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Abstract.We establish a coupled coincidence point theorem for generalized compatible pair
of mappings F, G:XxX—X under generalized Mizoguchi-Takahashi contraction on a
partially ordered metric space. We also deduce certain coupled fixed point results without
mixed monotone property of F:XxX—X. An example supporting to our result has also been
cited. As an application, we obtain the solution of integral equations to illustrate the
usability of the obtained results. We improve, extend and generalize several known results.
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1. Introduction and Preliminaries

Gnana-Bhaskar and Lakshmikantham [2] introduced the notion of coupled fixed
point, mixed monotone mappings and established some coupled fixed point
theorems for a mapping with the mixed monotone property in the setting of
partially ordered metric spaces. These concepts are defined as follows.
Definition 1 [2].Let (X, <) be a partially ordered set and endow the product space
XxX with the following partial order:
(u, V)<(X, y)exz=u and yxv, for all (u, v), (X, y)eX*xX.

Definition 2 [2]. Let X be a set. An element (X, y)eXxX is called a coupled fixed
point of the mapping F:XxX—X if F(x, y)=x and F(y, X)=y.
Definition 3 [2]. Let (X, <) be a partially ordered set. Suppose F:XxX—X be a
given mapping. We say that F has the mixed monotone property if for all x, yeX,
we have

X1, X2EX, X1=X, implies F(X4, Y)<F(X2, ¥),
and

Y1, Y2€X, Y1y, implies F(X, y1) =F(X, y2).
Lakshmikantham and Ciric [12] extended the notion of mixed monotone property
to mixed g-monotone property and generalized the results of Gnana-Bhaskar and
Lakshmikantham [2] by establishing the existence of coupled coincidence point
results using a pair of commutative mappings.
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Definition 4 [12]. Let X be a set. An element (X, y)eXxX is called a coupled
coincidence point of the mappings F:XxX—X and g: X—X if
F(x, y)=g(x) and F(y, X)=g(y).
Definition 5 [12]. Let X be a set. An element (x, y)eXxX is called a common
coupled fixed point of the mappings F:XxX—X and g: X—X if
x=F(x, y)=g(x) and y=F(y, X)=g(y).
Definition 6 [12]. Let X be a set. The mappings F:XxX—X and g:X—X are said
to be commutative if
g(F(x, y))=F(9(x), g(y)), for all (x, y)eX*X.
Definition 7 [12]. Let (X, <) be a partially ordered set and F:XxX—X and g:X—X
are given mappings. We say that F has the mixed g-monotone property if for all x,
yeX, we have
; X1, X2€X, 9(X1)<g(Xz) implies F(X1, y)<F(X2, Y),
an
Y1, Y2€X, 9(y1)<9(y2) implies F(X, y1)=F(X, y2).
Definition 8 [4]. Let X be a set. The mappings F:Xx X—X and g:X—X are said to
be compatible if
lim,—...d(gF(Xn, Yn), F(gXn, gyn)) =0,
lim,—..d(gF(yn, Xn), F(@Yn, gXn)) =0,
whenever {x,} and {y.} are sequences in X such that
liMuooF (X, Yn) = liMpsee@Xn=X,
limy—oF(yn, Xn) = limy_..gyn=y, for some x, yeX.
As an application, these results used to study the existence and unigueness of
solution for periodic boundary value problems. Luong and Thuan [13] generalized
the results of Gnana-Bhaskar and Lakshmikantham [2]. Berinde [1] extended the
results of Gnana-Bhaskar and Lakshmikantham [2] and Luong and Thuan [13].
Jain et al. [11] extended and generalized the results of Berinde [1], Gnana-Bhaskar
and Lakshmikantham [2], Lakshmikantham and Ciric [12] and Luong and Thuan
[13].
In [14], Hussain et al. introduced a new concept of generalized compatibility of a
pair of mappings defined on a product space and proved some coupled coincidence
point results. Hussain et al. [14] also deduce some coupled fixed point results
without mixed monotone property.
Definition 9 [14]. Let (X, <) be a partially ordered set and F, G:X*xX—X are two
mappings. F is said to be G-increasing with respect to < if for all x, y, u, veX, with
G(x, y)<G(u, v) we have F(x, y)<F(u, v).
Example 1 [14]. Let X=(0, +o0) be endowed with the natural ordering of real
numbers <. Define mappings F, G:XxX—X by F(x, y)=In(x+y) and G(x, y)=x+y
for all (X, y)eXxX. Note that F is G-increasing with respect to <.
Example 2 [14]. Let X=N endowed with the partial order defined by x, yeXxX,
X<}y if and only if y divides x. Define the mappings F, G:XxX—X by F(x, y)=xy?
and G(x, y)=xy for all (x, y)eXxX. Then F is G-increasing with respect to <.
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Definition 10 [14]. Let X be a set. An element (X, y)eXxX is called a coupled
coincidence point of mappings F, G:XxX—X if F(x, y)=G(x, y) and F(y, x)=G(y,
X).
Example 3 [14]. Let F, G:RxR—R be defined by F(x, y) =xy and G(x,
y)=(2/3)(x+y) for all (x, y)eXxX. Note that (0, 0), (1, 2) and (2, 1) are coupled
coincidence points of F and G.
Definition 11 [14]. Let X be a set and F, G:XxX—X be two mappings. We say
that the pair {F, G} is commuting if

F(G(X, ¥), G(Y, X))=G(F(X, y), F(y, X)), for all x, yeX.

