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SPLINE COLLOCATION METHOD FOR SOLUTION OF HIGHER ORDER
LINEAR BOUNDARY VALUE PROBLEMS

J. RASHIDINIA1, M. KHAZAEI1, H. NIKMARVANI1

Abstract. Spline collocation method for solution of the linear boundary value problems are

developed by using Eighth-degree B-spline. Formulation of Eighth degree Bspline are derived

and collocation method based on such B-spline formulated. Two numerical examples have been

considered to illustrate the efficiency and implementation of the method.
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1. Introduction

Generally, boundary value problems are known to arise in the Mathematics, Physics and
Engineering Sciences. Over the years, there are several authors who study on these types
of boundary value problems. There are several methods, such as finite difference, Galerkin,
Orthogonal splines, Collocation, Finite Element Method and etc, to discrete the boundary value
problems [3], [12]. Some references [1], [31] contain theorems which detail the conditions for
existence and uniqueness of solutions of such BVPs. Eighth-order differential equations govern
the physics of some hydrodynamic stability problems. When an infinite horizontal layer of fluid
is heated from below and is subjected to the action of rotation, instability sets in. When this
instability sets in as over stability, it is modeled by an eighth-order ordinary differential equation.
If an infinite horizontal layer of fluid is heated from below, with the supposition that a uniform
magnetic field is also applied across the fluid in the same direction as gravity and the fluid is
subject to the action of rotation, instability sets in. When instability sets in as overstability, it is
modeled by twelfth-order boundary value problem [7]. Agarwal [1] presented the theorems which
listed the conditions for the existence and uniqueness of solutions of eighth-order boundary-value
problems. Boutayeb and Twizell [2] developed the finite difference methods for the solution of
eighth-order linear boundary-value problems with different boundary conditions. Twizell et al.
[26]-[28] developed numerical methods for eighth, tenth and twelfth order eigenvalue problems
arising in thermal instability. Siddiqi and Twizell [28] presented the solution of eighth order
boundary value problem using octic spline. Houstis and Christara and Rice [13] presented the
solution of second-order boundary value problems using Quartic spline collocation. Siddiqi and
Twizell [29] presented the solution of sixth order boundary value problem by using polynomial
splines of degree six. Lamini et al. [23] used spline collocation method to solve the sixth-
order boundary value problems. Siraj-ul-Islam et al. [33], [34] developed nonpolynomial splines
approach to the solution of sixth order and fourth-order boundary value problems. Viswanadham
et al. [17], [18] used sixth order and septic B-splines to solve sixth order boundary value problems.
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Inc and Evans [15] presented the solutions of eighth order boundary value problems using
adomian decomposition method. Usmani used fourth degree splines to solve a third and fourth
order boundary value problem in [32]. The eighth-order boundary value problem using Nonic
spline have been solved by Ghazala Akram, Shahid S. Siddiqi [5]. El-Gamel et al. used Sinc-
Galerkin method to solve sixth order boundary value problems [21].

In [24] Laminii et al, developed two methods for the solution of special linear and nonlinear
fifth order boundary value problem. These methods have extended for the solution of some linear
boundary value problems [26]. In the present paper, a spline collocation method based on B-
spline which satisfy the same boundary conditions, is developed and analyzed for approximating
the solutions of fifth and seventh order boundary value problems.

This paper considers the fifth and seventh order boundary value problems and focuses on the
application of extended eighth degree B-spline interpolation in approximating the solutions.

We consider the following linear differential equation

y(5)(x) = g(x)y(x) + q(x), a ≤ x ≤ b (1)

with boundary conditions

y(a) = k1, y
′
(a) = k2, y

′′
(a) = k3, y(b) = k4, y

′
(b) = k5, (2)

and the seventh order boundary value problem

y(7)(x) = g(x)y(x) + q(x), a ≤ x ≤ b (3)

with boundary conditions

y(a) = k6, y
′
(a) = k7, y

′′
(a) = k8, y

′′′
(a) = k9,

y(b) = k10, y
′
(b) = k11, y

′′
(b) = k12,

(4)

where g(x), q(x) are given and continuous functions in [a,b] and ki are constants. We develop the
collocation methods based on eighth degree B-spline function.This paper organized as follows. In
section 1 the introduction and survey of papers dealing with solution of boundary value problems
are given. In section 2 the brief discussion regarding the eighth degree B-spline and the values of
its derivatives are given. The collocation method based on such spline for numerical solution of
fifth and seventh order boundary value problems are developed in section 3 and 4 respectively.
To test the efficiency of the method, in section 5 several numerical examples of fifth and seventh
order linear boundary value problems are solved by the proposed method. Numerical results
obtained by the proposed method are in good agreement with the exact solutions available in
the literature. In section 6 conclusions are given.

