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ON THE TWO PARAMETER HOMOTHETIC MOTIONS IN COMPLEX
PLANE*
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Abstract. In this article, we investigate two parameter homothetic motions in the complex

plane. Also, we obtain some definitions, theorems and corollaries related to the velocities,

accelerations and their poles (and hodograph) of a point in complex planar motion.
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1. Introduction

We know that the angular velocity vector has an important role in kinematics of two rigid
bodies, especially one rolling on another, [1, 7, 10]. Investigating the geometry of the motion of
a line or a point in the motion of plane is important in the study of planar kinematics or planar
mechanisms or in physics. Mathematicians and physicists have interpreted rigid body motions
in various ways. K. Nomizu has studied the one parameter motions of orientable surface M

on tangent space along the pole curves using parallel vector fields at the contact points and he
gave some characterizations of the angular velocity vector of rolling without sliding, [11]. H. H.
Hacısalihoğlu showed some properties of one parameter homothetic motions in Euclidean space,
[5]. The geometry of such a motion of a point or a line has a number of applications in geometric
modeling and model-based manufacturing of the mechanical products or in the design of robotic
motions. These are specifically used to generate geometric models of shell-type objects and thick
surfaces, [2, 4, 12].

Alternative definitions of the imaginary unit i other than i2 = −1 can give rise to interesting
and useful complex number systems. Complex numbers were first discovered by Cardan, who
called them ”fictitious”, during his attempts to find solutions to cubic equations, [3]. Müller has
introduced one and two parameter planar motions and obtained the relations between absolute,
relative, sliding velocity and pole curves of these motions. Moreover, the relations between the
complex velocities one parameter motion in the complex plane were provided by [9]. One param-
eter planar homothetic motion was defined in the complex plane, [8]. In [6] all one parameter
motions obtained from two parameter motions on the Euclidean plane are investigated.

In this paper, two parameter homothetic motions in the complex plane are defined. Sliding
velocity, pole lines, hodograph and acceleration poles of two parameter complex homothetic
motions at the positions of ∀ (λ, µ) are obtained. Some characteristic properties about the
velocity vectors, the acceleration vectors and the pole curves are given. Moreover, in the case of
homothetic scale h identically equal to 1, the results given in [13] are obtained as a special case.
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2. Two parameter homothetic motions in complex plane

Let E, E′ be moving and fixed complex planes and O, O′ be origin points of their coordinate

systems, respectively. If
−−→
O
′
O = C

′
(λ, µ) and h(λ, µ) is homothetic constant, then

Y (λ, µ) = h(λ, µ)eiθ(λ,µ)X(λ, µ) + C ′(λ, µ), (1)

where θ(λ, µ) is the rotation angle of E with respect to E′ and X(λ, µ) = (X1(λ, µ),
X2(λ, µ)) and Y (λ, µ) = (Y1(λ, µ), Y2(λ, µ)) are the coordinate functions of the moving and fixed
plane, respectively. If λ and µ are given by functions of time parameter t, then the complex homo-
thetic motion BI , which is called the complex homothetic motion BI obtained from the complex
homothetic motion BII is obtained. Here Y1(λ, µ), Y2(λ, µ), X1(λ, µ), X2(λ, µ), A(λ, µ), B(λ, µ)
are complex elements. They can be denoted by

Y (λ, µ) = [Y1 Y2]
T , X(λ, µ) = [X1 X2]

T , C ′(λ, µ) = [A B]T .

Without losing generality, we can take θ(0, 0) = A(0, 0) = B(0, 0) = 0 to make two complex
planes are congruent at the position (λ, µ) = (0, 0).

2.1. Velocities and Composition of Velocities. If
−−→
OO′ = C(λ, µ) is taken, then we obtain

C ′(λ, µ) = −C(λ, µ)eiθ(λ,µ) (2)

and the equality of (2) is substituted into the equality of (1), we get that

Y (λ, µ) = [h(λ, µ)X(λ, µ)− C(λ, µ)]eiθ(λ,µ). (3)

The relative velocity of the point X(λ, µ) is the velocity of the point X(λ, µ) with respect to
the moving plane E and the relative velocity vector of the point X(λ, µ) in the moving plane is
given by −→

Xr = Ẋ(λ, µ) = Xλλ̇ + Xµµ̇. (4)