Definition 12 [14]. Let (X, <) be a partially ordered set, F:XxX—X and g:X—X
be two mappings. We say that F is g-increasing with respect to < if for any x, yeX,
gx1=<gx; implies F(X4, y)<F(X2, y),

and
gy:1=<gy implies F(X, y1)<F(X, y2).
Definition 13 [14]. Let (X, <) be a partially ordered set, F:XxX—X be a mapping.
We say that F is increasing with respect to < if for any x, yeX,
X1<XXz implies F(x4, Y)<F(X2, y),
and
y1yz implies F(X, y1)<F(X, y2).
Definition 14 [14]. Let X be a set and F, G:XxX—X be two mappings. We say
that the pair {F, G} is generalized compatible if
limy—.d(F(G(Xn, Yn), G(Yn, Xn)), G(F(Xn, Yn), F(yn, Xn))) =0,
limo—d(F(G(Yn, Xn), G(Xn, Yn)), G(F(Yn, Xn), F(Xn, yn))) =0,

whenever (Xn) and (yn) are sequences in X such that

liMy—eG(Xn, Yn) = liMuoF(Xn, Yn)=XEX,

liMy—eG(Yn, Xn) = liMuoF(Yn, Xn)=yEX.
Obviously, a commuting pair is a generalized compatible but not conversely in
general.
Recently Ciric et al. [3] proved coupled fixed point theorems for mixed monotone
mappings satisfying a generalized Mizoguchi-Takahashi condition in the setting of
ordered metric spaces. Main results of Ciric et al. [3] extended and generalized the
results of Gnana-Bhaskar and Lakshmikantham [2], Du [9] and Harjani et al. [10].
Very recentlySamet et al. [19] claimed that most of the coupled fixed point
theorems on ordered metric spaces are consequences of well-known fixed point
theorems. For more details, see [3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18, 20, 21] and the
reference therein.
In this paper, we establish a coupled coincidence point theorem for generalized
compatible pair of mappings F, G:XxX—X under generalized Mizoguchi-
Takahashi contraction on a partially ordered metric space. We also deduce certain
coupled fixed point results without mixed monotone property of F:XxX—X . An
example supporting to our result has also been cited. As an application, we obtain
the solution of integral equations to illustrate the usability of the obtained results.
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We improve, extend and generalize the results of Gnana-Bhaskar and
Lakshmikantham [2], Ciric et al. [3], Du [9] and Harjani et al. [10].

2. Main results

Let @ denote the set of all functions ¢:[0, +o0)—[0, +o0) satisfying
(i) @ is non-decreasing,
(iig) Pp(t)=01=0,
(iiiig) IimsupHm(ﬁ)@o.
Let ¥ denote the set of all functions w:[0, +oo)— [0, 1) which satisfies
lim—wy(r)<1 for all £0.
Theorem 1. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two generalized compatible mappings
such that F is G-increasing with respect to <, G is continuous and has the mixed
monotone property, and there exist two elements Xq, Yo€X with
G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo) ZF (Yo, Xo)-
Suppose that there exist ¢€® and y€WY such that

G(A(F(x, y), F(u, v))) M
| (max[1L00 6 D)o (20,60 )

d(G(y,x),G(v,u)) d(G(y,x),G(v,u))

for all x, y, u, veX, where G(X, y)<G(u, v) and G(y, X)=G(v, u). Suppose that for
any x, yeX, there exist u, veX such that

F(x, y)=G(u, v) and F(y, X)=G(v, u). 2
Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {X»} —x in X then x,<X, for all n,
(i) if a non-increasing sequence {X»}—x in X then x<X,, for all n.
Then F and G have a coupled coincidence point.
Proof. By hypothesis, there exist Xq, Yo€X such that

G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo).
From (2), we can choose X;, y;€X such that
G(X1, Y1)=F(Xo, Yo) and G(y1, X1)=F(Yo, Xo).

Continuing this process, we can construct sequences {x»} and {y»} in X such that

G(Xn+1, Yn+1)=F(Xn, Yn) and G(Yn+1, Xn+1)=F(Yn, Xn), for all n>0. (3)
We shall show that

G(Xn, yn)sG(Xnﬂ, yn+1) and G(yn, Xn)kG(ynﬂ_, Xn+1), for all n>0. (4)
We shall use the mathematical induction. Let n=0, since

G(Xo, Yo) < F(Xo, Y0)=G(X1, Y1),
G(Yo, Xo) = F(Yo, X0)=G(Y1, X1),

we have
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G(Xo, Yo)<G(X1, Y1) and G(Yo, Xo)=G(Y1, X1).
Thus (4) hold for n=0. Suppose now that (4) hold for some fixed neN. Then since
G(Xn, Yn)<G(Xn+1, Yn+1) and G(yn, Xn) ZG(Yn+1, Xn+1),
and as F is G-increasing with respect to <, from (3), we have
G(Xn+1, yn+1)=F(Xn, yn)<F(Xn+l, Yn+1):G(Xn+2, yn+2),
G(Yn+1, Xn+1)=F(Yn, Xn) ZF(Yn+1, Xn+1)=G(Yn+2, Xn+2).
Thus by the mathematical induction we conclude that (4) hold for all n>0.
Therefore
G(Xo, Y0)<G(X1, Y1)=<...<G(Xn, Yn)<SG(Xn+1, Yn+1) ...
and
G(Yo, X0)ZG(Y1, X1)Z...2G(Yn, Xn) ZG(Yn+1, Xn+1)Z=...
Now, by (1) and (ig), we have
G(d(G(Xn, Yn), G(Xn+1, Yne1)))
=¢(d(F(Xn-1, Yn1), F(Xn, Yn)))
<y(dp[max{d(G(xn1, yn-1), G(Xn, ¥n)), (G (Y1, Xn-1), G(Yn, Xa))} 1) *p[max{d(G(Xn1,
Yn-1), G(Xn, Yn)), d(G(Yn-1, Xn-1), G(Yn, Xn))},
which, by the fact that y<1, implies
G(d(G(Xn, Yn), G(Xn+1, Yne1)))
<p[max{d(G(Xn1, Yn-1), G(Xn, ¥n)), d(G(Yn-1, Xn-1), G(Yn, Xn))}-
Similarly
G(d(G(Yns Xn), G(Yn+1, Xn+1)))
<¢p[max{d(G(Xn1, Yn1), G(Xn, Yn)), d(G(Yn1, Xn1), G(Yn, Xn))}]-
Combining them, we get
mMax{d(d(G(Xn, Yn), G(Xn+1, Yn+1))), P(A(G(Yn, Xn), G(Yne1, Xne1)))}
<dp[max{d(G(Xn-1, Yn-1), G(Xn, ¥n)), A(G(Yn-1, Xn-1), G(Yn, Xn))}].
Since ¢ is non-decreasing, it follows that
Imax{d(G(xn, Yn), G(Xn+1, Ynr1)), d(G(Yn, Xn), G(Ynr1, Xns1))}
<p[max{d(G(Xn-1, Yn-1), G(Xn, ¥n)), A(G(Yn-1, Xn-1), G(Yn, Xn))}]. ®)
Now (5) shows that {p[max{d(G(Xn, Yn), G(Xn+1, Yn+1)), d(G(Yn, Xn), G(Yn+1,
xn+1))}} is a non-increasing sequence. Therefore, there exists some >0 such that
. d(G(an YH)IG(XH+1I Yn+1))r
! ( { }):5. 6
2 PP V(G %), GO, X)) (©)
Since yeY, we have lim,—sy(r)<l and y(6)<1. Then there exists a€[0, 1) and >0

