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ON THE QUATERNIONIC CURVES ACCORDING TO PARALLEL
TRANSPORT FRAME*
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Abstract. In this paper, we have studied parallel transport frame for a quaternionic curve in

E3 and E4. Firstly, we have defined a new kind of slant helix with respect to parallel transport

frame and given some necessary and sufficient conditions for the quaternionic slant helix in E3.

We have introduced a new definition of harmonic curvature functions in terms of M 3 according

to parallel transport frame and defined quaternionic M 3−slant helix by using the new harmonic

curvature functions in E4.
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1. Introduction

In 1843, quaternions were invented by William Rowan Hamilton who extended 3-dimensional
vector algebra for inclusion of multiplications and divisions, [6]. Mathematically, quaternions
provide us with a simple and elegant representation for describing finite rotations in space.
They are defined with the aid of one real and three imaginary components; +1, e1, e2, e3 where
e1

2 = e2
2 = e3

2 = −1.
Özdamar and Hacısalihoğlu defined harmonic curvature functions. They generalized the in-

clined curves in E3 to En, n > 3, and then gave a characterization for them: ”If a curve α is an

inclined curve then
n−2∑
i=1

Hi
2 = constant” [11].

Izumiya and Takeuchi defined a new kind of helix (slant helix) and they gave a characterization
of slant helices in Euclidean space E3, [8]. After them, Önder et al. defined a new kind of slant
helix in Euclidean 4-space E4 which they called B2−slant helix and they gave characterizations
of this slant helices in E4 [10].

As a set, the set of quaternions Q coincide with E4, a 4-dimensional vector space over the
real numbers. Considering this feature of quaternions, the Serret-Frenet formulae of a curve
in 3-dimensional real Euclidean space E3 were given by Bharathi and Nagaraj with the help of
spatial quaternions. By means of these formulae, the Serret-Frenet formulae of the quaternionic
curves were obtained, [1]. Many studies have been made after this work. One of them was made
by Karadağ and Sivridağ who defined inclined curves and harmonic curvatures of quaternion
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valued functions, [9]. And, Gök et al.’s defined a new kind of quaternionic slant helix called
B2−-slant helix in E4, [4].

It is well known that the Frenet Frame can be established only for differentiable curves. But
at some points, curvature of the curve may vanish, in the other words the second derivative of
the curve may be equal to zero. In this situation, we need an alternative frame for the curve.
For this reason, Bishop defined an alternative frame for the curves in 3-dimensional Euclidean
space, [2]. The Frenet frame is completely local but is indeterminable where the curve is locally
straight. The other coordinate frame, the parallel transport frame, is defined everywhere but
depends on a numerical integration over the entire curve, [7]. The advantages of the parallel
transport frame (also called Bishop frame) and the comparable Bishop frame with the Frenet
frame in Euclidean 3-space were given by Bishop [2] and Hanson [7].

Bükçü and Karacan defined slant helix according to Bishop frame in Euclidean 3-space, [3].
Then, Gökçelik et al.’s gave the relations between the parallel transport frame and Frenet frame
of a curve in 4 - dimensional Euclidean space. Then, they characterized curves whose position
vectors lie in their normal, rectifying and osculating planes in E4, [5].

In this paper, firstly, we have given a new kind of slant helix with respect to parallel transport
frame which we call spatial quaternionic slant helix and some necessary and sufficient conditions
for the spatial quaternionic slant helix in E3. We have introduced a new definition of harmonic
curvature functions in terms of M 3 according to parallel transport frame and defined a new kind
of slant helix which we call quaternionic M 3−slant helix by using the new harmonic curvature
functions in E4.

2. Preliminaries

A real quaternion is defined as q = d + ae1 + be2 + ce3 where

i) e i × e i = −e4 , e4 = +1, (1 ≤ i ≤ 3)
ii) ei × ej = ek = −ej × e i (1 ≤ i, j ≤ 3).

Here, a, b, c, d are components of the quaternion q ∈ Q. Also, if we take Sq = d and V q =
= ae1 + be2 + ce3, a quaternion can be expressed as q = Sq + Vq. If we get two quaternions p

and q, their quaternionic product is defined as follows;

p× q = SpSq − 〈V p,V q〉+ SpV q + SqV p + V p ∧V q.