This vector is deduced in the fixed coordinate system as follows
−→
Yr =

−→
Xre

iθ(λ,µ) = Ẋ(λ, µ)eiθ(λ,µ) = (Xλλ̇ + Xµµ̇)eiθ(λ,µ). (5)

The velocity of the point X(λ, µ) with respect to the fixed plane E′ is the absolute velocity of
the point X(λ, µ). By differentiating the equality of (3) with respect to (λ, µ) and simplifying
it, we get

−→
Ya=[ḣ(λ, µ) + ih(λ, µ)θ̇(λ, µ)]X(λ, µ)eiθ(λ,µ) − [Ċ(λ, µ) + (6)

+iC(λ, µ)θ̇(λ, µ)]eiθ(λ,µ) + h(λ, µ)Yr

and the sliding velocity vector of the point X(λ, µ) is given by
−→
Yf=[ḣ(λ, µ) + ih(λ, µ)θ̇(λ, µ)]X(λ, µ)eiθ(λ,µ) − (7)

−[Ċ(λ, µ) + iC(λ, µ)θ̇(λ, µ)]eiθ(λ,µ).

The expressions of the absolute and the sliding velocity vectors with respect to coordinate axis
of the moving plane, respectively, are

−→
Xa =

−→
Yae

−iθ(λ,µ)=[ḣ(λ, µ) + ih(λ, µ)θ̇(λ, µ)]X(λ, µ)− (8)

−[Ċ(λ, µ) + iC(λ, µ)θ̇(λ, µ)] + h(λ, µ)
−→
Xr

and
−→
Xf =

−→
Yfe−iθ(λ,µ)=[ḣ(λ, µ) + ih(λ, µ)θ̇(λ, µ)]X(λ, µ)− (9)

−[Ċ(λ, µ) + iC(λ, µ)θ̇(λ, µ)].
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If the point X(λ, µ) is a fixed point in the moving plane E,
−→
Xr =

−→
Yr = 0. Then the absolute

velocity is equal to the sliding velocity. We can give the following theorem from equations (5),
(6) and (7).

Theorem 2.1. The absolute velocity of a point X(λ, µ), where in the complex homothetic motion
BI obtained from the complex homothetic motion BII is equal to addition of the sliding velocity
and h(λ, µ) times relative velocity.

−→
Ya =

−→
Yf + h(λ, µ)

−→
Yr. (10)

To avoid from the situations of only rotation and only translation, let us consider

θ̇(λ, µ) = θλλ̇ + θµµ̇ 6= 0

and
h(λ, µ) 6= constant.

Now, let us investigate the sliding velocity is equal to zero. Such these points shall be fixed, not
only in the moving plane E, but also in the fixed plane E′. In this case, we obtain an equation
from the equation (7) as follows;

−→
Yf = (ḣ + ihθ̇)Xeiθ − (Ċ + iCθ̇)eiθ = 0

and this gives us

P (P1, P2) =
Ċḣ + Chθ̇2

ḣ2 + h2θ̇2
+ i

Cḣθ̇ − Ċhθ̇

ḣ2 + h2θ̇2
(11)

is which is the pole point of the complex homothetic motion BI obtained from the complex
homothetic motion BII . If the sliding velocity of the point X(λ, µ) given by the equation (7)
is taken into consideration with the pole point P (P1, P2), Ċ can be obtained from the following
equation

P (P1, P2) =
Ċ + iCθ̇

ḣ + ihθ̇
.

By substituting the equality of Ċ into the equality of (7), we have
−→
Yf = (ḣ + ihθ̇)(X − P )eiθ. (12)

Theorem 2.2. The pole points of the complex homothetic motion BI obtained from the complex
homothetic motion BII on the moving plane lie on a line at the position of ∀ (λ, µ).

Proof. If we write the equality of P (P1, P2) clearly and C =
[ −Ae−iθ

−Be−iθ

]
is regarded that is in

this equation, we obtain

P =
[

P1

P2

]
=

1
ḣ + ihθ̇

[ −Ȧe−iθ + iθ̇Ae−iθ

−Ḃe−iθ + iθ̇Be−iθ

]
+

iθ̇

ḣ + ihθ̇

[ −Ae−iθ

−Be−iθ

]
.

