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COEFFICIENT BOUNDS FOR A SUBCLASS OF BI-UNIVALENT
FUNCTIONS

ŞAHSENE ALTINKAYA1, SIBEL YALÇIN1

Abstract. An analytic function f defined on the open unit disk U = {z : |z| < 1} is bi-

univalent if the function f and its inverse f−1 are univalent in U. Inspired by the recent work

of Hamidi et al. [8], we propose to investigate the coefficient estimates for a general class of

analytic and bi-univalent functions. Also, we obtain estimates on the coefficients |a2| , |a3| and

|an| for functions in this class. Some earlier results are shown to be special cases of our results.
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1. Introduction

Let A denotes the class of functions f which are analytic in the open unit disk U =
{z : |z| < 1} with in the form

f(z) = z +
∞∑

n=2

anzn. (1)

Let S be the subclass of A consisting of the form (1) which are also univalent in U and let

P be the class of functions p(z) = 1 +
∞∑

n=1
pnzn that are analytic in U and satisfy the condition

Re (p(z)) > 0 in U . By the Caratheodory’s lemma (e.g., see [7] ) we have |pn| ≤ 2.

Let f ∈ A. We define the differential operator Dk, k ∈ N0 = N ∪ {0} , where N = {1, 2, . . .} ,

by (see [12])

D0f (z) = f (z) ;

D1f (z) = Df (z) = zf ′(z);
...

Dkf (z) = D1
(
Dk−1f(z)

)
.

For k ∈ N0, 0 ≤ β < 1, λ ≥ 0, we introduce the subclass Q (k, λ, β) of S of functions of the
form (1) satisfying the condition

Re

{
(1− λ) Dkf (z) + λDk+1f (z)

z

}
> β, z ∈ U, (2)

where Dk stands for Salagean derivative introduced by Salagean [12] .For f ∈ A, the class
Q (k, λ, β) ⊂ S and was first defined and investigated by Porwal and Darus [11].
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It is easy to see that Q (k, λ1, β) ⊂ Q (k, λ2, β) for λ1 > λ2 ≥ 0. Thus, for λ ≥ 1, 0 ≤ β < 1,

Q (k, λ, β) ⊂ Q (k, 1, β) =
{

f ∈ A : Re
Dk+1f (z)

z
> β; 0 ≤ β < 1

}
.

It is well known that every f ∈ S has an inverse f −1, defined by

f−1 (f (z)) = z , (z ∈ U)

and

f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,

where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 − (

5a3
2 − 5a2a3 + a4

)
w4 + · · · .

A function f (z) ∈ A is said to be bi-univalent in U if both f (z) and f −1 (z) are univalent
in U. Finding bounds for the coefficients of classes of bi-univalent functions dates back to 1967
(see [10]). But the interest on the bounds for the coefficients of classes of bi-univalent functions
picked up by the publications of Brannan and Taha [6], and Srivastava et al. [13]. Not much is
known about behavior of higher order coefficients of classes of bi-univalent functions, as Ali et
al. [5]. Motivating with their work, we let f ∈ Q (k, λ, β) and g = f −1 ∈ Q (k, λ, β) and use
the Faber polynomial coefficient expansion to provide bounds for the general coefficients |an| of
such functions with a given gap series [8].

2. Main results

Using the Faber polynomial expansion of functions f ∈ A of the form (1), the coefficients of
its inverse map g = f −1 may be expressed as, [3],

g (w) = f−1 (w) = w +
∞∑

n=2

1
n

K−n
n−1 (a2, a3, ...) wn, (3)

where

K−n
n−1 =

(−n)!
(−2n + 1)! (n− 1)!

an−1
2 +

(−n)!
[2 (−n + 1)]! (n− 3)!

an−3
2 a3 +

+
(−n)!

(−2n + 3)! (n− 4)!
an−4

2 a4 +

+
(−n)!

[2 (−n + 2)]! (n− 5)!
an−5

2

[
a5 + (−n + 2) a2

3

]
+ (4)

+
(−n)!

(−2n + 5)! (n− 6)!
an−6

2 [a6 + (−2n + 5) a3a4] +

+
∑

j≥7

an−j
2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an [4]. In
particular, the first three terms of K−n

n−1 are
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1
2
K−2

1 = −a2,

1
3
K−3

2 = 2a2
2 − a3, (5)

1
4
K−4

3 = − (
5a3

2 − 5a2a3 + a4

)
.

In general, for any p ∈ N, an expansion of Kp
n is as, [3],

Kp
n = pan +

p (p− 1)
2

E2
n +

p!
(p− 3)!3!

E3
n + ... +

p!
(p− n)!n!

En
n , (6)

where Ep
n = Ep

n (a2, a3, ...) and by [1],

Em
n (a1, a2, ..., an) =

∞∑

m=1

m! (a1)
µ1 ... (an)µn

µ1!...µn!
, (7)

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn = m, (8)

µ1 + 2µ2 + ... + nµn = n.

Evidently, En
n (a1, a2, ..., an) = an

1 , [2].

