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ON THE NORMS OF CIRCULANT MATRICES WITH THE
GENERALIZED FIBONACCI AND LUCAS NUMBERS

MUSTAFA BAHŞI1

Abstract. In this paper, firstly we define n×n circulant matrices U =Circ (U0, U1, . . . , Un−1),

V =Circ (V0, . . . , Vn−1), T =Circ (T0, . . . , Tn−1) and S =Circ (S0, . . . , Sn−1), where {Un} and

{Vn} are generalized Fibonacci and Lucas types second order linear recurrences, {Tn} and {Sn}
are Tribonacci sequences with different initial conditions. After we study spectral noms of these

matrices and their Hadamard and Kronecker product.

Keywords: circulant matrix, generalized Fibonacci number, generalized Lucas number, matrix

norm.
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1. Introduction

For n > 0, the well known Fibonacci sequence {Fn}∞n=1 is defined by

Fn+1 = Fn + Fn−1,

where F0 = 0, F1 = 1 and the Lucas sequence {Ln}∞n=1 is defined by

Ln+1 = Ln + Ln−1,

where L0 = 2 and L1 = 1.

The Fibonacci and Lucas sequences can be generalized as follows: Let p and q be positive
integer. The second order linear recurrences of the Fibonacci and Lucas types are defined by
the following equations:

Un+1 = pUn + qUn−1,

Vn+1 = pVn + qVn−1,

where U0 = 0, U1 = 1 and V0 = 2 , V1 = p. It is clear that Vn = pUn + 2qUn−1.

When p = q = 1, Un = Fn (Fn denotes the nth Fibonacci number). When p = 2, q = 1, Un =
= Pn (Pn denotes the nth Pell number). When p = q = 1, Vn = Ln (Ln denotes the nth Lucas
number).

Let α and β be the roots of the characteristic equation x2 − px− q = 0 . Then the sequences
{Un} and {Vn} have the following Binet’s formulas

Un = A1α
n + B1β

n, (1)

Vn = A2α
n + B2β

n, (2)

where

α =
p +

√
p2 + 4q

2
, β =

p−
√

p2 + 4q

2
,
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A1 =
1√

p2 + 4q
, B1 =

−1√
p2 + 4q

,

A2 =
p− 2β√
p2 + 4q

, B2 =
2α− p√
p2 + 4q

.

The third order linear recurrences of the Fibonacci and Lucas types are defined by the fol-
lowing equations:

Tn = Tn−1 + Tn−2 + Tn−3,

Sn = Sn−1 + Sn−2 + Sn−3,

where T0 = 0, T1 = T2 = 1 and S0 = 3, S1 = 1, S2 = 3. Also, the sequences {Tn} and
{Sn} are well known Tribonacci sequences with different initial conditions. It is clear that
Sn = Tn + 2Tn−1 + 3Tn−2.

Let γ1, γ2 and γ3 be the roots of the characteristic equation x3 − x2 − x − 1 = 0. Then the
sequences {Tn} and {Sn} have the following Binet’s formulas

Tn =
γn+1

1

(γ1 − γ2) (γ1 − γ3)
+

γn+1
2

(γ2 − γ1) (γ2 − γ3)
+

γn+1
3

(γ3 − γ1) (γ3 − γ2)
,

Sn = γn
1 + γn

2 + γn
3 .

Some of the terms of the sequences {Un} , {Vn}, {Tn} and {Sn} are the following:

n 0 1 2 3 4 5 6 7 8 9 10
Un

p=2,q=3
0 1 2 7 20 61 182 547 1640 4921 14762

Vn
p=2,q=3

2 2 10 26 82 242 730 2186 6562 19682 59050

Tn 0 1 1 2 4 7 13 24 44 81 149
Sn 3 1 3 7 11 21 39 71 131 241 443

Some authors have studied second order or third order Fibonacci numbers and their certain
generalizations [11− 13, 17− 19]. In [11], the authors have derived generalized Binet’s formula
and combinatorial representation of the generalized order k- Fibonacci numbers. For p = A and
q = 1, in [12] , the author has given the sums of squares of the terms of {Un} as follows:

n∑

i=0

U2
i =

UnUn+1

A
.