such that y(r)<a for all r€[5, o+€). From (6), we can take ny>0 such that
d=<[max{d(G(Xn, Yn), G(Xn+1, Yn+1)), A(G(Yn, Xn), G(Yn+1, Xn+1))}]<0+e for all n>n,.
Then, by (1) and (i), for all n>n,, we have

cb(d(G(Xn, yn), G(Xn+1, yn+1)))

= (d(F(Xn1, Yn1), F(Xn, Yn)))

<y(Pp[max{d(G(xn1, Yn-1), G(Xn, yn)), d(G(Yn1, Xn1), G(yn, Xn))}])

xp[max{d(G(Xn-1, Yn-1), G(Xn, Yn)), d(G(Yn-1, Xn-1), G(Yn, Xn))}]

< ap[max{d(G(Xn1, Yn1), G(Xn, ¥n)), d(G(Yn-1, Xn-1), G(Yn, Xn))}]-

Thus, for all n>n,, we have

CI)(d(G(Xn, yn), G(Xn+1, yn+1)))
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<ap[max{d(G(Xn1, Yn1), G(Xn, Yn)), d(G(Yn-1, Xn-1), G(Yn, Xn))}].
Similarly, for all n>n,, we have
G(d(G(yn, Xn), G(Yne1, Xn+1)))
<ap[max{d(G(Xn1, Yn1), G(Xn, Yn)), d(G(Yn-1, Xn-1), G(Yn, Xn))}].
Combining them, for all n>ng, we get
max{$(d(G(Xn, Yn), G(Xn+1, Yn+1))), P(A(G(Yn, Xn), G(Yn+1, Xn+1)))}
<adp[max{d(G(Xn-1, Yn-1), G(Xn, ¥n)), d(G(Yn-1, Xn-1), G(Yn, Xn))}].
Since ¢ is non-decreasing, it follows that
G[max{d(G(Xn, Yn), G(Xn+1, Yn+1)), d(G(Yn, Xn), G(Yn+1, Xn+1))}] (M
<op[max{d(G(Xn-1, Yn-1), G(Xn, ¥n)), d(G(Yn-1, Xn-1), G(Yn, Xn))}],
for all n>ng. Letting n—oo in the above inequality and using (6), we obtain that
6<ad. Since a€[0, 1), therefore 6=0. Thus
: d(G(Xn' yn)' G(Xn+1' YH+1))'
1 ( { }) —0. 8
| 2 P U GG (v ), G X)) @
Since {p[max{d(G(Xn, Yn), G(Xn+1, Yn+1)), d(G(Yn, Xn), G(Yn+1, Xn+1))}} is @ non-
increasing sequence and ¢ is non-decreasing, then {max{d(G(Xn, Yn), G(Xn+1, Yn+1)),
d(G(yn, Xn), G(yn+1, Xn+1))}} is also a non-increasing sequence of positive humbers.
This implies that there exists 8>0 such that
d(G(Xp, Yn), G(Xn+1s yn+1)),}:9
d(G¥n Xn), G(Yn+1,Xn+1)))
Since ¢ is non-decreasing, we have
d(G(Xn, Yn), G(Xn+1'Yn+1))'}) -
0).
o (mex (g o)) =60
Letting n—co in this inequality, by using (2.8), we get 0>¢(0) which, by (iig),
implies that 6=0. Thus, by (2.9), we get
- d(G(Xn' YH)' G(Xn+1' Yn+1))'
lim, ... { }zo. 10
XL (G (Y X)s G e 12 Xr1) (10)
Suppose that max{d(G(Xn, Yn), G(Xn+1, Yn+1)), A(G(Yn, Xn), G(Yns1, Xn+1))}=0, for
some n>0. Then, we have d(G(Xn, Yn), G(Xn+1, ¥Yn+1))=0 and d(G(Yn, Xn), G(Yn+1,
Xn+1))=0 which implies that G(Xn, Yn)=G(Xn+1, Ynr1)=F(Xn, Yn) and G(yn, Xn)=G(Yn+1,
Xn+1)=F(yn, Xn), that is, (Xn, Yn) is a coupled coincidence point of F and G. Now,
suppose that max{d(G(Xn, Yn), G(Xn+1, Yn+1)), d(G(Yn, Xn), G(Yn+1, Xn+1))}#0, for all

>0. Denote
d(G(Xn, ¥n), G(Xnt1, Yn+1)),
an= max
=0 (max Gty o)
From (7), we have

€

limy—. max {

}), for all n>0.

ar<oan.1, for all n>n,.
Then, we have

Y0 An=<Xnl An + Tty +1 0" 00y <00, (11)
On the other hand, by (iiig), we have
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IimSUpn_m< %(%();r:(nn)',(;(;();r;+1:f(nn+1)) : (12)

¢ <max{ d((G((Yn r})’(n))rG((Yn-:-ll v)),(n-:-ll))))

Thus, by (11) and (12), we have Ymax{d(G(xn, Yn), G(Xn+1, Yn+1)), d(G(Yn, Xn),

G(Yn+1, Xn+1))}<oo. It means that {G(Xn, Yn)no and {G(yn, Xn)n=o are Cauchy

sequences in X. Since X is complete, therefore there exist some x, yeX such that

liMn—seG(Xn, Yn)=liMuooF(Xn, Yn)=X, (13)

liMy—G(Yn, Xn)=liMueF(Yn, Xn)=Y.

