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THE REVERSIBILITY OF (2r + 1)−CYCLIC RULE CELLULAR
AUTOMATA*

I. SIAP1, H. AKIN2, M.E. KOROGLU1

Abstract. In this paper, we introduce a family of one dimensional finite linear cellular au-

tomata with periodic boundary condition over primitive finite fields with p elements (Zp) which

leads to a generalization in two directions: the radius and the field that states take values.

This family of cellular automata is called (2r + 1)-cyclic cellular automata since it has a cyclic

structure and its radius is r. Here, we establish a connection between the generator matrices

of cyclic codes and the rule matrix of (2r + 1)-cyclic cellular automata. Thus this enables the

determination of the reversibility problem of this cellular automaton by means of the algebraic

coding theory. Further, we explicitly determine the reverse CA of this family and prove that

the reverse CA of this family again falls into this family.
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1. Introduction

Since first introduced by Ulam and von Neumann [16], cellular automaton (CA) has found
many interesting applications in science. This fact is based on the nature of cellular automata
which basically consists of cells lined up in one dimensional array and have interaction among
themselves. In many applications of dynamical systems, especially modeled by discrete cells, CA
offers a way to express the behavior of such systems. In many discrete models the neighbors that
are close to each other play an important role on evolution. Thus, the definition of CA is based on
the neighboring relations assumed among cells which determines the CA. Though the evolution
of a CA in real life is very complicated, it is observed that with a simple neighboring rule and a
initial condition cellular automata generate very complicated and sophisticated structures after
a reasonable evolution time. This observation has led scientists to study and do a more detailed
research on cellular automata. Some of recent application areas of CA surely not all can be seen
in physics, computer science, chemistry, image processing, fast computations, cryptography etc.
[1, 2, 3, 4, 7, 8, 11, 14].

A CA that can be traced back to any desirable evolution time is called a reversible CA
(RCA). Reversible Cellular Automata are deterministic in both directions of time [12]. In many
applications the feature of being able to trace the evolution process backwards plays a crucial
role. So studying the reversibility problem of CA is one of the most important problems.
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Another subject that we relate to answering the question of the reversibility property of a CA
is error correcting codes. Due to the digital era that we are in, this subject has also found many
applications. The idea of algebraic error correcting codes is to construct schemes that can be
easily implemented in detection and correction of digital data while storing or transferring [10].

The idea of studying a special family of one dimensional CA comes from the fact that a very
special case of CA over binary fields is studied first in [12], then over primitive fields by Cinkir
et al. in [6] and again over primitive fields by Siap et al. in [15] with a special rule that is called
penta cyclic rule. Here, these three very recent studies are generalized to primitive fields where
with this generalization all primitive fields are covered together with their generalizations on
rules. This one dimensional CA family that generalizes all previous studies is called (2r + 1)-
cyclic cellular automaton (or shortly (2r+1)−CCA) over primitive fields. In this paper, first, we
state the definition of (2r+1)−CCA, next we determine their rule matrix. After presenting some
necessary definitions and theorems from the theory of error correcting codes we establish the
connection between the generator matrices of cyclic codes and the rule matrix of (2r+1)−CCA.
One of the important feature of CA is their reversibility problem [2, 7, 8, 11, 12, 14]. Hence this
relation leads to an easy determination of the reversibility problem of (2r + 1)−CCA. We also
determine the reverse CA explicitly and prove that the reverse CA of this family falls into this
family. At the end, we present an application of reversible (2r + 1)−CCA to error correcting
codes by extending the method originally introduced by Chowdhury et al. [5] for binary cases.
We conclude by presenting a table that points out the advantage of (2r + 1)−CCA if used in
error detection-correction. Finally, some conclusions and future studies are presented.

2. Preliminaries

In this section, we define one dimensional (1D) finite (2r + 1)−cyclic CA with periodic bound-
ary conditions (shortly PBC) over primitive fields with p elements Zp = {0, 1, · · · , p− 1} where
p is prime and clearly p ≥ 2. This definition is a natural generalization of particular 1D null
boundary CA. As a special case with p = 2 the structure and reversibility problem over binary
fields (Z2 = {0, 1}) is studied by del Rey et al. in [12] and primitive fields is studied by Cinkir
et al. in [6] and Siap et al. in [15] respectively. Here, we generalize the approach first presented
in [15] to studying the algebraic structure and the reversibility of this new family of CA.