Theorem 2.1. For 0 ≤ β < 1, λ ≥ 1 and k ∈ N0, let f ∈ Q (k, λ, β) and g ∈ Q (k, λ, β).
If am = 0 ; 2 ≤ m ≤ n− 1, then

|an| ≤ 2 (1− β)
nk [1 + (n− 1)λ]

; n ≥ 4 (9)

Proof. For analytic functions f of the form (1) we have

(1− λ) Dkf (z) + λDk+1f (z)
z

= 1 +
∞∑

n=2

nk [1 + (n− 1)λ] anzn−1, (10)

and for its inverse map, g = f −1, we have

(1− λ) Dkg (w) + λDk+1g (w)
w

= 1 +
∞∑

n=2

nk [1 + (n− 1)λ] bnwn−1 =

= 1 +
∞∑

n=2

nk [1 + (n− 1)λ]× (11)

× 1
n

K−n
n−1 (a2, a3, ..., an) wn−1.

On the other hand, since f ∈ Q (k, λ, β) and g = f−1 ∈ Q (k, λ, β) by definition, there exist

two positive real part functions p (z) = 1 +
∞∑

n=1
cnzn and q (w) = 1 +

∞∑
n=1

dnwn where Rep (z) > 0

and Req (w) > 0 in P so that

(1− λ) Dkf (z) + λDk+1f (z)
z

= 1 + (1− β)
∞∑

n=1

K1
n (c1, c2, ..., cn) zn, (12)

(1− λ) Dkg (w) + λDk+1g (w)
w

= 1 + (1− β)
∞∑

n=1

K1
n (d1, d2, ..., dn) wn. (13)



Ş. ALTINKAYA, S. YALÇIN: COEFFICIENT BOUNDS FOR A SUBCLASS ... 183

Comparing the corresponding coefficients of (10) and (12) yields

nk [1 + (n− 1) λ] an = (1− β) K1
n−1 (c1, c2, ..., cn−1) , (14)

and similarly, from (11) and (13) we obtain

1
n

nk [1 + (n− 1) λ] K−n
n−1 (b0, b1, ..., bn) = (1− β) K1

n−1 (d1, d2, ..., dn−1) . (15)

Note that for am = 0 ; 2 ≤ m ≤ n− 1 we have bn = −an and so

nk [1 + (n− 1)λ] an = (1− β) cn−1 (16)

−nk [1 + (n− 1)λ] an = (1− β) dn−1

Now taking the absolute values of either of the above two equations and applying the Caratheodory’s
lemma, we obtain

|an| ≤ (1− β) |cn−1|
|nk [1 + (n− 1)λ]| =

(1− β) |dn−1|
|nk [1 + (n− 1) λ]| ≤

2 (1− β)
nk [1 + (n− 1)λ]

. (17)

¤

Theorem 2.2. For 0 ≤ β < 1, 1 ≤ λ ≤ 1 +
√

2, let f ∈ Q (k, λ, β) and g ∈ Q (k, λ, β).
Then

(i) |a2| ≤





√
2 (1− β)

3k (1 + 2λ)
, 0 ≤ β < 3k(1+2λ)−22k−1(1+2λ)2

3k(1+2λ)
;

2 (1− β)
2k (1 + 2λ)

, 3k(1+2λ)−22k−1(1+2λ)2

3k(1+2λ)
≤ β < 1.

(ii) |a3| ≤ 2 (1− β)
3k (1 + 2λ)

. (18)

(iii)
∣∣a3 − 2a2

2

∣∣ ≤ 2 (1− β)
3k (1 + 2λ)

.

Proof. Replacing n by 2 and 3 in (14) and (15), respectively, we find that

2k (1 + λ) a2 = (1− β) c1, (19)

3k (1 + 2λ) a3 = (1− β) c2, (20)

−2k (1 + λ) a2 = (1− β) d1, (21)

Dividing (19) or (21), by 2k (1 + λ) , taking their absolute values, and applying the Caratheodory’s
lemma, we obtain

|a2| ≤ (1− β) |c1|
2k (1 + λ)

=
(1− β) |d1|
2k (1 + λ)

≤ 2 (1− β)
2k (1 + λ)

. (22)

Adding (20) to (22) implies

2.3k (1 + 2λ) a2
2 = (1− β) (c2 + d2) (23)

or, equivalently,

a2
2 =

(1− β) (c2 + d2)
2.3k (1 + 2λ)

. (24)

An application of Caratheodory’s lemma followed by taking the square roots yields

|a3| = (1− β) |c2|
3k (1 + 2λ)

≤ 2 (1− β)
3k (1 + 2λ)

. (25)
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In the following, dividing (22) by (1 + 2λ), taking the absolute values of both sides, and applying
the Caratheodory’s lemma, we obtain

∣∣a3 − 2a2
2

∣∣ =
(1− β) |d2|
3k (1 + 2λ)

≤ (1− β)
3k (1 + 2λ)

. (26)

¤

Remark 2.1. If we put k = 0 in Theorem 1, we obtain the corresponding results due to Jahangiri
and Hamidi [9].
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