2. The eighth degree B-splines

The theory of spline functions is a very attractive field of approximation theory. Usually, a
spline is a piecewise polynomial function defined in region D, such that there exists a decompo-
sition of D into subregions in each of which the function is a polynomial of some degree k. A
B-spline of degree K is a spline from Sk(4n) with minimal support and the partition of unity
holding.

The B-spline of degree k is denoted by Bk
i (x), where i ∈ Z, and then we have the following

properties:
1. supp(Bk

i ) = [xi, xi+k+1].
2. Bk

i (x) ≥ 0, ∀x ∈ R (non-negativity).
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3.
∞∑

i=−∞
Bk

i (x) = 1, ∀x ∈ R (partition of unity).

Alternative approach to drive the B-spline relations.

We consider equally-spaced knots of a partition π : a = x0 < x1 < . . . < xn on [a; b].
The alternative approach for deriving the B-splines which are more applicable with respect to
the recurrence relation for the formulations of B-splines of higher degrees. At first, we recall
that the kth forward difference f(x0) of a given function f(x) at x0, which is defined recursively
by the following [16], [22]:

∆f(x0) = f(x1)− f(x0), ∆k+1f(x0) = ∆kf(x1)−∆kf(x0).

Definition 2.1. The function (x− t)m
+ is defined as follows:

(x− t)m
+ (t) =

{
(x− t)m x ≥ t

0 x < t.

It is clear that (x − t)m
+ is (m − 1) times continuously differentiable both with respect to t

and x.

The B-spline of order m is defined as follows:

Bm
i (t) =

1
hm

m+1∑

j=0

(
m + 1

j

)
(−1)m+1−j(xi−2+j − t)m

+ =

=
1

hm
∆m+1(xi−2 − t)m

+ .

Hence, we can obtain the B-spline of various orders by taking various values of m. let m = 1;
thus,

m = 1 → B1
i (t) =

1
h

∆2(xi−2 − t)+ =
1
h

[(xi−2 − t)+ − 2(xi−1 − t) + (xi − t)+],

B1
i (t) =

1
h





(xi − t)− 2(xi−1 − t), xi−2 < t ≤ xi−1

(xi − t), xi−1 < t ≤ xi

0, otherwise,

B1
i (t) =

1
h





h− (xi−1 − t) = t− xi−2, xi−2 < t ≤ xi−1

(xi − t), xi−1 < t ≤ xi

0, otherwise,

In order to obtain the eighth degree B-spline, let m = 8

B8
i (t) =

1
h8

∆9(xi−2 − t)8+ =
1
h8

[(xi+7 − t)8+ − 9(xi+6 − t)8+ + 36(xi+5 − t)8+−

−84(xi+4 − t)8+ + 126(xi+3 − t)8+)− 126(xi+2 − t)8+ + 84(xi+1 − t)8+−

−36(xi − t)8+ + 9(xi−1 − t)8+ − (xi−2 − t)8+],
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then the B-splines of eight degree are can be obtained as

B8
i (t) =

1
h8





(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 + 126(xi+3 − t)8

−126(xi+2 − t)8 + 84(xi+1 − t)8 − 36(xi − t)8 + 9(xi−1 − t)8, xi−2 < t ≤ xi−1,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 + 126(xi+3 − t)8

−126(xi+2 − t)8 + 84(xi+1 − t)8 − 36(xi − t)8, xi−1 < t ≤ xi,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 + 126(xi+3 − t)8

−126(xi+2 − t)8 + 84(xi+1 − t)8, xi < t ≤ xi+1,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 + 126(xi+3 − t)8

−126(xi+2 − t)8, xi+1 < t ≤ xi+2,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 + 126(xi+3 − t)8,
xi+2 < t ≤ xi+3,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8 − 84(xi+4 − t)8 xi+3 < t ≤ xi+4,

(xi+7 − t)8 − 9(xi+6 − t)8 + 36(xi+5 − t)8, xi+4 < t ≤ xi+5,

(xi+7 − t)8 − 9(xi+6 − t)8, xi+5 < t ≤ xi+6,

(xi+7 − t)8, xi+6 < t ≤ xi+7,

0 otherwise.
(5)

To solve linear fifth and seventh-order boundary value problems, Bi, B
′
i, B

′′
i , . . . , B

(7)
i evaluated

at the nodal points their coefficients are summarized in Table (1.a-d)

Table 1.a The value of Bi(x) and B
(′)
i (x) and B

′′
i (x) in the three lines respectively

xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6

1 247 4293 15619 15619 4293 247 1
-8/h -952/h -8568/h -9800/h 9800/h 8568/h 952/h 8/h
56/h2 3080/ h2 10584/ h2 -13720/ h2 -13720/ h2 10584/ h2 3080/ h2 56/h2