Then

P1 = − e−iθ

ḣ + ihθ̇
Ȧ (13)

and

P2 = − e−iθ

ḣ + ihθ̇
Ḃ (14)
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are obtained. Here λ̇
µ̇ is taken from the equality of P2 and then substituted in the equality of

P1, we get
−e−iθBµ − P2hµ − iP2hθµ

P2hλ + iP2hθλ + e−iθBλ
=
−e−iθAµ − P1hµ − iP1hθµ

P1hλ + iP1hθλ + e−iθAλ

thus following line equation is obtained

(hλBµ + ihθλBµ −Bλhµ − ihBλθµ) P1+
+(Aλhµ + ihAλθµ − hλAµ − ihθλAµ) P2 = (BλAµ −AλBµ) e−iθ.

(15)

¤

Corollary 2.1. If h(λ, µ) is equal to 1, then we obtain a line equation for two parameter motions
in the complex plane as follows;[13].

(θλBµ −Bλθµ) P1 + (Aλθµ − θλAµ) P2 = i (AλBµ −BλAµ) e−iθ, (16)

Corollary 2.2. If (λ, µ) = (0, 0) i.e., A(0, 0) = B(0, 0) = θ(0, 0) = 0, then we obtain a line
equation for the two parameter motions in the complex plane as follows;[13].

(θλBµ −Bλθµ) P1 + (Aλθµ − θλAµ) P2 = i (AλBµ −BλAµ) , (17)

Theorem 2.3. The pole points of the complex homothetic motion BI obtained from the complex
homothetic motion BII on the fixed plane lie on a line at the position of ∀(λ, µ).

Proof. If the equality of P (P1, P2) is substituted into the equality of (1), then P̄ (P̄1, P̄2) pole
point of the fixed plane is obtained. Then the pole point on the fixed plane is

P̄1 = − h

ḣ + ihθ̇
Ȧ + A (18)

and

P̄2 = − h

ḣ + ihθ̇
Ḃ + B. (19)

Here λ̇
µ̇ is taken from the equality of P2 and then substituted in the equality of P1, we get

−hBµ + Bhµ − P̄2hµ + iBhθµ − iP̄2hθµ

P̄2hλ + hBλ −Bhλ + iP̄2hθλ − iBhθλ
=
−hAµ + Ahµ − P̄1hµ + iAhθµ − iP̄1hθµ

P̄1hλ + hAλ −Ahλ + iP̄1hθλ − iAhθλ
. (20)

Thus, the following line equation is obtained
(−hhλBµ + hBλhµ − ih2θλBµ + ih2Bλθµ

)
P̄1+

+
(−hAλhµ + hhλAµ − ih2Aλθµ + ih2θλAµ

)
P̄2 =

= h2AλBµ − hBAλhµ − ih2BAλθµ − hAhλBµ − ih2AθλBµ−
−h2BλAµ + hABλhµ + ih2ABλθµ + hhλAµB + ih2BθλAµ.

(21)

¤

Corollary 2.3. If h(λ, µ) is equal to 1, then we obtain a line equation for the two parameter
motions in the complex plane as follows [13]

(θλBµ −Bλθµ) P̄1 + (Aλθµ − θλAµ) P̄2 =
= BAλθµ + AθλBµ −ABλθµ −BθλAµ + i (AλBµ −BλAµ) ,

(22)

Corollary 2.4. If (λ, µ) = (0, 0) that is, A(0, 0) = B(0, 0) = θ(0, 0) = 0, then we obtain a line
equation for the two parameter motions in the complex plane as follows;[13].

(θλBµ −Bλθµ) P̄1 + (Aλθµ − θλAµ) P̄2 = i (AλBµ −BλAµ) , (23)
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Corollary 2.5. The pole lines of the complex homothetic motion BI obtained from the complex
homothetic motion BII on the the moving and fixed plane, at the position of λ = µ = 0, are
congruent.

If the pole line of the complex homothetic motion BI obtained from the complex homothetic
motion BII is y axis on the moving plane, then the equation Ȧ (λ, µ) = Aλλ̇ + Aµµ̇ vanishes.
Since λ̇ and µ̇ are independent motion parameters and they never vanish. Then Aλ and Aµ

should be equal to zero at the position of λ = µ = 0. Then, we obtain

P1=0 (24)

and

P2=− 1
ḣ + ihθ̇

Ḃ. (25)

Therefore, there is a relation between the pole lines of the fixed plane and the pole lines of the
moving plane as follows;

P̄1=0 (26)

and

P̄2=hP2. (27)

If the y-axis is chosen as pole axis, that is, Aλ = Aµ = 0 is taken, then the sliding velocity of
any fixed point Q(X1, X2) on the moving plane at the position of λ = µ = 0 is equal to absolute
velocity.

