0. Then, the Theorem 3.7 can be rewritten as follows:

Theorem 4.1. Let the inhomogeneous Gaussian system (11) be consistent, then its strictly
particular solution xj is the scalar product of vectors aj and bj:

xj = B(j) = (aj , bj), j = 0, 1, ... .

Theorem 4.2. If the series in (20) diverges at least for one j = j0, i.e. the scalar product of
vectors aj0 and bj0 is not limited, then Gaussian system (11) is inconsistent.

Theorem 4.3. If vector aj is orthogonal to vector bj for all j, i.e.

(aj , bj) = 0, ∀j,
but bj0 6= 0 for some j = j0, then Gaussian system (11) is inconsistent.

5. The existence of nontrivial solutions of the homogeneous infinite systems

As stated above, if we solve the homogeneous Gaussian system by the reduction in the narrow
sense then we get only a trivial solution. Therefore, to find the solution of homogeneous Gaussian
systems, it is necessary to apply the reduction method in a broad sense.

When we solve an infinite system by the reduction in the broad sense [9, 10], an infinite
system (1) is truncated to finite system in which the number of unknowns is on one more than
the number of equations. Therefore, we shall consider the truncated system of type (12), i.e., a
finite system of n first equations with the (n+1) unknowns: x0, x1, ...xn. For such finite systems
the following results were obtained in [15].
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Theorem 5.1. Let the following finite system holds
n−j∑

p=0

aj,j+pxj+p = bj , aj,j 6= 0, j = 0, n− 1. (22)

Then unknowns xi are expressed by x0 as follows:

xi = Bn−i +
(−1)i+1Bn

i∏

p=1

Sn−i+p

+
(−1)ix0

i∏

p=1

Sn−i+p

i = 1, n, (23)

where

Bj =
bn−j

an−j,n−j
−

j−1∑

p=1

an−j,n−p

an−j,n−j
Bp, B1 =

bn−1

an−1,n−1
, j = 2, n, (24)

and

Sj =
an−j,n−j+1

an−j,n−j
+

j∑

p=2

(−1)p+1an−j,n−j+p

an−j,n−j
∏p−1

k=1 Sj−k

,

S1 =
an−1,n

an−1,n−1
, j = 2, n. (25)

Here x0 – is an arbitrary real number.

Corollary 5.1. In the system (22) the neighboring unknowns are related to each other as follows

xi = Bn−i + Sn−iBn−i−1 − Sn−ixi+1, i = 0, n− 1. (26)

It should be noted that in the case of infinite system (11) in expressions (23) and (26) the
approximate values

n
xi of unknown values xi of (11) is taken for xi.

Obviously, recurrence relations (24) and (25) can be rewritten respectively as:

Bn−j =
bj

aj,j
−

n−j−1∑

p=1

aj,n−p

aj,j
Bp B1 =

bn−1

an−1,n−1
, j = 0, n− 2, (27)

Sn−j =
aj,j+1

aj,j
+

n−j∑

p=2

(−1)p+1aj,j+p

aj,j

p−1∏

k=1

Sn−j−k

, S1 =
an−1,n

an−1,n−1
, j = 0, n− 2. (28)

It is easy to verify that the limits of expressions (14) and (27) are the same in case of their
existence.

If we assume that there is a limit lim
n→∞Sn−j = S(j) and the passage to the limit is possible

in (28) as well as in (14′), then the following equality holds for each j:
∞∑

p=0

(−1)paj,j+p

aj,j

p−1∏

k=0

S(j + k)

= 0, j = 0, 1, 2, ... , (29)

where to unify the notation, the following is adopted
−1∏

k=0

S(j + k) = 1 for ∀j.
The following theorem gives conditions for the existence of nontrivial solution for general

homogeneous infinite Gaussian systems.
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Theorem 5.2. The necessary and sufficient condition for the existence of nontrivial solution
of the homogeneous Gaussian system (11) is the fulfillment of conditions (29) for each j. When
the conditions (29) hold, the solution of the system (11) are expressions of the following form:

xi =
(−1)ix0

i−1∏

k=0

S(k)

, i = 1, 2, ... , (30)

where x0 – an arbitrary real number, S(k) satisfy the equation (29) for each j.
Note 2. If an infinite determinant |A| of system (1) is not equal to zero, then all the results

obtained here for Gaussian systems are valid for general systems (1).
Note 3. In the case of periodic systems, as shown in [9, 10], the conditions (29) is transformed

into one condition – one characteristic equation f(x) = 0. Substituting zeros of function f(x) in
the expression (30), we obtain an independent nontrivial solutions of the homogeneous Gaussian
system (11). Thus, the dimension of subspace of independent solutions of the homogeneous
Gaussian system (11) coincides with the number of zeros of the function f(x).

In the case of infinite determinant |A| of the system (1) is zero, then we can obtain Kronecker-
Capelli theorem for infinite systems. To do this we introduce the concept of decrement of infinite
matrices and determinants.

Thus basis for the general theory of infinite systems of linear algebraic equations is obtained,
which in combination with Kronecker-Capelli theorem constitutes the general theory of infinite
systems.
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