In [13], the author has given the sums of the terms of Tribonacci sequence {Tn} as follows:

n∑

i=0

Ti =
Tn+2 + Tn − 1

2
. (3)

Similarly, by the induction method on n , we have
n∑

i=0

Si =
Sn+2 + Sn

2
. (4)
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An n× n matrix C is called a circulant matrix if it is of the form

C =




c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2
...

...
...

. . .
...

...
c2 c3 c4 · · · c0 c1

c1 c2 c3 · · · cn−1 c0




.

For each i, j = 1, 2, . . . , n and k = 0, 1, 2, . . . , n − 1, all the elements (i, j) such that j − i ≡
k(mod n) have the same value ck; these elements form the so-called kth stripe of C. Obviously, a
circulant matrix is determined by its first row (or column). That is C = =Circ (c0, c1, . . . , cn−1).
The circulant matrices play important role in numerical analysis, because they can be quickly
solved using the discrete Fourier transform.

Circulant matrices are especially tractable class of matrices since their inverses, conjugate
transposes, sums and products also circulant. Moreover a circulant matrix is a normal matrix
[5].

Many authors have studied circulant matrices [1, 3, 5, 6, 10, 26]. Hladnik [6] has given a formula
for Schur norm of a block circulant matrix with circulant blocks. Karner et al. [10] have worked
on spectral decompositions and singular value decompositions of four types of real circulant
matrices. Bose and Mitra [3] have derived the limiting spectral distribution of a particular
variant of a circulant random matrix. Atkin et al. [1] have studied the powers of a circulant.
Zhang et al. [26] have worked on the minimal polynomials and inverses of a block circulant
matrices over a field.

Matrix norms play important role in perturbation analysis, condition and error estimates
[15, 16, 25]. Recently, there have been several papers on the norms of special circulant matrices
[2, 4, 9, 14, 20− 24]. Solak [21, 22] has defined A = (aij) and B = (bij) as n × n circulant
matrices, where aij ≡ F( mod (j−i,n)) and bij ≡ L( mod (j−i,n)), then he has given some bounds
for the spectral and Euclidean norms of the matrices A and B. Civciv and Türkmen [4] have
constructed the circulant matrix with the Lucas number and presented lower and upper bounds
for the Euclidean and spectral norms of this matrix. Bahsi and Solak [2] have defined Ca,r = (cij)
as n× n circulant matrix where cij ≡ a + (j − i mod n) r, a and r are real numbers, then they
have investigated eigenvalues, determinant, spectral norm, Euclidean norm of this matrix. Shen
and Cen [20] have given upper and lower bounds for the spectral norms of r-circulant matrices
in the forms A = Cr (F0, F1, . . . , Fn−1) , B = Cr (L0, L1, . . . , Ln−1). Solak and Bozkurt [23] have
defined almost circulant matrix as follows: Cn =Circ

(
a, 1, 1

2 , . . . , 1
n−1

)
, where a ∈ R (R denotes

the set of real numbers) and a 6= 0. After they have established upper bounds for the lp norms
of the matrix Cn. Ipek [9] have obtained the equality for the Solak’s work in [21]. Kocer [14]
has given some properties of the modified Pell, Jacobsthal and Jacobsthal-Lucas numbers, then
she has defined the circulant, negacyclic and semicirculant matrices with these numbers and she
has investigated the norms, eigenvalues and determinants of these matrices.

In this paper, let U =Circ (U0, U1, . . . , Un−1), V =Circ (V0, V1, . . . , Vn−1),
T = Circ (T0, T1, . . . , Tn−1) and S =Circ (S0, S1, . . . , Sn−1) be circulant matrices. Firstly we
give equalities for the spectral norms of these matrices. After we obtain equalities and inequal-
ities related to spectral norms of Hadamard and Kronecker product of these matrices.

