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COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT
FUNCTIONS

SAHSENE ALTINKAYA', SIBEL YALCIN'

ABSTRACT. An analytic function f defined on the open unit disk U = {z:|z| < 1} is bi-
univalent if the function f and its inverse f~' are univalent in U. Inspired by the recent work
of Hamidi et al. [8], we propose to investigate the coefficient estimates for a general class of
analytic and bi-univalent functions. Also, we obtain estimates on the coefficients |az|, |as| and
|axn| for functions in this class. Some earlier results are shown to be special cases of our results.
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1. INTRODUCTION

Let A denotes the class of functions f which are analytic in the open unit disk U =
{z :|2z] < 1} with in the form

f(z)=2z+ Zanzn. (1)
n=2

Let S be the subclass of A consisting of the form (1) which are also univalent in U and let
(&)
P Dbe the class of functions p(z) =1+ > p,z" that are analytic in U and satisfy the condition

n=1

Re(p(z)) > 0in U. By the Caratheodory’s lemma (e.g., see [7] ) we have |p,| < 2.
Let f € A. We define the differential operator D*, k € Ng = NU {0}, where N = {1,2,...},
by (see [12])
Df(2) = [(2);
D'f(z) = Df(2)==zf"(2);

DFf(z) = bl (Dk_lf(z)> .

For k € Np, 0 < 8 < 1, A > 0, we introduce the subclass Q (k, A, ) of S of functions of the
form (1) satisfying the condition

Re{u — N DFf(2) + ADFLf (2)

z

}>ﬁ, z €U, (2)

where D* stands for Salagean derivative introduced by Salagean [12] .For f € A, the class
Q (k, A\, B) C S and was first defined and investigated by Porwal and Darus [11].
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It is easy to see that Q (k, A1, B) C Q (k, A2, () for A\; > A9 > 0. Thus, for A\ > 1,0 < g < 1,
Dk+1
QU A B) CQk, 1, B)z{feA:Rezf(z)>ﬁ; 055<1}.
It is well known that every f € S has an inverse f ~', defined by

FFHUf ) =2, (z€0)
and

@) = o, (lul<n () (2.

where
fHw) =w — agw® + (Za%—ag)w?’— (5a§—5a2a3+a4)w4+... .

A function f (z) € A is said to be bi-univalent in U if both f(z) and f ~!(z) are univalent
in U. Finding bounds for the coefficients of classes of bi-univalent functions dates back to 1967
(see [10]). But the interest on the bounds for the coefficients of classes of bi-univalent functions
picked up by the publications of Brannan and Taha [6], and Srivastava et al. [13]. Not much is
known about behavior of higher order coefficients of classes of bi-univalent functions, as Ali et
al. [5]. Motivating with their work, we let f € Q(k, A\, B)andg= f ' € Q (k, A\, 3) and use
the Faber polynomial coefficient expansion to provide bounds for the general coefficients |a,,| of
such functions with a given gap series [8].

2. MAIN RESULTS

Using the Faber polynomial expansion of functions f € A of the form (1), the coefficients of
its inverse map g = f ~! may be expressed as, [3],

Mm:fﬂ@o:w+z%ﬁgﬂ@ﬂ%gw% (3)
n=2
where
-n _ (—TL)' n— (—Tl)' n—
B = Tt i oi% TR o % T
(_n)' n—
T iy
e I GRS IOk g

(—n)!
(—2n+5)! (n— 6)!

+> ay 'V,

327

+ ag_G [ag + (—2n + 5) azaq] +

such that V; with 7 < j < n is a homogeneous polynomial in the variables as, as, ...,a, [4]. In
particular, the first three terms of K™ are
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1
§K1 2 = —az,
1 -3 2
§K2 = 2@2 — as, (5)
1
ZKS 4 = (5@%’ — basas + a4) .
In general, for any p € N, an expansion of K} is as, [3],
plp—1)

2 p! 3 p! n
R R e LA e T (6)

where Ef = E} (ag, as, ...) and by [1],

Kb = pa,, +

(p—n)n!™

> m! (a)" ... (ap)""

EM(a1,a2,...,a,) = , 7
while a; = 1, and the sum is taken over all nonnegative integers p1, ..., tn, satisfying
M1+ 2+ oy =M, (8)

w1+ 2u2 4+ ... +np, = n.
Evidently, E) (a1, a2, ...,an) = af , [2].