The elements of the set ZZp are doubly-infinite sequences denoted as x = (xn)∞n=−∞ where the
entries are from Zp. Let Tf : ZZp → ZZp be a map that acts locally on the set of doubly-infinite
sequences by means of a local map f : Z2r+1

p → Zp of radius r. This map is called a cellular
automaton (CA).
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If a local rule f is a linear map, then a CA can be presented by a local rule linear function f(x−r, · · · , xr) =
r∑

i=−r

λixi(mod p), where at least one of λ−r, · · · , λr is nonzero mod p [13]. The local rule of a (2r + 1)−cyclic
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CA is defined by (1), where ai ∈ Zp (i = −r,−r + 1, ...,−1, 0, 1, ..., r) , and xt
i is a symbol of the state of

the ith cell at time t. Since the number of cells is finite, PBC can be stated as follows:
If i ≡ j (mod n), then xt

i = xt
j [8]. Let us define the 1D finite CA An (n ≥ 2r + 1) with PBC:
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In this study, we will only consider the 1D finite LCA defined by local rule (1) under modulo-p
addition where p ≥ 2 is a prime number. (2r + 1)−cyclic CAs are defined by a special local
rule; next state cell is determined by all neighboring cells within radius r such that the first and
last cell are assumed to be next to each other in a cyclic manner. A configuration at time t is a
vector Ct = (xt

1, x
t
2, x

t
3, · · · , xt

n−1, x
t
n) ∈ Zn

p and therefore C0 stands for the initial configuration.
The configuration length of a vector will be assumed to be n in this paper. Hence, 2r + 1 ≤ n.

A common approach for defining a CA which merely depends on its local rule is to introduce
a numbering label. We introduce the following ordering for the rule number:

xt+1
i =

r∑

j=−r

ajx
t
i+j ⇒ RN =

r∑

k=−r

akp
r+k = (ar...a1a0a−1...a−r)p . (3)

For instance, if r = 2, p = 3,and (a−2, a−1, a0, a1, a2) = (2, 2, 1, 1, 1) then this rule will be
named as rule number (RN) 34 + 33 + 32 + 2 · 31 + 2 · 30 = (11122)3 = 125 or if r = 1, p = 5,
and (a−1, a0, a1) = (2, 1, 1) then this rule will be named as rule number (RN) 52 + 51 + 2 · 50 =
= (112)5 = 32. In this presentation, the cells are assumed to effect the next state configuration,
so we take ai ∈ Z\ {0}.

By studying the image of the basis vectors on Zn
p , it can be easily proven that the represen-

tation (rule) matrix Mn of an (2r + 1)-CCA with PBC is
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

. (4)

These type of matrices are called circulant matrices. This observation leads to some relations
that will be very helpful on studying these matrices in the sequel.

3. Some algebraic coding theory

Algebraic coding theory has been a very active research area after its application in error
detection and correction in digital information storage and transferring process. Though there
are several schemes for encoding a digital data, the ones that have found applications are the
schemes that are obtained from algebraic structures. This is important because encoding and
decoding processes are easier and practical for implementation. In this paper, our focus will be
mainly on cyclic codes which is a special family of linear codes. We are going to present the
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basic and the most important results that we are going to use for our purpose. The readers are
welcome to refer to this subject if necessary for further details which can be found in [10].

V = Zn
p = Zp × · · · × Zp is a Zp-vector space.

Definition 3.1. [10] A linear code of length n is a Zp-subspace C of V . The elements of C are
called codewords and the elements of V are called words.

If a set of pk information messages are to be encoded, then a linear map from Zk
p to V = Zn

p

can be used. So, the image of this map is called a linear code and the n tuples that fall into this
image are called codewords. After the transmission process due to its algebraic structure, if a
linear code can detect and correct t errors then the code is called a t error correcting code.