A feature of quaternions is that the product of two quaternions is non-commutative. q̂ denotes
the conjugate of the quaternion q and it is defined as q̂ = Sq −V q. In the set of quaternions,
the function h which is real valued, symmetric and bilinear is defined as

h : Q×Q→ R,

(p, q) → h(p, q) = 1
2(p× q̂ + q × p̂)

and this function is called quaternionic inner product. In addition the norm of a quaternion is

N(q)2 = h(q, q) = q × q̂ = d2 + a2 + b2 + c2 .

If N(q) = 1, q is entitled unit quaternion. Also if q + q̂ = 0 for q ∈ Q, q is called a spatial
quaternion. The set of all spatial quaternions is isomorphic to 3-dimensional real vector space R3.
So, the quaternionic product of two quaternions p and q can be written as p×q = −〈p, q〉+p∧q.

We say that a normal vector field m along a curve is relatively parallel if its derivative
is tangential, [2]. We use t(s) and two relatively parallel vector fields m1(s) and m2(s) to
construct an alternative frame. This frame is called parallel transport frame along the curve α.
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The derivative formulae for the parallel transport frame can be given in the following matrix
form: 


t ′

m1
′

m2
′


 =




0 k1 k2

−k1 0 0
−k2 0 0







t

m1

m2


 .

There are a lot of methods used to represent rotations like orthonormal matrices, Euler
angles and quaternions. Quaternions are the most useful method to represent rotations. Unit
quaternions play an important role during the transition between quaternions and rotations
as they have the remarkable property of capturing all of the geometry and group structure
of rotations in the simplest possible way. Every unit quaternion represents a rotation in the
Euclidean space. Using a quaternion q = (q1, q2, q3, q4), we can generate a rotation matrix with

R =




q4
2 + q2

2 − q3
2 − q1

2 −2q1q4 + 2q2q3 2q4q3 + 2q2q1

2q2q3 + 2q4q1 q4
2 − q2

2 + q3
2 − q1

2 2q3q1 − 2q2q4

2q2q1 − 2q3q4 2q2q4 + 2q3q1 q4
2 − q2

2 − q3
2 + q1

2


 (1)

for the given rotation in the Euclidean space, and we can represent these rotations for the
standard coordinate axes with the unit quaternions :

qy = (0, sin
φ

2
, 0, cos

φ

2
), qx = (sin

θ

2
, 0, 0, cos

θ

2
), qz = (0, 0, sin

ψ

2
, cos

ψ

2
), (2)

respectively, [12].
Finite rotations are described by 3 × 3 rotational transformation matrices with respect to

standard basis in 3-dimensional Euclidean space E3. The 3-dimensional special orthogonal
group SO(3) is formed by these matrices. The groups of unit real quaternions are isomorphic
to the topological 3-sphere S3, which is also the topological space of the Lie group SU(2) in
ordinary 3-dimensional Euclidean space E3. The relationship between the Euclidean projective
space RP 3 and SO(3) is given as RP 3 = SO(3) ∼= S3/{±1}.

3. Spatial quaternionic slant helix according to parallel transport frame

Let {α ∈ Q |α + α̂ = 0} be the space of spatial quaternions in 3-dimensional Euclidean space
E3 and the spatial quaternionic curve α be given by

α : I ⊂ R→ E3

s → α(s) =
3∑

i=1
αi(s)ei, (1 ≤ i ≤ 3)

where I = [0, 1] ⊂ R and s ∈ I is arc length parameter. {t(s),n1(s),n2(s)} denotes the Frenet
frame and k(s), r(s) are curvatures at the point α(s) of the curve α for ∀s ∈ I, [1]. Then the
following theorem can be given.

Theorem 3.1. Let {t ,n1,n2} be Frenet frame of spatial quaternionic curve α : I ⊂ R→ E3 at
the point α(s). Then, the Frenet formulae of α are given by

t ′ = kn1,

n1
′ = −kt + rn2,

n2
′ = −rn1,

(3)

where {k(s), r(s)} denote curvatures of the curve α, [1].
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Theorem 3.2. Let the spatial quaternionic curve α : I ⊂ R → E3 be given by arc length
parameterization by parameter s. For ∀s ∈ I, {t(s),m1(s),m2(s)} denotes parallel transport
frame of the curve α and {k1, k2} are the curvatures with respect to this frame. The parallel
transport formulae along the curve α are

t′(s) = k1(s)m1(s) + k2(s)m2(s),
m1

′(s) = −k1(s)t(s),
m2

′(s) = −k2(s)t(s),

where
k(s) =

√
k1

2 + k2
2,

ψ(s) = arctan(k2
k1

),
r(s) = dψ

ds .

so that k1 and k2 effectively correspond to a Cartesian coordinate system for the polar coordinates
κ, ψ with ψ =

∫
r(s)ds, [7].