Now we start with some preliminaries related to our study.
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Definition 1.1. Let A = (aij) be any m× n matrix. The spectral norm of the matrix A is

‖A‖2 =
√

max
i

λi (AHA),

where λi

(
AHA

)
are eigenvalues of AHA and AH is conjugate transpose of matrix A.

Definition 1.2. Let A = (aij) and B = (bij) be m×n matrices. Then their Hadamard product
A ◦ B is defined

A ◦B = [aijbij ] .

Definition 1.3. Let A = (aij) and B = (bij) be m × n and p × r matrices, respectively. Then
their Kronecker product A ⊗ B is defined

A⊗B = [aijB] .

Lemma 1.1. [8] Let A and B be m×n matrices. Then we have

‖A ◦B‖2 ≤ ‖A‖2 ‖B‖2 .

Lemma 1.2. [8] Let A and B be m× n matrices. Then we have

‖A⊗B‖2 = ‖A‖2 ‖B‖2 .

Lemma 1.3. [7] Let A be any n×n matrix with eigenvalues λ1, λ2, . . . , λn. Then, A is a normal
matrix if and only if the eigenvalues of AHA are |λ1|2 , |λ2|2 , . . . , |λn|2.
Lemma 1.4. [10] Let C =Circ (c0, c1, . . . , cn−1) be n× n general circulant matrix. Then

λm
0≤m≤n−1

=
n−1∑

k=0

ckw
−mk, (5)

where λj are eigenvalues of C and w is the nth primitive root of unity.

Let w be w = e
2πi
n . Then w is a nth primitive root of unity. Then the equality (5) has the

form

λm
0≤m≤n−1

=
n−1∑

k=0

cke
−2πimk

n . (6)

2. Main results

Theorem 2.1. The spectral norm of matrix U =Circ (U0, U1, . . . , Un−1) is

‖U‖2 =
1− Un − qUn−1

1− p− q
.

Proof. Since U is a circulant matrix, from (6) its eigenvalues are of the form

λm
0≤m≤n−1

=
n−1∑

k=0

Uke
−2πimk

n .

Then for m = 0, using the Binet’s formula for the sequence {Un}, we have

λ0 =
n−1∑

k=0

Uk =
n−1∑

k=0

(
A1α

k + B1β
k
)

=
n−1∑

k=0

A1α
k +

n−1∑

k=0

B1β
k =

=
A1α

n −A1

α− 1
+

B1β
n −B1

β − 1
=

=
αβ

(
A1α

n−1 + B1β
n−1

)− (A1α
n + B1β

n)− (A1β + B1α) + A1 + B1

αβ − (α + β) + 1
.
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Since, α + β = p, αβ = −q, A1 + B1 = 0 and A1β + B1α = −1, we have

λ0 =
n−1∑

k=0

Uk =
1− Un − qUn−1

1− p− q
. (7)

On the other hand, we have

|λm|
1≤m≤n−1

=

∣∣∣∣∣
n−1∑

k=0

Uke
−2πimk

n

∣∣∣∣∣ ≤
n−1∑

k=0

|Uk|
∣∣∣e−2πimk

n

∣∣∣ ≤
n−1∑

k=0

|Uk| =
n−1∑

k=0

Uk. (8)

Using the Lemma 1.3 and the fact that a circulant matrix is a normal, we have

‖U‖2 = max
0≤m≤n−1

|λm| = max
(
|λ0| , max

1≤m≤n−1
|λm|

)
. (9)

Finally, from (7), (8) and (9), we have

‖U‖2 =
1− Un − qUn−1

1− p− q
.

Thus the proof is completed. ¤

Theorem 2.2. The spectral norm of matrix V =Circ (V0, V1, . . . , Vn−1) is

‖V ‖2 =
2− p− Vn − qVn−1

1− p− q
.