The number of nonzero entries of an element v ∈ V is called the Hamming weight of v.

The smallest nonzero weight among all codewords of a linear code C is called the minimum
Hamming weight of C. Since a linear code C is a vector subspace of V, it has a dimension k,

and if it has minimum Hamming weight d, then C is called a linear code of length n, dimension
k and minimum distance d and shortly it is denoted by [n, k, d]. All these three parameters
determine the quality of the code, among these the minimum Hamming weight of a code plays
an important role which is evident by the following theorem:

Theorem 3.1. [10] If C is a linear code with minimum Hamming weight d = 2t+1 or d = 2t+2,

then C can correct up to t errors and detect d− 1 errors.

Definition 3.2. If C is a linear code of length n with the property that for each codeword
(c0, c1, . . . , cn−1) in C, its right cyclic shift (cn−1, c0, c1, . . . , cn−2) also falls in C, then C is
called a cyclic code.

This cyclic property leads to a richer algebraic structure. First, the vectors are identified with
polynomials in the following way:

Φ : (c0, c1, . . . , cn−1) → c0 + c1x + · · ·+ cn−1x
n−1. (5)

Next by definition Φ(C) is Zp-vector subspace of Zp[x] and since x(c0 + c1x+ · · ·+ cn−1x
n−1) ∈

∈ Φ(C) modulo xn−1, it is clear that Φ(C) is an ideal in the quotient ring Zp[x]/(xn−1). Since
the ring Zp[x]/(xn − 1) is a principal ideal ring so is Φ(C) is a principal ideal. The following
theorem gives the structure of a cyclic code.

Theorem 3.2. [10] If C is a cyclic code of length n, then C is an ideal generated by a polynomial
g(x) where g(x)|xn − 1, i.e. C = 〈g(x)〉 .

A cyclic code C is a sub vector space and it has a basis {g(x), xg(x), . . . , xn−k−1g(x)} and
further the dimension of C is equal to n− k where the degree of g(x) is k.

Example: Let Φ(C) = 〈(1 + x + x2)2〉 be an ideal in Z2[x]/(x6 − 1). dim(C) = 6 − 4 = 2.
Then the code is Φ(C) = {0, 1 + x2 + x4, x + x3 + x5, 1 + x + x2 + x3 + x4 + x5}. Hence,
C = {000000, 101010, 010101, 111111}. Since there is a vector isomorphism between Φ(C) and
C we do not distinguish between polynomial and vector representation of codewords.

4. The rank of a (2r + 1)−cyclic CA over Zp with PBC

The main purpose of this section which is at the same time of the paper is to determine
when a (2r + 1)-cyclic CA with periodic boundary condition (PBC) is reversible. In order to
accomplish this task, we need to study the rank of the rule matrix Mn given in (4). Since the
rule matrix has a special form that has a special meaning in error correcting theory, we are
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going to establish this relation in the sequel by relating these two topics. First we recall the rule
matrix Mn in (4) and associate a polynomial for each row by applying the map (5).

Let p(x) =
r∑

j=−r
ajx

j+r. After reordering the rows of Mn we can easily observe that the rows

are exactly the elements of {p(x), xp(x), . . . , xn−1p(x)} in different row ordering. So the row
space of Mn is actually an ideal generated by p(x) in Zp[x]/(xn − 1). In other words, the row
space of Mn is a cyclic code C generated by p(x).

Further it is well known that if C = 〈p(x)〉, then there exists a monic polynomial g(x) such
that C = 〈g(x)〉 where g(x)|xn − 1 and g(x) = (p(x), xn − 1).

Theorem 4.1. Let Mn be the transition matrix of a (2r + 1)-Cyclic CA with PBC and rule
number (ar · · · a0 · · · a−r)p. Then, rank(Mn) = n − deg(g(x)), where g(x) = (p(x), xn − 1) in

Zp[x] and p(x) =
r∑

j=−r
ajx

j+r.

Example: Let r = 1 and M9 be a rule matrix of a 3-Cyclic CA with PBC and (a−1, a0, a1) =
= (1, 1, 1). Then, g(x) = (1+x+x2, x9−1) = 1+x+x2 mod 3. So, rank(M9) = 9−deg(g(x)) =
= 9− 2 = 7. Then, this CA is not reversible.