Definition 3.1. Let α : I ⊂ R→ E3 be a unit speed spatial quaternionic curve and U is a unit
spatial quaternion with fixed direction. For ∀s ∈ I, if

h(m1(s),U) = cosϕ, ϕ = constant

holds, α is called a spatial quaternionic slant helix.

Theorem 3.3. Let α : I → E3 be a unit speed spatial quaternionic curve with nonzero natural
curvatures {k1, k2}. Then α is a spatial quaternionic slant helix if and only if k1

k2
is constant.

Proof. Let α be spatial quaternionic slant helix in E3 with nonzero natural curvatures {k1, k2}.
So, from the Definition 3.1, we get

h (m1,U ) = constant,

where U is a unit spatial quaternion, called the axis of spatial quaternionic slant helix. By
differentiation the last equation, we get

h(m1
′,U ) = h(−k1t ,U ) = −k1h(t ,U ) = 0.

Since, k1 6= 0, we can easily write
h(t ,U ) = 0.

If we take again derivative of the last equation, we can find as follows

h(t ′,U ) = h(k1m1 + k2m2,U ),
= k1h(m1,U ) + k2h(m2,U ),
= k1cosϕ + k2sinϕ = 0.

Therefore we obtain that k1
k2

= − tanϕ = constant.

Conversely, suppose that k1
k2

= − tanϕ. Then we can write U ∈ Sp {m1,m2} , i.e.,

U = m1 cosϕ + m2 sinϕ.

Differentiating the last equality,

U ′ = (k1 cosϕ + k2 sinϕ )t = 0.

So U is a constant quaternion. Thus, the proof is done. ¤
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Theorem 3.4. Let α = α(s) be unit speed spatial quaternionic in E3. Then α is a spatial
quaternionic slant helix if

det(m′
1,m

′′
2,m

′′′
3 ) = 0.

Proof. Let α be a spatial quaternionic slant helix. From Theorem 3.3. suppose that k1
k2

be
constant. From the parallel transport formulae, we have equalities as

−m1
′ = k1t

−m ′′
1 = k1

′t + k2
1m1 + k1k2m2

−m ′′′
1 =

(
k1
′′ − k3

1 − k1
2k2

)
t +

(
3k1k1

′)m1 +
(
2k1

′k2 + k1k2
′)m2.

So we get

det(m1
′,m2

′′,m3
′′′) =




k1 0 0
k1
′ k2

1 k1k2

k1
′′ − k3

1 − k1
2k2 3k1k1

′ 2k1
′k2 + k1k2

′


 =

= −k1
3k2

2
(

k1
k2

)′
,

where k2 6= 0. Since k1
k2

is constant, we have det(m1
′,m2

′′,m3
′′′) = 0.

Conversely, suppose that det(m1
′,m2

′′,m3
′′′) = −k1

3k2
2
(

k1
k2

)′
= 0. Then it is clear that

k1
k2

= constant. So, α is a spatial quaternionic slant helix. ¤

4. Quaternionic M3−slant helix according to parallel transport frame

LetQ denote the set of real quaternions and we choose I = [0, 1] ⊂ R. β is called a quaternionic
curve if it is given by

β : I ⊂ R→ Q,

s → β(s) =
4∑

i=1
βi(s)e i, (1 ≤ i ≤ 4), e4 = 1

for ∀s ∈ I. For the arc length parameter s, the Frenet vectors at the point β(s) is
{T (s),N 1(s),N 2(s),N 3(s)} and {κ, k, (r − κ)} denote the Frenet curvatures of the quater-
nionic curve β. Then the following theorem can be given.