Theorem 2.4. In the complex homothetic motion BI obtained from the complex homothetic
motion BII , let y-axis be the pole axis at the position of λ = µ = 0. Then, there is a relation
between the pole ray

−−→
PQ = (Q−P )eiθ going from the pole point P (0, P2) to the point Q (X1, X2)

and the sliding velocity
−→
Yf of the point Q (X1, X2) as follows;

〈−→
Yf ,

−−→
PQ

〉
= ḣX2

1 + ḣX2
2 − 2ḣX2P2 + ḣP 2

2 . (28)

Proof. The equation of the sliding velocity vector with the pole point P is
−→
Yf = ḣ [(X1 − P1) + i (X2 − P2)] eiθ + hθ̇ [− (X2 − P2) + i (X1 − P1)] eiθ

and then −→
Yf =

[
ḣ (X1 − P1)− hθ̇ (X2 − P2) , ḣ (X2 − P2) + hθ̇ (X1 − P1)

]
eiθ.

P1 = 0 and λ = µ = 0 will be regarded, then the last equation will be
−→
Yf =

[
ḣX1 − hθ̇ (X2 − P2) , ḣ (X2 − P2) + hθ̇X1

]
.

On the other hand
−−→
PQ = (X1, X2 − P2) . Then we obtain

〈−→
Yf ,

−−→
PQ

〉
= ḣX2

1 + ḣX2
2 − 2ḣX2P2 + ḣP 2

2 .

¤

Corollary 2.6. When the complex homothetic motion BI obtained from the complex homothetic
motion BII is at the position of λ = µ = 0 and y-axis is the pole axis, if h (λ, µ) is a constant
different from zero, then the pole ray from the point P (P1, P2) to the point Q (X1, X2) and the
sliding velocity vector

−→
Yf of the point Q (X1, X2) are perpendicular.
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Proof. If h (λ, µ) is a constant different from zero, then ḣ (λ, µ) = 0. Therefore, the equation
(28) will be as follows; 〈−→

Yf ,
−−→
PQ

〉
= 0 (29)

and it gives us the pole ray and the sliding velocity vector are perpendicular. ¤

Theorem 2.5. The length of the sliding velocity vector
−→
Yf of the complex homothetic motion

BI obtained from the complex homothetic motion BII is
∥∥∥−→Yf

∥∥∥ =
√

ḣ2 + h2θ̇2
∥∥∥−−→PQ

∥∥∥ (30)

at the position of ∀ (λ, µ).

Proof. It is known that〈−→a eiθ,
−→
b eiθ

〉
= 〈(a1 + ia2) (cos θ + i sin θ) , (b1 + ib2) (cos θ + i sin θ)〉 =

=
〈

(a1 cos θ − a2 sin θ, a1 sin θ + a2 cos θ),
(b1 cos θ − b2 sin θ, b1 sin θ + b2 cos θ)

〉
=

= a1b1 + a2b2 =

=
〈−→a ,

−→
b

〉
.

Therefore, since
−→
Yf =

(
ḣ + ihθ̇

)
(X − P ) eiθ, the length of the sliding velocity vector

−→
Yf with

the pole point is ∥∥∥−→Yf

∥∥∥ =
√

ḣ2 + h2θ̇2

√
(X1 − P1)

2 + (X2 − P2)
2

and then we obtain ∥∥∥−→Yf

∥∥∥ =
√

ḣ2 + h2θ̇2
∥∥∥−−→PQ

∥∥∥ .

¤

Theorem 2.6. For the complex homothetic motion BI obtained from the complex homothetic
motion BII , let Ψ be an angle between the pole ray

−−→
PQ = (X − P ) eiθgoing from the pole point

P = (P1, P2) to the point Q(X1, X2) and the sliding velocity vector
−→
Yf . Then, there is a relation

as follows;

cosΨ (λ, µ) =
ḣ√

ḣ2 + h2θ̇2
(31)

at the position of ∀(λ, µ).

Proof. Since
−→
Yf =

[
ḣ (X1 − P1)− hθ̇ (X2 − P2) , ḣ (X2 − P2) + hθ̇ (X1 − P1)

]
eiθ and

−−→
PQ =

[
(X1 − P1) eiθ, (X2 − P2) eiθ

]
, if we get inner product
〈−−→
PQ,

−→
Yf

〉
= ḣ

∥∥∥−−→PQ
∥∥∥

2
.