Lemma 1. [10] If (f(x), xn − 1) = 1, then f(x) is invertible (unit) in the quotient ring
Zp[x]/(xn − 1).

The following corollary is a natural consequence of the discussions presented above:

Corollary 4.1. If f(x) represents the polynomial counterpart of a rule number of a (2r +
+ 1)−cyclic CA with PBC and configuration length n, then this CA is reversible if and only if
(f(x), xn − 1) = 1.

Theorem 4.2. For any given p, either both rank(Mn) and rank(Mnpk) are full or not. If they
are not full, then det(Mn) = det(Mnpk) = 0.

Proof. By Theorem 4.1, rank(Mn) = n − deg(g(x)) where g(x) = (p(x), xn − 1) in Zp[x].
xnpk − 1 = (xn − 1)pk

in Zp[x]. So, if (p(x), xn − 1) = 1, then (p(x), xnpk − 1) = 1. Hence,
rank(Mn) = n and rank(Mnpk) = npk. So, they are both of full rank hence the 1D (2r + 1)−
Cyclic CA is reversible. Otherwise, they are both irreversible. ¤

Figure 1. (Color online) Space time diagram of the 7-CCA A20 (left) and

its inverse (right) with n = 20 and 0 ≤ t ≤ 25, p = 3.
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Example: Let us consider a 7-CCA with the following parameters: n = 20, r = 3 and p = 3,
a−3 = a−2 = a−1 = a0 = a1 = a2 = a3 = 1. Then, p(x) = 1 + x + x2 + x3 + x4 + x5 + x6 and
gcd(p(x), x20 − 1) = 1. By the Theorem 4.1 rank(Mn) = n − deg(g(x)). Hence, rank(M20) =
20− 0 = 20. Thus, this rule matrix is invertible, therefore the 7-CCA is reversible.

Now, we illustrate the space time diagram of a particular CCA that is reversible. We choose
the initial configuration as follows: C0 = [00000000011000000000]. Now, we give the space time
diagram of 1D finite (2r + 1)−cyclic CA defined in (1) and its inverse with r = 3, n = 20 and
0 ≤ t ≤ 25. In the Figure 4 the space time diagrams of the 1D finite CA T20 and its inverse
are presented, with a random initial configuration C0, we calculate the last configuration C25

by means of the rule matrix T20. Thus, we obtain the backward evolution of the 1D finite the
7-CCA T20. On the left T20 is shown and its inverse is displayed on its right. Hence, we obtain
the configuration of T20 at times 0 ≤ t ≤ 25. Green pixels are used for 0, black pixels are used
for 1, and orange pixels are used for 2.

Next by making use of algebra we can present some families of (2r +1)−cyclic CA with PBC
that are reversible or irreversible.

Theorem 4.3. For a given prime p and rule number (p2r+1 − 1)/(p− 1), if (2r + 1, n) 6= 1 or
(2r+1, p) 6= 1 with configuration length n, then the (2r+1)−cyclic CA with PBC is irreversible.

Proof. The rule number k(p2r+1−1)/(p−1) with r ∈ Z+ and k ∈ {1, 2, . . . p−1} corresponds to
the polynomial f(x) = k(

∑2r
j=0 xj). We observe that f(x) = k(x2r+1−1)/(x−1). If (2r+1, n) 6= 1,

then there exists d ∈ Z+ with d ≤ 2 such that (2r + 1, n) = d, then d|2r + 1 and d|n which
implies that xd − 1|x2r+1 − 1 and xd − 1|xn − 1 and hence xd − 1|gcd(x2r+1 − 1, xn − 1) and
d ≤ 2. Therefore, gcd(f(x), xn − 1) > 1 which implies that f(x) does not have an inverse in the
quotient ring, by Theorem 4.4 thus the corresponding CA is not reversible. If (2r + 1, p) 6= 1,

then p|2r + 1 since p is prime. Then, xp − 1|x2r+1 − 1. Since xp − 1 = (x− 1)p mod p, we have
(x− 1)p|x2r+1 − 1, and hence x− 1|gcd(f(x), xp − 1). This gives x− 1|gcd(f(x), xn − 1), which
implies that f(x) does not have an inverse thus the corresponding CA is not reversible. ¤