Theorem 4.1. Let {T (s),N 1(s),N 2(s),N 3(s)} be Frenet frame of the curve β : I ⊂ R → Q
at the point β(s). Frenet formulae of the quaternionic curve β are expressed as

T′(s) = κ(s)N1(s), κ(s) = ‖T′(s)‖ , N1(s) = t(s)×T(s)
N1

′(s) = −κ(s)T(s) + k(s)N2(s) , N2(s) = n1(s)×T(s)
N2

′(s) = −k(s)N1(s) + (r(s)− κ(s))N3(s), N3(s) = n2(s)×T(s)
N3

′(s) = − (r(s)− κ(s))N2(s) .

(4)

Here, the unit tangent vector T of the quaternionic curve β is given by the relation t(s) =
= N1(s) × T̂(s). So, the torsion of the quaternionic curve β is the principal curvature of the
spatial quaternionic curve α. In addition, the third curvature of β is (r(s)− κ(s)) where r(s) is
the torsion of the spatial curve α and κ(s) is the principal curvature of β, [1].

Theorem 4.2. Let β : I ⊂ R → Q be a quaternionic curve with arc length parameter s

and {T,N1,N2,N3} denotes Frenet frame of the quaternionic curve. Also, {T,M1,M2,M3}
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denotes parallel transport frame of β. The matrix form of the parallel transport formulae of the
quaternionic curve β is




T′

M1
′

M2
′

M3
′


 =




0 k1
∗ k2

∗ k3
∗

−k1
∗ 0 0 0

−k2
∗ 0 0 0

−k3
∗ 0 0 0







T

M1

M2

M3


 , (5)

where {k1
∗, k2

∗, k3
∗} are nonzero curvatures of the quaternionic curve β according to parallel

transport frame. The following equations hold,

k1
∗ = κ(cosψ cosφ− sinψ sin θ sinφ) ,

k2
∗ = −κ sinψ cos θ ,

k3
∗ = κ(cosψ sinφ + sin ψ sin θ cosφ) .

Moreover, the relation between the angles and curvatures is

θ′ = − (r − κ)√
κ2 + k2

, φ′ =

√
(r − κ)2 − (θ′)2

cos θ
, ψ′ = −k − tan θ

√
(r − κ)2 − (θ′)2

and the Frenet curvatures may be expressed as

κ(s) =
√

(k1
∗)2 + (k2

∗)2 + (k3
∗)2 , k = −ψ′+θ′ tanψ tan θ , r−κ = − θ′

cosψ
, φ′ cos θ+θ′ tan ψ = 0 .

Proof. By combining the results of the quaternionic rotation matrix in (1) and unit quaternions
in the equation (2), the relation between the Frenet frame and the parallel transport frame at
the point β(s) of the quaternionic curve in 4-dimensional Euclidean space can be given by




T

N 1

N 2

N 3


 =




1 0 0 0

0 cos ψ cos φ− sin ψ sin θ sin φ − sin ψ cos θ cos ψ sin φ + sin ψ sin θ cos φ

0 cos ψ sin θ sin φ + sin ψ cos φ cos ψ cos θ − cos ψ sin θ cos φ + sin ψ sin φ

0 − cos θ sin φ sin θ cos θ cos φ







T

M 1

M 2

M 3


 , (6)

where φ, θ and ψ are Euler angles. If we make the necessary arrangement in the equations given
by (6), we obtain that

T = T (s) ,
M 1 = (cosψ cosφ− sinψ sin θ sinφ)N 1 + (cosψ sin θ sinφ + sin ψ cosφ)N 2−

− cos θ sinφN 3 ,

M 2 = − sinψ cos θ N 1 + cosψ cos θN2 + sin θN3 ,

M 3 = (cosψ sinφ + sinψ sin θ cosφ)N 1 + (− cosψ sin θ cosφ + sin ψ sinφ)N 2+
+cos θ cosφN 3.

(7)

Considering the equation (4) and differentiating the equations (7), we have

M 1
′ = −κ(cosψ cosφ− sinψ sin θ sinφ)T+

+ (−k(cosψ sin θ sinφ + sin ψ sinφ) + ψ′(− sinψ cosφ− cosψ sin θ sinφ)+
+ φ′(− cosψ sinφ− sinψ sin θ cosφ)− θ′ sinψ cos θ sinφ)N 1+
+(k(cosψ cosφ− sinψ sin θ sinφ)+