On the other hand, it is known that〈−−→
PQ,

−→
Yf

〉
=

∥∥∥−−→PQ
∥∥∥

∥∥∥−→Y f

∥∥∥ cosΨ (λ, µ).

By comparing these last two equations the proof of the theorem is completed. ¤

Corollary 2.7. If h (λ, µ) is a constant different from zero, then we obtain an equation for the
two parameter motions in the complex plane as follows [13]

Ψ(λ, µ) =
π

2
+2kπ, (k = 0, 1, 2, . . .) , (32)
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Definition 2.1. When the sliding velocity vectors of the fixed points are carried to the initial
points, without changing the directions, then the locus of the end points of these vectors is a
curve, called hodograph.

Now, we investigate any points (X1, X2) of the locus of the hodographs in all the complex
homothetic motion BI obtained from the complex homothetic motion BII at the position of
∀(λ, µ). For this let λ̇2 + µ̇2 = 1. By differentiating the equality of (3) with respect to λ and µ,
we have −→

Ya =
−→
Yf =

(
ḣ + ihθ̇

)
Xeiθ −

(
Ċ + iCθ̇

)
eiθ

and −→
Yf =

[(
ḣ + ihθ̇

)
X1e

iθ + Ȧ,
(
ḣ + ihθ̇

)
X2e

iθ + Ḃ
]
.

Then we obtain

Ẏ1 =
(
hλX1e

iθ + ihθλX1e
iθ + Aλ

)
λ̇ +

(
hµX1e

iθ + ihθµX1e
iθ + Aµ

)
µ̇,

Ẏ2 =
(
hλX2e

iθ + ihθλX2e
iθ + Bλ

)
λ̇ +

(
hµX2e

iθ + ihθµX2e
iθ + Bµ

)
µ̇.

If the equations are written
Ẏ1 = m1λ̇ + m2µ̇,

Ẏ2 = m3λ̇ + m4µ̇

and the method of Cramer is applied to

Γ =
∣∣∣∣
m1 m2

m3 m4

∣∣∣∣ = m1m4 −m2m3

at the position of λ = µ =0 and after it is substituted into the equation of λ̇2 + µ̇2 = 1, we
obtain

Γ=AλhµX2 + iAλhθµX2 + BµhλX1 + iBµhθλX1 + AλBµ −AµhλX2 − (33)

−iAµhθλX2 −BλhµX1 − iBλhθµX1 −AµBλ

and

λ̇ =

∣∣∣∣
Ẏ1 m2

Ẏ2 m4

∣∣∣∣
Γ

, µ̇ =

∣∣∣∣
m1 Ẏ1

m3 Ẏ2

∣∣∣∣
Γ

, λ̇2 + µ̇2 = 1.

Then, we get
[(hµX2+ihθµX2+Bµ)Ẏ1−(hµX1+ihθµX1+Aµ)Ẏ2]2

Γ2 +

+[(hλX1+ihθλX1+Aλ)Ẏ2−(hλX2+ihθλX2+Bλ)Ẏ1]2
Γ2 = 1.

From this last equation, we obtain
[
(hµX2 + ihθµX2 + Bµ)2 + (hλX2 + ihθλX2 + Bλ)2

]
Ẏ 2

1 +

+
[
(hµX1 + ihθµX1 + Aµ)2 + (hλX1 + ihθλX1 + Aλ)2

]
Ẏ 2

2 −

−2
[
(hµX2 + ihθµX2 + Bµ) (hµX1 + ihθµX1 + Aµ)
+ (hλX1 + ihθλX1 + Aλ) (hλX2 + ihθλX2 + Bλ)

]
Ẏ1Ẏ2 = Γ2

(34)

and this is the equation of the hodograph at the position of ∀(λ, µ).

Theorem 2.7. The hodograph of any points (X1, X2) in the complex homothetic motion BI

obtained from the complex homothetic motion BII at the position of λ = µ= 0 is an ellipse.
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Proof. Taking the conic general form

KX2 + 2LXY + MY 2 + 2DX + 2EY + F = 0

we obtain
K =

[
(hµX2 + ihθµX2 + Bµ)2 + (hλX2 + ihθλX2 + Bλ)2

]
,

L = −
[
(hµX2 + ihθµX2 + Bµ) (hµX1 + ihθµX1 + Aµ)
+ (hλX1 + ihθλX1 + Aλ) (hλX2 + ihθλX2 + Bλ)

]
,

M =
[
(hµX1 + ihθµX1 + Aµ)2 + (hλX1 + ihθλX1 + Aλ)2

]
.