Table 1.b The value of B
′′′
i (x) and B

(4)
i (x) in the two lines respectively

xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6

-336/h3 -7728/h3 3024/h3 31920/h3 -31920/h3 -3024/h3 7728/h3 336/h3

1680/h4 11760/h4 -45360/h4 31920/h4 31920/h4 -45360/h4 11760/h4 1680/h4

Table 1.c The value of B
(5)
i (x) and B

(6)
i (x) in the two lines respectively

xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6

-6720/h5 6720/h5 60480/h5 -168000/h5 168000/h5 -60480/h5 -6720/h5 6720/h5

20160/h6 -100800/h6 181440/h6 -100800/h6 -100800/h6 181440/h6 -100800/h6 20160/h6

Table 1.d The value of B
(7)
i (x)

xi−1 xi xi+1 xi+2 xi+3 xi+4 xi+5 xi+6

-40320/h7 282240/h7 -846720/h7 1411200/h7 -1411200/h7 846720/h7 -282240/h7 40320/h7

Bi(x) ≡ 0 for x ≤ xi−2 and x ≥ xi+7

3. Collocation method based on b-spline for linear fifth order boundary value

problem

We can collocate the solution of equation (1) as:
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y(x) =
n∑

j=−5

αjBj(x), (6)

where αj , are unknown real coefficients to be determine and Bj(x) are Eighth degree B-spline
function and let x0, x1, . . . , xn be n + 1 grid points in the interval [a, b], so that

xi = a + ih i = 0, 1, . . . , n; x0 = a, xn = b, h = (b− a)/n (7)

with substituting (6) in (1), we get

[
n∑

j=−5

αj(B
(5)
j (xi)− g(xi)Bj(xi))− q(xi)] = 0, i = 0, 1, . . . , n. (8)

To evaluate the αj we using of boundary conditions and (8). there for we need to the following
system:

[
n∑

j=−5

αj(B
(5)
j (xi)− g(xi)Bj(xi))− q(xi)] = 0, i = 0, 1, . . . , n, (9)

n∑

j=−5

αjBj(xi) = y(a), i = n + 1, (10)

n∑

j=−5

αjB
′
j(xi) = y

′
(a), i = n + 2, (11)

n∑

j=−5

αjB
′′
j (xi) = y

′′
(a), i = n + 3, (12)

n∑

j=−5

αjB
′
j(xi) = y

′
(b), i = n + 4, (13)

n∑

j=−5

αjBj(xi) = y(b), i = n + 5. (14)

The value of the spline functions at the knots {xi}n
i=0 are determined using Table (1.a-d)

and (9− 14) a system of n + 6 linear equations in the (n+6) unknowns α−5, α−4, . . . , αn is thus
obtained. This system can be written in matrix-vector form as follows

Aα = M, (15)

where A is an(n + 6) dimensional matrix,
α = [α−5, α−4, . . . , αn]T ,

and
M = [q(x0), . . . , q(xn), y(a), y

′
(a), y

′′
(a), y

′
(b), y(b)]T .

By solution the above linear system, α = [α−5, α−4, . . . , αn]T can be obtain and then by using
(15) we can obtain the approximate solution of (6).
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4. Collocation method based on b-spline for linear seventh order boundary

value problem

The approximate solution of equation (3) by collocation method can be approximated as:

y(x) =
n∑

j=−7

αjBj(x), (16)

where αj , are unknown real coefficients to be determine and Bj(x) are Eighth degree B-spline
function and let x0, x1, . . . , xn be n + 1 grid points in the interval [a, b], so that

xi = a + ih i = 0, 1, . . . , n; x0 = a, xn = b, h = (b− a)/n (17)

with substituting (16) in (3), we get

[
n∑

j=−7

αj(B
(7)
j (xi)− g(xi)Bj(xi))− q(xi)] = 0, i = 0, 1, . . . , n (18)

To evaluate the αj we using of boundary conditions and (18). there for we need to the following
system:

[
n∑

j=−7

αj(B
(7)
j (xi)− g(xi)Bj(xi))− q(xi)] = 0, i = 0, 1, . . . n, (19)

n∑

j=−7

αjBj(xi) = y(a), i = n + 1, (20)

n∑

j=−7

αjB
′
j(xi) = y

′
(a), i = n + 2, (21)

n∑

j=−7

αjB
′′
j (xi) = y

′′
(a), i = n + 3, (22)

n∑

j=−7

αjB
′′′
j (xi) = y

′′′
(a), i = n + 4, (23)

n∑

j=−7

αjB
′′
j (xi) = y

′′
(b), i = n + 5, (24)

n∑

j=−7

αjB
′
j(xi) = y

′
(b), i = n + 6, (25)

n∑

j=−7

αjBj(xi) = y(b), i = n + 7. (26)