Example: Let p = 3, n = 15 and r = 1 be given for a 3-cyclic CA with PBC. Since, gcd(3, 15) =
3 and the rule number RN := (33 − 1)/(3 − 1) = 26 = 2.32 + 2.31 + 2.30 by Theorem 4.3 we
can conclude that this CA is irreversible. Indeed, since f(x) = 2 + 2x + 2x2, and gcd(2 +
2x + 2x2, x15 − 1) = 1 + x + x2 = g(x), then rank(M15) = 15 − deg(g(x)) = 15 − 2 = 13
which is immediate by the Theorem 4.1. Hence, this rule is not reversible. Carrying out similar
discussions as in the previous theorem, we also have the following:

Theorem 4.4. For any given prime p and rule number (p2r+1 − 1)/(p− 1) if (2r + 1, n, p) = 1
with configuration length n, then the (2r + 1)−cyclic CA with PBC is reversible.

Example: Let p = 3, n = 9 and r = 2 be given for a 3-cyclic CA with PBC. Since, gcd(5, 3, 9) =
1 and the rule number RN := (35 − 1)/(3 − 1) = 121 = 34 + 33 + 32 + 31 + 30 by Theorem
4.4 we can conclude that this CA is irreversible. Indeed, f(x) = 1 + x + x2 + x3 + x4, and
gcd(1+x+x2 +x3 +x4, x3− 1, x9− 1) = 1 = g(x), then rank(M9) = 9−deg(g(x)) = 9− 0 = 9.
Thus, this rule is reversible.

4.1. The structure of reversible (2r+1)− circulant CA with PBC. The rule matrix (4) of
a (2r +1)−circulant CA with PBC consists of the shifts of the row (a−r, . . . , a−1 , a0, a1, . . . , ar)
and such matrices are known as circulant matrices [10]. If we define a square circulant matrix
U = (U(i, j)) where U(i, j) denotes the (i, j)th entry of the matrix U of size n such that U(i, j) =
1 if j− i ≡ 0 mod n and otherwise zero, then each circulant matrix A can be written in terms of



I. SIAP et al.: THE REVERSIBILITY OF (2r + 1)−CYCLIC RULE CA 221

the powers of matrix U i.e. a polynomial U as A =
n−1∑
i=0

aiU
ii with ai ∈ Zp. Hence by associating

a polynomial a(x) =
n−1∑
i=0

aix
i in the quotient ring Zp[x]/(xn − 1) to a circulant matrix, the set

of ring of circulant matrices and the quotient ring are isomorphic. Due to this fact, we have the
following theorem:

Theorem 4.5. [10] Let f(x) ∈ Zp[x]/(xn − 1) such that (f(x), xn − 1) = 1. Then, there exists
a g(x) ∈ Zp[x]/(xn − 1) such that f(x)g(x) ≡ 1 mod xn − 1.

This theorem can now easily interpreted in terms of circulant matrices as follows:

Corollary 4.2. Let f(x) ∈ Zp[x]/(xn − 1) such that (f(x), xn − 1) = 1 and f(x) be associated
with a circulant matrix F. Then, there exists a circulant matrix G associated to a polynomial
g(x) ∈ Zp[x]/(xn − 1) such that FG = I (where I is identity matrix) with entries in Zp.

Now, if we again consider the circulant matrix that appears as a rule matrix of this special
family of CA, we can associate a polynomial p(x) =

∑r
i=−r aix

i+r to this circulant matrix. Then
we have the following theorem whose proof follows by considering the arguments presented above:

Theorem 4.6. Let p(x) =
∑r

i=−r aix
i+r be a polynomial associated to a rule matrix of a (2r +

1)−cyclic CA with PBC. If (p(x), xn − 1) = 1, then there exists a q(x) ∈ Zp[x]/(xn − 1) such
that p(x)q(x) ≡ 1 mod xn − 1. Hence, the associated matrix Q to the polynomial q(x) is also
circulant and PQ = I with entries in Zp. Thus, the reverse rule of a (2r + 1)−cyclic CA with
PBC exists and its rule matrix is Q which represents a (2r + 1)−cyclic CA with PBC.