From here we have
∣∣∣∣
K L

L M

∣∣∣∣ =
[
(hµX2 + ihθµX2 + Bµ) (hλX1 + ihθλX1 + Aλ)
− (hλX2 + ihθλX2 + Bλ) (hµX1 + ihθµX1 + Aµ)

]2

> 0

and this indicates the equation of an ellipse. ¤

Corollary 2.8. If h (λ, µ) is a constant different from zero, then the equation (34) is an ellipse
equation as follows

[
(ihθµX2 + Bµ)2 + (ihθλX2 + Bλ)2

]
Ẏ 2

1 +

+
[
(ihθµX1 + Aµ)2 + (ihθλX1 + Aλ)2

]
Ẏ 2

2 −

−2
[
(ihθµX2 + Bµ) (ihθµX1 + Aµ)
+ (ihθλX1 + Aλ) (ihθλX2 + Bλ)

]
Ẏ1Ẏ2 = Γ2.

(35)

Corollary 2.9. If h (λ, µ) =1 is written in the equation (34), then we obtain an equation for
the two parameter motions in the complex plane as follows [13]

[
(iθµX2 + Bµ)2 + (iθλX2 + Bλ)2

]
Ẏ 2

1 +

+
[
(iθµX1 + Aµ)2 + (iθλX1 + Aλ)2

]
Ẏ 2

2 −

−2
[
(iθµX2 + Bµ) (iθµX1 + Aµ)
+ (iθλX1 + Aλ) (iθλX2 + Bλ)

]
Ẏ1Ẏ2 = Γ2,

(36)

2.2. Accelerations and Composition of Accelerations. The relative acceleration vector of
the point X (λ, µ) is the acceleration vector of the point X (λ, µ) with respect to the moving
plane. When the vectorial velocity

−→
Xr is derived with respect to λ and µ, then the relative

acceleration vector is obtained. Therefore, from the equation (4) it is written that
−→
br = Ẋr = Ẍ (λ, µ) = Xλλλ̈ + Xλλ̈ + Xλµλ̇ + Xµλµ̇ + Xµµµ̇ + Xµµ̈ (37)

and this vector is expressed with respect to the fixed coordinate plane as follows,
−→
br
′
=
−→
bre

iθ = Ẍeiθ. (38)

The absolute acceleration vector of the point X (λ, µ) is the acceleration vector of the point
X (λ, µ) with respect to the fixed plane. By taking the equations (5) and (12) in the equation
(10), we have the absolute velocity as follows;

−→
Y a =

−→
Y f + h

−→
Yr = (ḣ + ihθ̇) (X − P ) eiθ + hẊeiθ.

When this absolute velocity is derived respect to λ and µ, then the absolute acceleration vector
of the point X (λ, µ) is obtained. Therefore,

−→
ba
′
=

[
ḧ−hθ̇2+i(hθ̈+2ḣθ̇)

]
(X − P ) eiθ−

(
ḣ + ihθ̇

)
Ṗ eiθ+2Ẋ

(
ḣ + ihθ̇

)
eiθ+h

−→
br
′
. (39)
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Here, the sliding acceleration vector of the point X (λ, µ) is
−→
bf
′
=

[
ḧ−hθ̇2+i(hθ̈+2ḣθ̇)

]
(X − P ) eiθ−

(
ḣ + ihθ̇

)
Ṗ eiθ (40)

and the Coriolis acceleration vector of the point X (λ, µ) is
−→
bc
′
= 2Ẋ

(
ḣ + ihθ̇

)
eiθ. (41)

Hence, the sliding acceleration vector is the acceleration of the fixed point in the moving system
with respect to the fixed system. Therefore, the composition of these accelerations can be given
from the equations (38), (39), (40) and (41) with the following theorem.

Theorem 2.8. There is the following relation between the acceleration vectors of any points of
two parameter complex motions.