Since the pair {F, G} satisfies the generalized compatibility, from (13), we get
limyod(F(G(Xn, Yn), G(Yn, Xn)), G(F(Xn, Yn), F(Yn, Xn)))=0, (14)

max{d(G(anyﬂ)rG(Xnﬂ'Yn+1)).} >
0
)

and

limu—od(F(G(Yn, Xn), G(Xn, Yn)), G(F(Yn, Xn), F(Xn, ¥n)))=0. (15)
Suppose that assumption (a) holds. Then
d(F(G(Xn, Yn), G(yn, Xn)), G(X, )
SS(F(G(XTH yn), G(yn, Xn))! G(F(Xn’ yn), F(yn, Xn)))+d(G(F(Xn’ yn), F(yn, Xn))v G(X’
y)).
Taking limit as n—o0 in the above inequality, using (13), (14) and the fact that F
and G are continuous, we have

F(x, y)=G(X, y).

F(y, X)=G(y, x).

Thus (X, y) is a coupled coincidence point of F and G.
Now, suppose that (b) holds. Now we show that (X, y) is a coupled coincidence
point of F and G. By (4) and (13), we have {G(xn, yn)} is a non-decreasing
sequence, G(Xn, Yn)—x and {G(yn, Xn)} IS @ non-increasing sequence, G(yn, Xn)—y
as n—oo. Thus for all n, we have

G(Xn, yn)=<x and G(yn, Xn) =Y. (16)
Since G is continuous, by (13), (14) and (15), we have
[1My—G(G(Xn, Yn), G(Yn, Xn))
=G(x, Y)
=limy G (F(Xn, Yn), F(yn, Xn))

=limy o F(G(Xn, Yn), G(Yn, Xn)) (17)

Similarly we can show that

and
limo—.G(G(yn, Xn), G(Xn, Yn))
=G(y, X)
=My G(F(Yn, Xn), F(Xn, Yn))
=limy—oF(G(Yn, Xn), G(Xn, Yn))- (18)
Since G has the mixed monotone property, it follows from (16) that G(G(Xn, Yn),
G(Yn, Xn))<G(X, ¥) and G(G(Yn, Xn), G(Xn, ¥n))Z=G(Y, X). Now, by using (1) and (i4),
we have
$(d(G(x, y), F(x, ¥)))
=M (d(G(F(xn, Yn), F(yn, X)), F(X, Y)))
=lima(d(F(G(Xn, Yn), G(Yn, Xa)), F(X, ¥)))
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<limyo0y(G[Max{d(G(G(Xn, yn), G(yn Xn)), G(X, ¥)), d(G(G(yn, Xn), G(Xn, Yn)),
G(y’ X))}])Xq)[maX{d(G(G(Xn, yn), G(yn, Xn))v G(Xv y))! d(G(G(yn! Xn)’ G(Xnv yn)),
G(y, X))},
it follows that
$(d(G(x, y), F(x, ¥)))
S)I;I}Iiﬂ—’wq)[max{d(G(G(Xn’ yn), G(yn, Xn))v G(Xv y))i d(G(G(yn! Xn)v G(Xn! yn)), G(yv
X))sl;
which, by (ig), implies
d(G(x, y), F(x, ¥))
S)I;I}nﬂﬁmmax{d(G(G(Xnv yn), G(yn, Xn))’ G(X, y))v d(G(G(yn! Xn)! G(Xnv yn)), G(y’
X))s.
Thus, by (17) and (18), we get

d(G(x, y), F(x, ¥)))=0.
Similarly, we can show that

d(G(y., x), F(y, x)))=0.

G(x, y)=F(x, y) and G(y, X)=F(y, X),

that is, (X, y) is a coupled coincidence point of F and G.
Corollary 1. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two commuting mappings such that F is
G-increasing with respect to <, G is continuous and has the mixed monotone
property, and there exist two elements X,, Yo€X with

G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo)-
Suppose that the inequalities (1) and (2) hold and either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {Xn} —x in X then x,<X, for all n,
(i) if a non-increasing sequence {X»}—x in X then x<X,, for all n.
Then F and G have a coupled coincidence point.
Now, we deduce result without g-mixed monotone property of F.
Corollary 2. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:XxX—X and g:X—X be two mappings such that F is g-
increasing with respect to <, and there exist p€® and yeY¥ such that
$(d(F(x, y), F(u, v)))
<y(¢dp[max{d(gx, gu), d(gy, gv)}])p[max{d(gx, gu), d(gy, gv)}1,
for all x, y, u, veX, where g(x)=<g(u) and g(y)=g(v). Suppose that F(XxX)<g(X),
g is continuous and monotone increasing with respect to < and the pair {F, g} is
compatible. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {Xn}—x in X then x,<X, for all n,
(ii) if a non-increasing sequence {X»}—x in X then x<X,, for all n.
If there exist two elements Xg, Yo€X With

It follows that
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gXo=<F(Xo, Yo) and gyo>F (Yo, Xo).
Then F and g have a coupled coincidence point.
Corollary 3. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:XxX—X and g:X—X be two mappings such that F is g-
increasing with respect to <, and there exist $€® and yeY¥ such that
$(d(F(x, y), F(u, v)))
<y(d[max{d(gx, gu), d(gy, gv)}])d[max{d(gx, gu), d(gy, gv)}I,
for all x, y, u, veX, where g(x)<g(u) and g(y)>=g(v). Suppose that F(XxX)<g(X),
g is continuous and monotone increasing with respect to < and the pair {F, g} is
commuting. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {Xn} —x in X then x,<X, for all n,
(ii) if a non-increasing sequence {X»}—x in X then x<Xn, for all n.
If there exist two elements Xg, Yo€X With
gXo<F(Xo, Yo) and gyo>F (Yo, Xo).
Then F and g have a coupled coincidence point.
Corollary 4. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F:X*xX—X be an increasing mapping with respect to < and
there exist ¢€® and yeW such that
$(d(F(x, y), F(u, v)))
<y(p[max{d(x, u), d(y, v)}])$p[max{d(x, u), d(y, V)31
for all x, y, u, veX, where x<u and yzv. Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {X»} —x in X then x,<X, for all n,
(i) if a non-increasing sequence {X»} —x in X then x<X,, for all n.
If there exist two elements Xq, Yo€X with
Xo=<F(Xo, Yo) and yo=F(Yo, Xo).