The value of the spline functions at the knots{xi}n
i=0 are determined using Table (1.a-d) and

(19 − 26). a system of n + 8 linear equations in the (n+8)unknowns α−7, α−6, . . . , αn is thus
obtained. This system can be written in matrix-vector form as follows

Aα = M, (27)

where A is an (n + 8) dimensional matrix,
α = [α−7, α−6, . . . , αn]T

and
M = [q(x0), . . . , q(xn), y(a), y

′
(a), y

′′
(a), y

′′′
(a), y

′′
(b), y

′
(b), y(b)]T .
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By solution the above linear system, α = [α−7, α−6, . . . , αn]T can be obtain and then by using
(27) we can obtain the approximate solution of (16).

5. Numerical results

In this section, two linear problems will be tested by using the method discussed in third and
forth sections.
Example 1. We first consider the linear boundary value problem [6]

y(5)(x) = y(x)− 15ex − 10xex, 0 ≤ x ≤ 1 (28)

subject to boundary conditions

y(0) = 0, y(1) = 0, y
′
(1) = −e, y

′
(0) = 1, y

′′
(0) = 0. (29)

The proposed method is tested on this problem where the domain [0,1] is divided into 20, 40,
60, 80, 160 equal subintervals. maximum absolute error and approximate solution and exact
solutionin for this problem are shown in table 2. for which the theoretical solution is x(1−x)ex.

Table 2.
n Yi yi Max absolute error
20 0.39693750 0.39693712 3.7818200×10−7

40 0.43428627 0.43428587 4.0232684×10−7

60 0.43730851 0.43730809 4.2094653×10−7

80 0.43790829 0.43790786 4.2541296×10−7

160 0.43790829 0.43790786 4.2971123×10−7

Example 2. We consider the linear boundary value problem [6]

y(7)(x) = y(x)− 7ex, 0 ≤ x ≤ 1 (30)

subject to the boundary conditions

y(0) = 1, y(1) = 0, y
′
(1) = −e, y

′′
(1) = −2e,

y
′
(0) = 0, y

′′
(0) = −1, y

′′′
(0) = −2.

(31)

Table 3.
n Yi yi Max absolute error
20 0.35094702 0.35093626 1.0759022×10−5

40 0.80296795 0.80296662 1.3295655 ×10−6

60 1.0000000 0.99999899 1.0002474×10−6

80 1.0000000 0.99999900 9.9983989×10−7

160 1.0000000 0.99999899 1.0000000 ×10−6

The proposed method is tested on this problem where the domain [0,1] is divided into 20, 40,
60, 80, 160 equal subintervals. maximum absolute error and approximate solution and exact
solution for this problem are shown in table 3. for which the theoretical solution is (1− x)ex.
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Table 4. The maximum absolute errors of y(xi) for Example 1

n = 10 n = 20 n = 40
Eighth degree B-spline method (this paper) 3.02×10−7 3.78×10−7 4.02×10−7

Cubic B-spline method [25] 1.84×10−4 4.54×10−5 1.14×10−5

Sixth-degree B-spline method [11] 0.1570 0.0747 0.0208
Finite difference method [20] 4.02 ×10−3 3.91 ×10−3 1.15×10−2

Sextic spline method [14] 2.76 ×10−3 2.45 ×10−4 2.01×10−5

Quartic spline method [30] 3.60 ×10−3 5.55 ×10−4 7.66×10−5

where y = x(1−x)ex is the analytic solution. Example 1 has been solved by sixth degree B-spline
method [11] , Cubic B-spline method [25], sextic spline method [14], quartic spline method [30]
and finite difference method [20]. The respective maximum absolute errors of y(xi) are given in
Table 4.

6. Conclusion

B-spline collocation methods has been considered for the numerical solution of fifth-order
and seventh order linear boundary value problems. The Eighth degree B-spline was tested on
two linear problem. Numerical results show the ability and efficient of the present method.
Numerical results showed that the method achieved fifth-order accuracy. This method enable us
to approximate the solution at every point of the range of domain. Numerical results obtained
by the present method are in good agreement with the exact solutions or numerical solutions
available in the literature.Table (4) shows that our methods produced better numerical results
in the sense that max | ei | is minimum in comparison with the methods in [11], [14], [20], [25],
[30]. The proposed method can be extended to solve higher (i.e., more than 7th) order boundary
value problems by using the B-splines of order more than 8. By using eighth degree B-spline
functions and the collocation method to solve a fifth order linear BVP of (1-2) or a seven order
linear BVP of (3-4).
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