−→
ba
′
=
−→
bf
′
+
−→
bc
′
+ h

−→
br
′

(42)

where
−→
ba =

−→
ba
′
e−iθ =

[
ḧ−hθ̇2+i(hθ̈+2ḣθ̇)

]
(X − P )−

(
ḣ + ihθ̇

)
Ṗ+2Ẋ

(
ḣ + ihθ̇

)
+h
−→
br (43)

−→
bf =

−→
bf
′
e−iθ =

[
ḧ−hθ̇2+i(hθ̈+2ḣθ̇)

]
(X − P )−

(
ḣ + ihθ̇

)
Ṗ (44)

and −→
bc =

−→
bc
′
e−iθ = 2Ẋ

(
ḣ + ihθ̇

)
(45)

are the equations of the absolute, the sliding and the Coriolis acceleration vectors with respect to
the moving system, respectively.

Theorem 2.9. The acceleration pole at the position of ∀(λµ), which angular velocity in the
complex homothetic motion BI obtained from the complex homothetic motion BII is different
from zero, is

X = P +

(
ḣ + ihθ̇

)
Ṗ

ḧ−hθ̇2+i(hθ̈+2ḣθ̇)
. (46)

Proof. Let us search the points where the sliding accelerations are zero at the position of ∀(λµ).
From the equation (40) we can say[

ḧ−hθ̇2+i(hθ̈+2ḣθ̇)
]
(X − P ) eiθ−

(
ḣ + ihθ̇

)
Ṗ eiθ = 0

and from here

X = P +

(
ḣ + ihθ̇

)
Ṗ

ḧ−hθ̇2+i(hθ̈+2ḣθ̇)
is obtained. ¤

Corollary 2.10. If h (λ, µ) = 1, then we obtain the following acceleration pole for the two
parameter motions in the complex plane [13]

X = P+
iθ̇Ṗ

iθ̈ − θ̇2
, (47)

Theorem 2.10. If λ̇ = µ̇ = 0 , then the acceleration poles of the complex homothetic motion
BI obtained from the complex homothetic motion BII at the position of λ = µ= 0 are on the
following line

(hλBµ + ihθλBµ − ihθµBλ − hµBλ) Pi1+
+(hµAλ + ihθµAλ − ihθλAµ − hλAµ) Pi2 = AλBµ −AµBλ.

(48)
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Proof. From the differentiation of the equality of (6) we obtain
−→
b
′
f =

(
ḧ + iḣθ̇ + ihθ̈

)
Xeiθ + iθ̇(ḣ + ihθ̇)Xeiθ −

(
C̈ + iθ̈C + iθ̇Ċ

)
eiθ − iθ̇

(
Ċ + iθ̇C

)
eiθ

and if (λ, µ) = (0, 0) and λ̇ = µ̇ = 0 are substituted into the last equation and simplified it, then−→
bf
′
=

(
ḧ + ihθ̈

)
X − C̈ is obtained. Hence, the acceleration pole is

Pi1 = X1 =
−Aλλ̈−Aµµ̈

hλλ̈ + hµµ̈ + ih
(
θλλ̈ + θµµ̈

) (49)

and

Pi2 = X2 =
−Bλλ̈−Bµµ̈

hλλ̈ + hµµ̈ + ih
(
θλλ̈ + θµµ̈

) . (50)

Here, if λ̈
θ̈

is taken from the equality of Pi2 and substituted into the equality of Pi1 , then we
obtain −Bµ − ihPi2θµ − Pi2hµ

Pi2hλ + ihPi2θλ + Bλ
=
−Aµ − ihPi1θµ − Pi1hµ

Pi1hλ + ihPi1θλ + Aλ

and from here we get the following line equation

(−hλBµ − ihθλBµ + ihθµBλ + hµBλ) Pi1+
+(−hµAλ − ihθµAλ + ihθλAµ + hλAµ) Pi2 = AλBµ −AµBλ.

(51)

¤

Corollary 2.11. If h (λ, µ) =1, then we obtain the following acceleration pole for the two
parameter motions in the complex plane

(θλBµ − θµBλ) Pi1 + (θµAλ − θλAµ) Pi2 = i (AλBµ −AµBλ) (52)

[13], and this acceleration pole and the pole lines of the fixed and the moving plane are congruent.

3. Conclusion

The results we have presented deal with complex homothetic motions in which position of
the moving object depend on two parameter. Hodograph of two parameter complex homothetic
motions was obtained. Hodograph is the locus of the end points of the velocity of a particle and
it is the solution of the first order equation which is Newton’s Law. The locus of the hodograph
of complex homothetic motion was found as an ellipse in this study.
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