+(r − κ) cos θ sinφ + ψ′(− sinψ sin θ sinφ + cosψ sinφ)+
+ φ′(cosψ sin θ cosφ + sin ψ cosφ) + θ′ cosψ cos θ sinφ)N 2+
+ ((r − κ)(cosψ sin θ sinφ + sin ψ sinφ) + θ′ sin θ sinφ− φ′ cos θ cosφ)N 3.
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In a similar way, we get M2
′ and M3

′ as

M 2
′ = κ sinψ cos θT+

+ (−k cosψ cos θ − ψ′ cosψ cos θ + θ′ sinψ sin θ)N 1+
+ [−k sinψ cos θ − (r − κ) sin θ − ψ′ sinψ cos θ − θ′ cosψ sin θ]N 2+
+ [(r − κ) cosψ cos θ + θ′ cos θ]N 3,

M 3
′ = −κ(cosψ sinφ + sinψ sin θ cosφ)T+

+ (−k(− cosψ sin θ cosφ + sinψ sinφ) + ψ′(− sinψ sinφ + cos ψ sin θ cosφ)+
+ φ′(cosψ cosφ− sinψ sin θ sinφ) + θ′ sinψ cos θ cosφ)N 1+
+ (−(r − κ) cos θ cosφ + k(cosψ sinφ + sin ψ sin θ cosφ) + φ′(cosψ sin θ sinφ + sin ψ cosφ)+
+ ψ′(sinψ sin θ cosφ + cosψ sinφ)− θ′ cosψ cos θ cosφ)N 2+
+ ((r − κ)(− cosψ sin θ cosφ + sinψ sinφ)− θ′ cosφ sin θ − φ′ cos θ sinφ)N 3.

In addition, by considering the equation (7) and using quaternionic inner product with T ′, we
have

k1
∗ = h(T ′,M 1) = κ(cosψ cosφ− sinψ sin θ sinφ) ,

k2
∗ = h(T ′,M 2) = −κ sinψ cos θ ,

k3
∗ = h(T ′,M 3) = κ(cosψ sinφ + sin ψ sin θ cosφ).

(8)

From the equation (8), it is obvious that

κ(s) =
√

(k1
∗)2 + (k2

∗)2 + (k3
∗)2 .

Moreover, since M 1,M 2 and M 3 are relatively parallel vector fields, the normal components
of the M 1

′,M 2
′ and M 3

′ must be zero. So, h(M 1
′,M 2) = 0 and h(M 1

′,M 3) = 0. Thus, the
following statements hold;

k = −ψ′ + θ′ tanψ tan θ , r − κ = − θ′

cosψ
, φ′ cos θ + θ′ tanψ = 0 .

If we choose θ′ = − (r−κ)√
κ2+k2

, we get cosψ = 1√
κ2+k2

and it is obvious that

φ′ =

√
(r − κ)2 − (θ′)2

cos θ
, ψ′ = −k − tan θ

√
(r − κ)2 − (θ′)2 .

¤

Definition 4.1. Let β : I → Q be a quaternionic curve with an arc length parameter s. X is
a unit quaternion which has constant components and {T ,M 1,M 2,M 3} denotes the parallel
transport frame at the point β(s). If

h(M3(s),X) = cosϕ, ϕ = constant

for ∀s ∈ I, β is called quaternionic M3−slant helix according to parallel transport frame, where
ϕ is a constant angle between the last vector field M3 with a fixed direction X.

Definition 4.2. Let β = β(s) be a quaternionic curve parameterized by arc length parameter
s and {k1

∗, k2
∗, k3

∗} be nonzero curvatures according to parallel transport frame. In that case
harmonic curvature functions in terms of M3 are defined by

Hi : I ⊂ R→ R
H1 = 0, H2 = k2

∗′k3
∗−k3

∗′k2
∗

k1
∗′k2

∗−k2
∗′k1

∗ , H3 = k1
∗′k3

∗−k3
∗′k1

∗
k2
∗′k1

∗−k1
∗′k2

∗ .
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Theorem 4.3. Let β : I → Q be a unit speed quaternionic curve and {T,M1,M2,M3} denotes
the parallel transport frame of the curve β and {k1

∗, k2
∗, k3

∗} are nonzero curvatures according
to parallel transport frame. If the quaternionic curve β is a M3−slant helix in Q, then

h(T(s),X) = H1(s) cos ϕ,

h(M1(s),X) = H2(s) cos ϕ,

h(M2(s),X) = H3(s) cos ϕ,

h(M3(s),X) = cosϕ,

where ϕ is a constant angle between M3 with a fixed direction X.