Then F has a coupled fixed point.
If we put y(t)=1-(y(t)/t) for all t=0 in Theorem 1, then we get the following result:
Corollary 5. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two generalized compatible mappings
such that F is G-increasing with respect to <, G is continuous and has the mixed
monotone property, and there exist two elements Xg, yo€X with

G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo).
Suppose that there exist ¢€® and yeY such that
$(d(F(x, y), F(u, v)))
<¢p[max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}-w(p[max{d(G(x, y), G(u,
V), d(G(y, x), G(v, u))}D),
for all x, y, u, veX, where G(x, y)<G(u, v) and G(y, X)=G(v, u). Suppose that for
any x, yeX, there exist u, veX such that

F(x, ¥)=G(u, v) and F(y, X)=G(v, u).
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Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {X»} —x in X then x,<X, for all n,
(i) if a non-increasing sequence {X»}—x in X then x<X,, for all n.
Then F and G have a coupled coincidence point.
If we put ¢(t)=2t for all =0 in Theorem 1, then we get the following result:
Corollary 6. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two generalized compatible mappings
such that F is G-increasing with respect to <, G is continuous and has the mixed
monotone property, and there exist two elements Xo, YoE€X with

G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo).
Suppose that there exists some y€Y such that
d(F(x, y), F(u, v))
<y(2max{d(G(x, y), G(u, v)), d(G(y, x), G(v, w)})*max{d(G(x, y), G(u, v)),
d(G(y, x), G(v, u))},
for all x, y, u, veX, where G(x, y)<G(u, v) and G(y, X)>=G(v, u). Suppose that for
any x, yeX, there exist u, veX such that

F(X, y)=G(u, v) and F(y, x)=G(v, u).

Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {X»} —x in X then x,<X, for all n,
(ii) if a non-increasing sequence {x»} —x in X then x<X,, for all n.
Then F and G have a coupled coincidence point.
If we put y(t)=k where 0<k<l1, for all t>0 in Corollary 6, then we get the following
result:
Corollary 7. Let (X, <) be a partially ordered set such that there exists a complete
metric d on X. Assume F, G:XxX—X be two generalized compatible mappings
such that F is G-increasing with respect to <, G is continuous and has the mixed
monotone property, and there exist two elements Xg, yo€X with

G(Xo, Yo)<F(Xo, Yo) and G(Yo, Xo)=F(Yo, Xo).
Suppose
d(F(x, y), F(u, v))skmax {d(G(x, y), G(u, v)), d(G(y, x), G(v, u))},
for all x, y, u, véX and 0<k<1, where G(x, y)<G(u, v) and G(y, X)=G(v, u).
Suppose that for any X, yeX, there exist u, veX such that

F(X, y)=G(u, v) and F(y, x)=G(v, u).

Also suppose that either
(a) F is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {Xn}—x in X then x,<X, for all n,
(ii) if a non-increasing sequence {X»}—x in X then x<X,, for all n.
Then F and G have a coupled coincidence point.
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Example 4. Suppose that X=[0, 1] be endowed with the natural ordering of real
numbers < and equipped with the usual metric d:XxX—[0, +0). Then (X, d) is a
complete metric space. Let F, G:X*xX—X be defined as

2 2

X“=y° .
F(X, y)={T’ ifx =y,
0,ifx<y,
and
_(x?2 —y?ifx>y,
G, y)_{ 0,ifx < y.
Define ¢:[0, +00)—[0, +o0) by
_(In(t+1),fort+#1,
d’(t)‘{ (3/4),fort = 1,
and y:[0, +o0)— [0, 1) defined by
y(t)=(t)/t, for all 0.

First, we shall show that F is G-increasing. Let (X, y), (u, V)EXxX with G(x,
y)<G(u, v). We consider the following cases:
Case 1: If x<y, then F(x, y)=0<F(u, v).
Case 2: If x>y and u>v, then G(x, y)<G(u, v)=x>-y*<u?-v?=(x2-y?)/4<(u?-
v2)/4=F(x, y)<F(u, v). But if u<v, then G(x, y)<G(u, v)=0<x>-y?><0=>x>=y?*=>F(X,
y)=0<F(u, V).
Thus F is G-increasing. Now, we prove that for any x, yeX, there exist u, veX
such that

F(x, ¥)=G(u, v) and F(y, X)=G(v, u).
Let (X, y), (u, vV)eXxX be fixed. We consider the following cases:
Case 1: If x=y, then we have F(x, y)=0=G(x, y) and F(y, X)=0=G(y, X).
Case 2: If x>y, then we have F(x, y)=(x>-y*)/4=G(x/2, y/2) and F(y, x)=0=G(y/2,
x/2).
Case 3: If x<y, then we have F(x, y)=0=G(x/2, y/2) and F(y, x)=(y*-x?)/4=G(y/2,
x/2).
Now we prove that G is continuous and has the mixed monotone property. Clearly
G is continuous. Let (X, y)EXxX be fixed. Suppose that x;, X,€X are such that
X1<X3.
Case 1: If x4<y, then we have G(X4, y)=0<G(xz, V).
Case 2: If x;>y, then we have G(X1, Y)=X12-y*<x,%-y*=G(X2, Y).
Similarly, we can show that if y,, y,€X are such that y;<y,, then G(X, y;)>G(x,
y2).
Now, we prove that the pair {F, G} satisfies the generalized compatibility
hypothesis.
Let (xn) and (yn») be two sequences in X such that

liMy—0G(Xn, Yn)=liMaswF(Xn, Yn)=ty,

liMy—0G(Yn, Xn)=liMaswF(Yn, Xn)=t2,
then we must have t;=t,=0 and one can easily prove that