Theorem 2.1. For 0< 3 < 1,A> landk €Ny, let feQ(k, A\, B) and g€ Q(k, A\, ().
Ifay, =0;2<m<n-—1, then

2(1-p)
n| < ; >4
ol < ST o " )
Proof. For analytic functions f of the form (1) we have
1— Dk: Dk—i—l e
( )‘) f(Z) + A f(Z) — 1+§ :nk [1+ (TL— 1) )\] Cann—17 (10)

z
n=2

and for its inverse map, g = f ~!, we have
(1—X) DFg(w) + AD*'g (w)
w

= 1+ ) n*[l+@n—-1)Nbw" ' =
n=2

= 1+§:nk[l—|—(n—1)/\]x (11)
n=2

1
-n n—1
XEKn—l (ag,as, ...;an)wW" .

On the other hand, since f € Q (k, A, B) and g= f~! € Q(k, A\, 3) by definition, there exist

[e.e]
two positive real part functions p(z) =1+ > ¢,2" and ¢ (w) = 1+ Y d,w™ where Rep (z) > 0
n=1 n=1
and Req (w) > 0 in P so that

=N D () + ADMS() g (1 —ﬁ)i[(l (C1,Ca1 s ) 27, (12)

n=1

z

o0

(1 —=X) D*g(w) + AD* g (w) —14(1-p) ZKl (dy,da, ..., dp) w". (13)
n=1

w
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Comparing the corresponding coefficients of (10) and (12) yields
nfF[1+m—1DNa,=0—-0)K: | (c1,¢0, .y Cnot), (14)

and similarly, from (11) and (13) we obtain
Lk

(L (1= )AL E™ (bosbiba) = (1= B) Kby (s ). (15)
Note that for a,, =0 ; 2 <m <n —1 we have b, = —a,, and so
nFl4+n—-1)Na, = (1-78)ca (16)

P+ n—1DANay, = (1-0)dn

Now taking the absolute values of either of the above two equations and applying the Caratheodory’s
lemma, we obtain

C=Blensl _ (=Bldnsl __ 20-5)

an, = ) 17
o ’_|nk[1—|—( —DN|] [nFl+n-1)A| " w1+ (n—1)) (17)
O
Theorem 2.2. For 0< 3 < 1,1<A<1+V2, let feQ(k, N\, B) and g<Q(k, )\, B).
Then
2(1-0) B(1420) 2261 (142))2
0 W < | VFaT s SO e
B 2(1-0) )14 g g
ok (1+2)) ’ 3k(1+2X) = :
y 2(1-5)
< 1
@ ol < e (18)
2(1-p)
2
— <
(7i7) ’ag 2a2| < TN T
Proof. Replacing n by 2 and 3 in (14) and (15), respectively, we find that
2" (14 Nag=(1-8)ci, (19)
3F(1 42N a3 = (1 - 8) e, (20)
—2X(1+Naz = (1-f)di, (21)

Dividing (19) or (21), by 2¥ (1 + \) , taking their absolute values, and applying the Caratheodory’s
lemma, we obtain

(-B)lal _ Q-p)ld] _ 20-8)

= . 22
2l S A T ) S FAEN (22)
Adding (20) to (22) implies
2.3F(14+2)) a2 = (1 — B) (ca + dy) (23)
or, equivalently,
2 (1=0)(c2+dy)
= 24
‘27 T3k (11 2)) (24)
An application of Caratheodory’s lemma followed by taking the square roots yields
1-— 21—

3F(1+2\) ~ 38 (1+2\)
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In the following, dividing (22) by (1 + 2)\), taking the absolute values of both sides, and applying
the Caratheodory’s lemma, we obtain

(L=P)ldof . (1-5)
3142\ ~ 3R (1+2)\)

|az — 2a3| = (26)

O

Remark 2.1. If we put k = 0 in Theorem 1, we obtain the corresponding results due to Jahangiri
and Hamidi [9].
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