Proof. Using the Binet’s formula for the sequence {Vn}, we have
n−1∑

k=0

Vk =
n−1∑

k=0

(
A2α

k + B2β
k
)

=
n−1∑

k=0

A2α
k +

n−1∑

k=0

B2β
k =

=
A2α

n −A2

α− 1
+

B2β
n −B2

β − 1
=

=
αβ

(
A2α

n−1 + B2β
n−1

)− (A2α
n + B2β

n)− (A2β + B2α) + A2 + B2

αβ − (α + β) + 1
.

Since, α + β = p, αβ = −q, A2 + B2 = 2 and A2β + B2α = p, we have
n−1∑

k=0

Vk =
2− p− Vn − qVn−1

1− p− q
. (10)

Since V is a circulant matrix, from (6) its eigenvalues are of the form

λm
0≤m≤n−1

=
n−1∑

k=0

Vke
−2πimk

n .

Then for m = 0, using (10) we have

λ0 =
n−1∑

k=0

Vk =
2− p− Vn − qVn−1

1− p− q
. (11)

From Lemma 1.3 and the fact that the matrix V is a normal matrix, we have

‖V ‖2 = max
0≤m≤n−1

|λm| = max
(
|λ0| , max

1≤m≤n−1
|λm|

)
. (12)

Since

|λm|
1≤m≤n−1

=

∣∣∣∣∣
n−1∑

k=0

Vke
−2πimk

n

∣∣∣∣∣ ≤
n−1∑

k=0

|Vk|
∣∣∣e−2πimk

n

∣∣∣ ≤
n−1∑

k=0

|Vk| =
n−1∑

k=0

Vk, (13)
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from (11), (12) and (13), we have

‖V ‖2 =
2− p− Vn − qVn−1

1− p− q
.

Then the proof is completed. ¤

When p = q = 1, Un = Fn (Fn denotes the nth Fibonacci number) and Vn = Ln (Ln denotes
the nth Lucas number). Then by Theorems 2.1 and 2.2, we have

‖U‖2 = Fn+1 − 1 and ‖V ‖2 = Ln+1 − 1.

In fact, these equalities are the spectral norms of circulant matrix with the Fibonacci and Lucas
numbers.

Corollary 2.1. For n ≥ 2, the spectral norms of Vn×n = V =Circ (V0, V1, . . . , Vn−1) and
Un×n = U =Circ (U0, U1, . . . , Un−1) have the following equality

‖Vn×n‖2 = p ‖Un×n‖2 + 2q
∥∥U(n−1)×(n−1)

∥∥
2
+ 2,

where U(n−1)×(n−1) =Circ (U0, U1, . . . , Un−2).

Proof. Since Vn = pUn + 2qUn−1, the proof is trivial from Theorems 2.1 and 2.2. ¤

Corollary 2.2. The spectral norm of the Hadamard product of U =Circ (U0, U1, . . . , Un−1) and
V =Circ (V0, V1, . . . , Vn−1) has the following inequality

‖U ◦ V ‖2 ≤
(1− Un − qUn−1) (2− p− Vn − qVn−1)

(1− p− q)2
.

Proof. Since ‖U ◦ V ‖2 ≤ ‖U‖2 ‖V ‖2, the proof is trivial from Theorems 2.1 and 2.2. ¤

Corollary 2.3. The spectral norm of the Kronecker product of U =Circ (U0, U1, . . . , Un−1) and
V =Circ (V0, V1, . . . , Vn−1) has the following equality

‖U ⊗ V ‖2 =
(1− Un − qUn−1) (2− p− Vn − qVn−1)

(1− p− q)2
.

Proof. Since ‖U ⊗ V ‖2 = ‖U‖2 ‖V ‖2, the proof is trivial from Theorems 2.1 and 2.2. ¤

Theorem 2.3. The spectral norm of matrix T =Circ (T0, T1, . . . , Tn−1) is

‖T‖2 =
Tn+1 + Tn−1 − 1

2
.

Proof. Since T is a circulant matrix, from (6) its eigenvalues are of the form

λm
0≤m≤n−1

=
n−1∑

k=0

Tke
−2πimk

n .