limy—d(F(G(Xn, Yn), G(Yn, Xn)), G(F(Xn, ¥n), F(Yn, Xn))=0,
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lim,—d(F(G(Yn, Xn), G(Xn, Yn)), G(F(Yn, Xn), F(Xn, ¥n)))=0.
Now we prove that there exist two elements Xo, Yo€X with
G(Xo, Yo)=<F(xo, Yo) and G(Yo, Xo)=F(yo, Xo)-
Since we have G(0, 1/2)=0=F(0, 1/2) and G(1/2, 0)=(1/4)>(1/16)=F(1/2, 0). Next,
we shall show that the mappings F and G satisfy the condition (1). Let X, y, u, véX
such that G(x, y)<G(u, v) and G(y, x)>G(v, u). Then
d(F(x, y), F(u, v))
=|(x2-y?)/4-(u-v?)/4]
<In(|(x*-y*)-(u*-v?)|+1)
<In(|G(x, y)-G(u, V)}+1)
<In(d(G(x, y), G(u, v))+1)
<In[max {d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}+1],
which implies that
$(d(F(x, y), F(u, v)))
=In[d(F(x, y), F(u, v))+1]
< In[In[max {d(G(x, y), G(u, v)), d(G(y, X), G(v, u))}+1]+1]
<In[In[max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}+1]+1]/(In[max{d(G(x, y),
G(u, v)), d(G(y, x), G(v, w)j+1]xIn[max{d(G(x, y), G(u, v)), d(G(y, x), G(v,
u)}+1]
<y(p[max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}])
xp[max{d(G(x, y), G(u, v)), d(G(y, x), G(v, u))}].
Thus the contractive condition (1) is satisfied for all x, y, u, veX and z=(0, 0) is a
coupled coincidence point of F and G.
Now we prove the unigueness of the coupled coincidence point. Note that if (X, <)
is a partially ordered set, then we endow the product XxX with the following
partial order relation, for all (x, y), (u, vV)EXxX:
(X, Y)<(u, v)=G(X, y)<G(u, v) and G(y, X)=G(v, u),
where G:X*xX—X is one-0ne.
Theorem 2. In addition to the hypotheses of Theorem 1, suppose that for every (X,
y), (x*, y*) in XxX, there exists another (u, v) in XxX which is comparable to (X, y)
and (x*, y*), then F and G have a unique coupled coincidence point.
Proof. From Theorem 1, the set of coupled coincidence points of F and G is non-
empty. Assume that (X, y), (x*, y*)EXxX are two coupled coincidence points of F
and G, that is,
F(x,y) =G(x, y) and F(y, X)=G(y, ),
F(x, y9) = G(x+, y?) and F(y*, x)=G(y*, x).
We shall prove that G(x, y)= G(x*, y*) and G(y, x)= G(y*, x*). By assumption, there
exists (u, vV)EXxX, that is, comparable to (x, y) and (x*, y*). We define the
sequences {G(un, Vn)} and {G(vn, un)} as follows, with ug=u, vo=V:
G(Un+1, Vie1)=F(Un, Vo) and G(Vn+1, Un+1)=F(Vn, Un), n>0.
Since (u, v) is comparable to (x, y), we may assume that (X, y)=<(u, v)=(Uo, Vo),
which implies that G(x, y)<G(uo, Vo) and G(y, x)>=G(Vvo, Uo). We suppose that (X,
y)<(un, vn) for some n. We shall prove that (X, y)<(Un+1, Vns1). Since F is G-
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increasing, we have G(X, y)<G(Un, Vn) implies F(X, y)<F(un, vn) and G(y, X)=G(Vn,
Un) implies F(y, X)=F(va, un). Therefore

G(X, Y)=F(X, y)<F(Un, Vn)=G(Un+1, Vn+1),
and

G(y, X)=F(y, X)=F(Vn, Un)=G(Vn+1, Un+1).
Thus, we have

(X, ¥Y)=<(Un+1, Vn+1), for all n.
Now, by (1) and (ig), we have
$(d(G(X, y), G(Uns1, Vne)))
=$(d(F(x, y), F(Un, Vi)
<y(p[max{d(G(x, y), G(un, Vn)), d(G(Y, X), G(Vn, Un))}])
xp[max{d(G(x, y), G(un, Vn)), d(G(Y, X), G(Vn, Un))}],
which, by the fact that y<1, implies
(d(G(X, ¥), G(Uns1, Vne1)))
<d(max{d(G(x, y), G(Un, Vn)), d(G(Y, X), G(Vn, Un))}).
Similarly
(I)(d(G(y, X), G(Vn+l, Un+l)))
<d(max{d(G(x, y), G(Un, Vn)), d(G(Y, X), G(Vn, Un))}).
Combining them, we get
max{$(d(G(x, y), G(Un1, Vn1))), P(d(G(Y, X), G(Vns1, Un+1)))}
<d(max{d(G(x, y), G(Un, Vn)), d(G(Y, X), G(Vn, Un))}).
Since ¢ is non-decreasing, it follows that
d(max {d(G(X, y), G(un+1, Vn+1)), d(G(Y, X), G(Vn+1, Un+1))})
<d(max{d(G(x, y), G(Un, Vn)), d(G(Y, X), G(Vn, Un))}). (19)

Now (19) shows that {d(max{d(G(X, Y¥), G(Un+1, Vn+1)), A(G(Y, X), G(Vn+1, Uns1)) P}
IS a non-increasing sequence. Therefore, there exists some A>0 such that

H d(G(X' Y)' G(un+1' Vn+1))'}>_

limy—..¢ | max =A. 20
"’( {dm(y, ) GV, 1)) 20

Since yeY¥, we have lim;—+y(r)<1 and y(A)<I. Then there exists f€[0, 1) and >0

such that y(r)<p for all r€[A, A+e). From (20), we can take ng>0 such that

A<Pp[max{d(G(x, ¥), G(Un+1, Vn+1)), d(G(Y, X), G(Vn+1, Un+1))}]<A+e for all n>ng.

Then, from (1) and (i), for all n>no, we have

$(A(G(X, y), G(Un+1, Vni1)))

=p(d(F(x, y), F(un, Vn)))

<y(P(max{d(G(X, y), G(un, Vn)), d(G(y, X), G(Vn, Un))}))

xp(max{d(G(x, y), G(un, Vn)), d(G(y, X), G(Vn, Un))})

<Bp(max{d(G(X, y), G(Un, Vn)), d(G(y, X), G(Vn, Un))}).