Below we give a moderate example that illustrates Theorem 4.6.
Example: Suppose that for n = 7, p = 3, the matrix

M7 =




1 2 0 0 0 0 1
1 1 2 0 0 0 0
0 1 1 2 0 0 0
0 0 1 1 2 0 0
0 0 0 1 1 2 0
0 0 0 0 1 1 2
2 0 0 0 0 1 1




(6)

is the rule matrix of a 3−cyclic CA with PBC. The associated polynomial to this rule matrix
is p(x) = 1 + 2x + x6 ∈ Z3[x]/(x7 − 1). Since (p(x), x7 − 1) = 1, then there exists the inverse
of p(x) which is the polynomial q(x) = 2 + 2x2 + x3 + x4 + x6, i.e. p(x)q(x) ≡ 1 mod x7 − 1.

Hence the reverse rule of this CA is given by

Q =




2 0 2 1 1 0 1
1 2 0 2 1 1 0
0 1 2 0 2 1 1
1 0 1 2 0 2 1
1 1 0 1 2 0 2
2 1 1 0 1 2 0
0 2 1 1 0 1 2




, (7)

which is the associate matrix of the polynomial q(x).
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5. Error correcting codes based (2r + 1)− cyclic CA with PBC

One dimensional cellular automata based bit error correcting binary codes (CA-ECC) were
first proposed by Chowdhury et al. in [5] in 1994. This method recently has been generalized to
error correcting codes over non binary fields [9]. It is also known that CA based error correcting
codes have some advantages compared to the classical ones [9, 5]. In this section, we present
an application of CA based bit error correcting codes by applying reversible CA which fall into
(2r + 1)−cyclic CA family. First we present the encoding and decoding process that is given in
[9]:

We assume that T is nonsingular rule matrix of (2r + 1)−cyclic CAs of order n. Further,
assume that there exists 1 ≤ k ≤ n, k ∈ Z+ such that G =

[
In|T k

]
(In, n× n identity matrix)

generates a linear code that can correct up to t errors.
The Encoding Process: Let I = (i1, i2, · · · , in) ∈ Zn

3 denote the information part, where n is
the rank of the nonsingular transition matrix of a (2r + 1)−CCA. Then, the encoded codeword
is CW =

(
I, T k [I]

)
= (i1, i2, ..., in, cn+1, cn+2, . . . , c2n) , i.e. C = T k [I] = (cn+1, cn+2, . . . , c2n) is

the check vector.
The Decoding Process: Suppose that the codeword CW = (I, T k[I]) is sent and CW ′ =
=

(
I ′, T k [I]

)
=

(
i′1, i

′
2, ..., i

′
n, c′n+1, c

′
n+2, . . . , c

′
2n

)
= (I ⊕ Ie, T

k[I] ⊕ Ce) (where the operator ⊕
represents modulo 3 addition) is the received word. Ie and Ce represent the errors that have
occurred in information and check vectors respectively. We assume that the sum of the Hamming
weight of Ie and Ce are less or equal to t i.e. if wH (Ie) ≤ i and wH (Ce) ≤ t− i (i = 1, 2, ..., t),
then wH (Ie) + wH (Ce) ≤ t. Hence, the syndrome vector is defined by:

S = 2T k
[
I ′

]⊕ C ′ = 2T k[Ie]⊕ Ce. (8)

The syndrome of both the information and check vectors is defined by

Sn = 2T k[I ′]⊕ C ′ (9)

and
Sc = T k[I ′]⊕ 2C ′ (10)

respectively. In Table 1 the decoding scheme is shown, and where CW ′ = (I ′, C ′) is the received
word, Ie is the error vector of the information part, and Ce is the error vector of the check part
respectively. The uniqueness of the error vector Ie is guarantied by the minimum distance of
the code.

Table 1. Decoding scheme.