Then for m = 0, using (3) we have

λ0 =
n−1∑

k=0

Tk =
Tn+1 + Tn−1 − 1

2
. (14)

On the other hand, we have

|λm|
1≤m≤n−1

=

∣∣∣∣∣
n−1∑

k=0

Tke
−2πimk

n

∣∣∣∣∣ ≤
n−1∑

k=0

|Tk|
∣∣∣e−2πimk

n

∣∣∣ ≤
n−1∑

k=0

|Tk| =
n−1∑

k=0

Tk. (15)
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Using Lemma 1.3 and the fact that the matrix T is a normal matrix, we have

‖T‖2 = max
0≤m≤n−1

|λm| = max
(
|λ0| , max

1≤m≤n−1
|λm|

)
. (16)

From (14), (15) and (16), we have

‖T‖2 =
Tn+1 + Tn−1 − 1

2
.

Therefore the proof is completed. ¤

Theorem 2.4. The spectral norm of matrix S =Circ (S0, S1, . . . , Sn−1) is

‖S‖2 =
Sn+1 + Sn−1

2
.

Proof. Since S is a circulant matrix, from (6) its eigenvalues are of the form

λm
0≤m≤n−1

=
n−1∑

k=0

Ske
−2πimk

n .

Then for m = 0, using (4) we have

λ0 =
n−1∑

k=0

Sk =
Sn+1 + Sn−1

2
. (17)

From Lemma 1.3 and the fact that the matrix S is a normal matrix, we have

‖S‖2 = max
0≤m≤n−1

|λm| = max
(
|λ0| , max

1≤m≤n−1
|λm|

)
. (18)

Since

|λm|
1≤m≤n−1

=

∣∣∣∣∣
n−1∑

k=0

Ske
−2πimk

n

∣∣∣∣∣ ≤
n−1∑

k=0

|Sk|
∣∣∣e−2πimk

n

∣∣∣ ≤
n−1∑

k=0

|Sk| =
n−1∑

k=0

Sk, (19)

from (17), (18) and (19), we have

‖S‖2 =
Sn+1 + Sn−1

2
.

Thus the proof is completed. ¤

Corollary 2.4. For n ≥ 3, the spectral norms of Tn×n = T =Circ (T0, T1, . . . , Tn−1) and
Sn×n = S =Circ (S0, S1, . . . , Sn−1) have the following equality

‖Sn×n‖2 = ‖Tn×n‖2 + 2
∥∥T(n−1)×(n−1)

∥∥
2
+ 3

∥∥T(n−2)×(n−2)

∥∥
2
+ 3,

where T(n−1)×(n−1) =Circ (T0, T1, . . . , Tn−2) and T(n−2)×(n−2) =Circ (T0, T1, . . . , Tn−3) .

Proof. Since Sn = Tn + 2Tn−1 + 3Tn−2, the proof is trivial from Theorems 2.3 and 2.4. ¤

Corollary 2.5. The spectral norm of the Hadamard product of T =Circ (T0, T1, . . . , Tn−1) and
S =Circ (S0, S1, . . . , Sn−1) has the following inequality

‖T ◦ S‖2 ≤
(Tn+1 + Tn−1 − 1) (Sn+1 + Sn−1)

4
.

Proof. Since ‖T ◦ S‖2 ≤ ‖T‖2 ‖S‖2, the proof is trivial from Theorems 2.3 and 2.4. ¤

Corollary 2.6. The spectral norm of the Kronecker product of T =Circ (T0, T1, . . . , Tn−1) and
S =Circ (S0, S1, . . . , Sn−1) has the following equality

‖T ⊗ S‖2 =
(Tn+1 + Tn−1 − 1) (Sn+1 + Sn−1)

4
.
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Proof. Since ‖T ⊗ S‖2 = ‖T‖2 ‖S‖2, the proof is trivial from Theorems 2.3 and 2.4. ¤
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