Thus, for all n>no, we have

$(A(G(X, y), G(Un+1, Vni1)))

<Bp(max{d(G(X, y), G(un, vn)), d(G(y, X), G(Vn, Un))}).

Similarly, for all n>no, we have

G(d(G(Y, X), G(Vn+1, Uns1)))
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<Pp(max{d(G(x, y), G(un, vn)), d(G(y, X), G(Vn, Un))})-
Combining them, for all n>no, we get
max{$(d(G(x, y), G(Un1, Vns1))), d(d(G(Y, X), G(Vns1, Un+1)))}
<Pp(max{d(G(x, y), G(un, Vn)), d(G(y, X), G(Vn, Un))})-
Since ¢ is non-decreasing, it follows that
d(max{d(G(x, ¥), G(Un+1, Vn+1)), d(G(Y, X), G(Vn+1, Un+1))}) (21)
SBd)(maX{d(G(X, y)’ G(u”’ Vn))! d(G(y, X)v G(Vn’ u”))})]!
for all n>no. Letting n—o in the above inequality and using (20), we obtain that
A<BA. Since B€E[0, 1), therefore A=0. Thus by (20), we get

Iimn_mo(l) (max {d(G(X; Y); G(un+1; Vn+1)):}>:0. (22)
d(G(y, %), G(Vn+1, Un+1))

Since {d(Mmax{d(G(x, y), G(Un+1, Vn+1)), d(G(y, X), G(Vn+1, Un+1))})} is a non-
increasing sequence and ¢ is non-decreasing, then {max{d(G(X, y), G(Un+1, Vn+1)),
d(G(y, X), G(Vn+1, Un+1))}} is also a non-increasing sequence of positive numbers.
This implies that there exists £>0 such that
d(G(X; Y); G(un+1, Vn+1))r}: é
d(G(y, %), G(Vn+1, Un+1))
Since ¢ is non-decreasing, we have

d)(maX{d(G(X, y)! G(u”"l’ Vn+1))’ d(G(y, X)! G(Vn+1! Un+l))})2¢(§)
Letting n—oo in this inequality, by using (22), we get 0>¢[&], which, by (iis),
implies that £&=0. Thus, by (23), we get
d(G(X' Y)' G(un+1,vn+1)),}: 0
d(G(y' X)' G(Vn+1' un+1))

lim,—..max { (23)

lim,—.max {

which implies that
G(X, Y)=liMy—G(Un+1, Vne1) and G(Y, X)=limy—G(Vns1, Uns1).
Similarly, we can show that
G(x*, y*)=limy—G(Un+1, Vne1) and G(y*, X)=limy—wG(Vns1, Uns1).
Thus G(x, y)= G(x*, y*) and G(y, X)= G(y*, X").

3. Application to integral equations

As an application of the results established in section 2 of our paper, we
study the existence of the solution to a Fredholm nonlinear integral equation. We
shall consider the following integral equation

x(P)=/2 (K+(p, q) + K> (p, ) [f(a,x(@)) + g(a,x(q))]dq + h(p), (24)
for all pel=[a, b].

Let ® denote the set of all functions 0:[0, +00)—[0, +0) satisfying

(ie) 6 is non-decreasing,

(iip) 6(p)=In(p+1).

Assumption 1. We assume that the functions K;, K,, f, g fulfill the following
conditions:
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(1) K1(p, 9)>0 and K, (p, q)>0 for all p, g€l.
(i1) There exists positive numbers A, p and O€® such that for all x, y€ I with x>y,
the following conditions hold:

| 0<f(q, x)-f(q, y)<rO(x-Y), (25)
an

0<g(q, x)-g(q, y)Sb Ho(x-y). (26)
(iii) max {1, p}supperf, (K1 (p, q) + Kz (p,q))dq<1/2. (27)

Definition 15. [13]. A pair (a, B)eX*X with X=C(I, R), where C(l, R) denote the
set of all continuous functions from | to R, is called a coupled lower-upper solution
of (24) if, for all pel,

b b
a(p)=f, K1(p, D[f(q, a(@)) + g(q, Ba)]lda+], Kz (p,d[f(q, B(@)) +
g(q, a(@))]dq + h(p),
and
b b
B(@=f, Ky (p, D[f(q, (@) + g(q, a(@))]dq+[, Ko (p, D[f(q, a(q)) +
g(q, B(a))]dq + h(p).
Theorem 3. Consider the integral equation (24) with K;, K,eC(IxI, R), f,
geC(Ix R, R) and heC(l, R). Suppose that there exists a coupled lower-upper
solution (a, B) of (24) and that Assumption 1 is satisfied. Then the integral equation
(24) has a solution in C(l, R).
Proof. Consider X=C(l, R), the natural partial order relation, that is, for x, yeC(l,
R),
x<y=x(p)<y(p), VPEl.
It is well known that X is a complete metric space with respect to the sup metric
d(x, y)=suppelX(p)-y(p)|-
Now define on XxX the following partial order: for (x, y), (u, v)EXxX,
(%, y) )=(u, v)©x(p)<u(p) and y(p)=v(p), for all pel.
Define ¢:[0, +o0)—[0, +o0) by
In(t+ 1), fort # 1,
d)t—{ %,fort=1,
and y:[0, +o0)— [0, 1) defined by
y(H)=¢(t)/t, for all 0.
Define now the mapping F:XxX—X by

Fox, Y)E)=/. K (b, DIF(Q, x(0) + (a, y(a))]dg

b
+[, K2(p, D[f(q, y(@)) + g(a,x(q))]dq +h(p),
for all pel. It is not difficult to prove, like in [14], that F is increasing. Now for X,
Yy, U, VEX with x<u and y>v, we have

F(< V)P)F (U, V)()
=[; K1 (p, D[(f(a, x(@) — f(q u(@)) + (a0, (@) — &(a v(a)))]dq

+17 Ko (0, DI((a,y(@) — f(q,v(@) ) + (8@ %(@)) — g(q, u(@))]dg
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Thus, by using (25) and (26), we get
. F(x, y)(p)-F(u, v)(p) (27)
<J, K1(p, ) [A6(x(q) — u(@)) + 18(y(q) — v(q))]dq

+ fab K2 (p, D [A8(y(q) — v(q)) + nb(x(q) — u(q))]dq.