Case CW ′ Ie Ce

I ( I ′ , C ′ ) 2T−k(Sn) 0
II ( I ′ , C ′ ) 0 Sc

III ( I ′ , C ′ ) 2T−k(S ⊕ Ce) Try all possible Ce ⊕ C ′ = T k[I]

Now we give an example:
Example: Let the matrix M7 = T be given as in Example 4.5. Then the matrix T is of full
rank and for k = 2 the matrix G =

[
I7|T 2

]
generates a [14, 7, 5]3− linear code with minimum

distance d (C) = 5. Thus, this code can correct up to two errors. For instance, let us take the
codeword is CW = 11111111111111 where the information and check parts of this codeword are
I = 1111111, and C = T 2 [I] = 1111111 respectively.

Case I. Suppose that two errors occur in the information part. For example assume that
the received word is CW ′ = 2̂2111111111111 = (I ′|C ′) . Now, we compute the syndrome as
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S = 2T 2 [I ′] ⊕ C ′ = 2121210 ⊕ 1111111 = 0202021. The syndrome of the check part is Sc =
0000000. Hence, S7 = S ⊕ Sc = 0202021 which implies ⇒ Ie = T−2 [S7] = 2200000. I =
I ′ ⊕ Ie = 2211111 ⊕ 2200000 = 1111111. C = C ′ = 1111111. Therefore, the error vector is
E = 22000000000000.

Case II. Now, assume that two errors occur in the check part. Let the received word be
CW ′ = 1111111111110̂0 = (I ′|C ′) . We compute the syndrome of the check part, which is
S = T 2 [I ′] ⊕ 2C ′ = 1111111 ⊕ 2222200 = 0000011. Therefore, the syndromes of both the
information and the check parts are S7 = 0000000 and Sc = 0000011 respectively. Next,
Ie = T−2 [S7] = 0000000 and Ce = Sc = 0000011. Hence, C = C ′ ⊕ Ce = 1111100⊕ 0000011 =
1111111. Thus, the error vector is E = 00000000000011.

Case III. Now suppose that both information and check parts are in error. Let the received
word be CW ′ = 0̂1111111111110̂. Then, S = 2T 2 [I ′] ⊕ C ′ = 1102200 ⊕ 1111110 = 2210010.
Hence both syndromes are nonzero, so the errors are in both parts. Now, we compute the
syndrome Sc as in the classical error correction. By checking the syndrome of the check part
and all possible errors of weight less than or equal to two beginning form the lowest weight we
see that Sc = 0000001. S7 = S ⊕ Sc = 2210011 ⇒ Ie = T−2 [S7] = 1000000. I = I ′ ⊕ Ie =
0111111⊕ 1000000 = 1111111. C = C ′ ⊕ Ce = 1111110⊕ 0000001 = 1111111. Hence, the error
vector is E = 10000000000001.

In Case-III, where errors occur in the both information and check part, firstly the check part

is corrected by classical syndrome decoding which require in total
1∑

i=0

(
7
i

)
2i = 15 operations.

Secondly the information part is corrected by applying Case-1 which required only one matrix

operation. On the other hand if the classical decoding method is used,
2∑

i=0

(
14
i

)
2i = 393 operations

are required. So as n, q, and d (= 2t + 1) are larger the advantage of using CA becomes more
evident. Table 2 clarifies this observation.

In Table 2 classical decoding and CA based decoding are compared in terms of complexity.
In Table 2, q is the characteristic of finite fields, n is the number of information bits, and t is
the number of correctable errors.

Table 2. CA based and the classical decoding are compared in terms of their complexity.

q n t CA based decoding Classical decoding

3 5 2 11 201

3 10 2 21 801

3 20 3 801 82241

3 20 4 9921 1544481

6. Conclusion

In this paper we relate the reversibility problem of the family of 1D (2r + 1)−cyclic CA with
the theory of error correcting codes. By means of this relation, solving the reversibility problem
computationally becomes very feasible, since instead of computing the rank of the matrix one
needs to compute the greatest common divisor of two polynomials over polynomial prime fields.
Some other interesting features related to this family of CA and further connections on this
direction wait to be explored.
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