Proof. Let β be a quaternionic M3−slant helix in Q. Then h(M 3(s),X ) = cosϕ. Considering
parallel transport formulae and differentiating the above equation with respect to s, we obtain
that

h(M 3
′(s),X ) = 0,

−k3
∗h(T (s),X ) = 0, k3

∗ 6= 0,

h(T (s),X ) = 0. (9)

If we take derivative of the equation (9)

h(T ′(s),X ) = 0,

h(k1
∗M 1 + k2

∗M 2 + k3
∗M 3,X ) = 0.

Since the quaternionic inner product is linear, from the last equation we acquire

k1
∗h(M 1(s),X ) + k2

∗h(M 2(s),X ) + k3
∗h(M 3(s),X ) = 0. (10)

From the equation (10), we obtain that

h(M 2(s),X ) = −k1
∗

k2
∗h(M 1(s),X )− k3

∗

k2
∗h(M 3(s),X ).

Again differentiating at the last equation, it is easy to obtain

h(M 2
′(s),X ) =

k2
∗′k1

∗ − k1
∗′k2

∗

k2
∗2 h(M 1(s),X ) +

k2
∗′k3

∗ − k3
∗′k2

∗

k2
∗2 h(M 3(s),X ).

Considering the equation (5) and (9)

h(M 1(s),X ) =
k2
∗′k3

∗ − k3
∗′k2

∗

k1
∗′k2

∗ − k2
∗′k1

∗h(M 3(s),X ). (11)

Similarly using the equation (10), we find that

h(M 1(s),X ) = −k2
∗

k1
∗h(M 2(s),X )− k3

∗

k1
∗h(M 3(s),X ).

If we take derivative of the last equation, we have

h(M 1
′(s),X ) =

k1
∗′k2

∗ − k2
∗′k1

∗

k1
∗2 h(M 2(s),X ) +

k1
∗′k3

∗ − k3
∗′k1

∗

k1
∗2 h(M 3(s),X ),

h(M 2(s),X ) =
k1
∗′k3

∗ − k3
∗′k1

∗

k2
∗′k1

∗ − k1
∗′k2

∗h(M 3(s),X ). (12)

From the equations (9), (11) and (12) and the Definition 4.2, we obtain that

h(T (s),X ) = H1(s)h(M 3(s),X ),
h(M 1(s),X ) = H2(s)h(M 3(s),X ),
h(M 2(s),X ) = H3(s)h(M 3(s),X ),
h(M 3(s),X ) = cos ϕ.

This proves the theorem. ¤
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Theorem 4.4. Let the quaternionic curve β : I ⊂ R→ Q be given by arc length parameterization
and {T(s),M1(s),M2(s),M3(s)} denotes parallel transport frame of the curve β at the point
β(s). If X is the axis of the quaternionic curve β(s) while β(s) is a quaternionic M3−slant
helix, then X can be written in the following forms:

X = (H1T(s) + H2M1(s) + H3M2(s) + M3(s))h(M3(s),X),

where Hi(s), (i = 1, 2, 3) are the harmonic curvature functions.

Proof. Suppose that X is the axis of the quaternionic M 3−slant helix β. We know that X ∈
Sp{T ,M 1,M 2,M 3} . So, we can write

X = λ1T + λ2M 1 + λ3M 2 + λ4M 3, λi ∈ R, 1 ≤ i ≤ 4.

As β is quaternionic M3−slant helix, from Theorem 4.3 we have

λ1 = h(T ,X ) = H1 cosϕ = H1h(M 3,X ) = 0 ,

λ2 = h(M 1,X ) = H2 cosϕ = H2h(M 3,X ) ,

λ3 = h(M 2,X ) = H3 cosϕ = H3h(M 3,X ) ,

λ4 = h(M 3,X ) = cosϕ.

Therefore, we find that

X = (H1T (s) + H2M 1(s) + H3M 2(s) + M 3(s))h(M 3(s),X ).

This proves the theorem. ¤
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[10] Önder, M., Kazaz, M., Kocayiğit, H., Kılıç, O., (2008), B2−slant helix in euclidean 4-space E4, Int. J. Cont.

Math. Sci., 3(29), pp.1433-1440.
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