Since the function 0 is non-decreasing and x<u and y>v, we have
0(x(q)-u(@)) < O(supgellX(a)-u(q)=6H(d(x, w)),
0(y(9)-v(q)) = O(supqeily(q)-V())=0(d(y, v)).

Hence by (27), in view of the fact that Kz(p, q)<0, we obtain

IF(x, y)(p)-F(u, V)(p)I

<[ K1(p, [A6(d(x u)) + ub(d(y, v))]dq
b
+ f K1 (p, ) [A8(d(y, v)) + uB(d(x, w))]dgq
<[ K1 (p, @) [max{2, }6(d(x, u)) + max{A, u}6(d(y, v))ldq

b
+ f K> (p, @) [max{A, u36(d(y, v)) + max{A, u}6(d(x, u))]dq

a
as all the quantities on the right hand side of (27) are non-negative. Now, taking the
supremum with respect to p we get, by using (26),

d(F(x, y), F(u, v))

< max{A, Wsuppe; [ (K1 (p, @) + Ko (p, @))da[B(d(x, w)) + 8(d(y, V)]
< (0(d(x, u))+0(d(y, v)))/2.
Thus

d(F(x, y), F(u, v))<(6(d(x, w))+0(d(y, v)))/2. (28)
Now, since 0 is non-decreasing, we have

0(d(x, ) <O(max{d(x,u), d(y, v)}),
0(d(y, v)) <0(max{d(x, u), d(y, v)}),
which implies, by (iiy), that
(0(d(x, w)+6(d(y, v)))/2<b(max {d(x, v), d(y, v)})
<In[max{d(x, u), d(y, v)}+1]. (29)
Thus by (28) and (29), we have
d(F(x, y), F(u, v))<In[max {d(x, u), d(y, v)}+1],

which implies that
$(d(F(x, y), F(u, v)))
=In[d(F(x, y), F(u, v))+1]
<In[In[max {d(x, u), d(y, v)}+1]+1]
<((In[In[max {d(x, u), d(y, v)}+1]+1])/(In[max{d(x, u), d(y, v)}+1]))
xIn[max {d(x, u), d(y, v)}+1]
<y(p(max {d(x, u), d(y, v)}))*d(max{d(x, u), d(y, v)}),
which is the contractive condition in Corollary 4. Now, let (0o, B)EX*X be a
coupled upper-lower solution of (24), then we have a(p)<F(a, B)(p) and B(p)=F( B,
a)(p), for all pel, which shows that all hypothesis of Corollary 4 are satisfied. This
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proves that F has a coupled fixed point (X, y)eXxX which is the solution in X=C(I,
R) of the integral equation (24).
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Umumilasmis mizoquci-takahasi sixilmasi monada inikaslarin iimumilasmis
uyusan ciitii ticiin ikiqat tasadiifi noqts haqqinda iimumi teorem

Bhavana Deshpande, Amris Handa

XULASO

Isdo hisse-hisso nizamlanmis metric fozada itimumilosmis Mizoqugi-Takahasi
sixilmast monada F, G:XxX—X inikaslarmin {imumilosmis uyusan ciitii ii¢iin ikiqat
tosadiifi néqte haqqinda teorem quralacag. Biz hamginin F inikasinin qarisiq monotonluq
xassasi olmadan qeyd olunmus ndqtenin miioyyan alagali naticerini gostoracayik. Homg¢inin
naticolorimizin adekvathigini gdstoron misal da verilmigdir. Totbiqi olaraq alinmis
naticalorin praktiki shomiyyatini illustrasiya etmok {iglin inteqral tonliklorin hallinin aliriq.
Eyni zamanda biz bir nego molum noticolori tokmillogdiracayik, genislondirocoyik vo
imumilasdiracayik.

Acar sozlor: ikigat tosadiifi noqto, imumilogmis Mizoqugi-Takahasi sixilmasi,
imumilogmis uyusma, artan inikas, qarigiq monoton inikas.
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Oo0mras TeopeMa 0 ABOHHON HENMOABUKHOM TOYKe /151 00001IeHHOM
COBMECTHMOIi Mapbl 0TOOpaKeHHii MPU 00001IIeHHBIM COKPaIleHHEM
MH30TYTH-TaKaXaIIH

bxapana [Jemmnange, Ampum Xanaa

PE3IOME

YcTaHOBIEHA TeOpeMa O COMNPSIKCHHOW TOYKE COBMAACHHUSA JUIS O00O0OIICHHOMN
cormnacoBaHHOW mapbl orobpaxenuit F, G: X x X — X mnpu 0000mCHHOM
cokpameHuuMu3oryun-Takaxam Ha  YaCTUYHO  YIOPSIIOYCHHOM  METPHUYCCKOM
MPOCTPaHCTBE. MBI TaKKe BBIBOJUM HEKOTOPBIC CBS3aHHBIC PE3yJIbTAThI C HEIMOBHIKHOM
TOYKOH 0e3 cMemaHHOro MOHOTOHHOTro cBoiictBa F: X x X — X. Taxke mpuBeacH
npuMep, MOATBEP)KTAIOMIMN HAml pPe3yibTaT.MBl TONyd9aeM pEHICHHE HWHTETrPAbHBIX
YpaBHCHHI IS WLTIOCTPALMU TIPUTOJHOCTH ITONYYCHHBIX PE3yNbTaToB. MBI yiydiiaem,
pactpsieM 1 0000IaeM HECKOIBKO U3BECTHBIX PE3YIIbTATOB.

KawueBpie cioBa:CBs3aHHas TOYKAa COBMAICHUS, OOOOIICHHOE COKpAIICHUE
Musoryun-Takaxamm, 0000IIeHHass COBMECTHMOCTh, BO3pacTamIee OTOoOpaXeHHe,
CMeIIaHHOE MOHOTOHHOE 0TOOpaKeHUE, KOMMYTHPYIOIIEE OTOOpaKEeHHE.
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