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AN ANALOGUE OF THE CENTRAL LIMIT THEOREM FOR SOFT
PROBABILITY
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Abstract. Under the assumptions of the stability of sliding means and of the finiteness of

spread, bounds for the soft probability of the deviation of the arithmetic mean from the interval

mean are calculated.
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1. Introduction

Modern applied mathematics pays increasing attention to problems with undetermined mul-
tipliers. This is mainly caused by enhanced attention to control problems under uncertainty
conditions. This class of problems includes the problems of controlling a financial portfolio,
controlling a communication network, prediction, and many other applied problems.

The basic apparatus for dealing with uncertainties is the apparatus of classical probability
theory based on Kolmogorov’s axiomatics. However the application of probability theory in
practice often involves difficulties, which have been noted by various authors since long ago [1]–
[4].

On our opinion, the main problem is that verifying the hypothesis of stochastic stability, on
which the practical application of probability theory is based, requires infinitely many trials. Any
practical problem deals with a finite, sometimes small, number of trials. Thus, it is impossible to
verify the convergence and stability of frequencies in the form of a limit. It remains to imagine
the lacking experiments, which may lead to inadequate conclusions.

Various attempts to overcome this difficulty have been made, both in the framework of classical
probability [6, 7] as and in other probability theories [8, 9], [13, 14]. One of such directions is
soft probability theory [9]-[11], which is based on the notion of a soft set [12]. The counterpart
of mathematical expectation in this theory is a family of sliding means. Clearly, averaging alone
cannot lead to any instructive interesting results. Analyzing these means, we can accept various
hypotheses on the future behavior variables. Of interest is to find out what constraints on the
future behavior of variables are imposed by various hypotheses. This paper is devoted to one of
such problems.

We consider the hypotheses of the stability of sliding means (which is the counterpart of
the existence of mathematical expectation) and of the finiteness of mean spread (which is the
counterpart of the existence of variance). Assuming that these hypotheses are true, we study
the soft probability of the deviation of the arithmetic mean of trial results from the counterpart
of mathematical expectation. In essence, the statement of the problem is very close to that of
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the central limit theorem in classical probability theory; however, there are some differences.
The main difference is that the trial results are not assumed to be independent.

Since the research apparatus differs substantially from that in the classical case, we give rather
detailed proof, although the apparatus itself is quite elementary.

2. Notation and conventions

The initial data set to be dealt with is a sequence of real numbers (x1, . . . , xn), where xi ∈ E

and E denotes the set of real numbers. We can regard this sequence as an element of the nth
power of the set E, that is, assume that (x1, . . . , xn) ∈ En; however, this is insufficient for our
purposes.

The point is that we need to consider various subsequences of the initial sequence (x1, . . . , xn)
and construct other subsequences from them; thus, in addition to the space En, we use mappings
of the form Φ(I) = {f : I → E}, where I ⊆ {1, . . . , n}. We denote values of mappings of this
type by using two arguments as f(I, i), where I ⊆ {1, . . . , n} and i ∈ I. The notation f(I, ·)
stands for the vector

f(I, ·) = (f(I, i1), f(I, i2), . . . , f(I, ik)) ∈ E|I|, (1)

where (i1, i2, . . . , ik) = I, the indices i1, i2, . . . , ik are arranged in increasing order, and |A|
denotes the cardinality of a set A. The functions in the set Φ(I) are called f -vectors. Given
a subset (x1, . . . , xn) = I ⊆ {1, . . . , n}, where i1 ≤ i2 ≤ · · · ≤ ik and (x1, . . . , x|I|) ∈ E|I|, we
define an f -vector f [I, x] ∈ Φ(I) by f [I, x](I, ij) = xj . Obviously, f [I, x](I, ·) = x.

For subsets of the form {k, k + 1, . . . ,m} ⊆ {1, . . . , n}, we introduce the special notation
{k, . . . ,m} = Ik

m.
Given a vector x ∈ En, we set xm

k = (xk, xk+1, . . . , xm).

We introduce the function S(x) =
m∑

i=1
xi, where m is any positive integer and x ∈ Em is any

vector. Given J ⊆ {1, . . . , n}, by E(J) we denote the subspace of E spanned by the axes with
indices belonging to J . If I, J ⊆ {1, . . . , n}, I ∩ J = ∅, and f ∈ Φ(I) and h ∈ Φ(J) are two
f -vectors, then the join f ⊕ h ∈ Φ(I ∪ J) of these f -vectors is defined by

f ⊕ h(I ∪ J, i) =

{
f(I, i), i ∈ I;

h(J, i), i ∈ J.

The section of a set W ⊆ En by an f -vector h ∈ Φ(J), where J ⊂ {1, . . . , n}, is defined by

Sec[W,J,H] = {f ∈ Φ({1, . . . , n}\J)|f ⊕ h({1, . . . , n}, ·)}.
The projection of a set W ⊆ En on a subspace Φ(I) is

Pr[W,J ] = {h ∈ Φ(J)|Sec[W,J, h] 6= ∅}.
We refer to a sequence fn = {fn

1 , fn
2 , . . . , fn

n }, where fn
k : Ek → E, as a function with memory

of dimension n, or simply as a function with n-memory. The soft mean of order m for a function
with memory fn of dimension n is, by definition, the interval function

µ(fn, xn
1 ,m) = [µ(fn, xn

1 ,m)µ̄(fn, xn
1 ,m)],

where

λm
j (fn, xj+m−1

1 ) =
1
m

j+m−1∑

i=j

fn
i (xi

1),

µ(fn, xn
1 ,m) = min

1≤j≤n−m+1
λm

j (fn, xj+m−1
1 ), µ̄(fn, xn

1 ,m) = max
1≤j≤n−m+1

λm
j (fn, xj+m−1

1 ).
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3. Statement of the problem

Consider the function

gn(x, a, δ, ε) = {gn
1 (xn

1 , a, δ, ε), . . . , gn
k (xk

1, a, δ, ε), . . . , gn
n(xn

1 , a, δ, ε)},
with n-memory defined as follows: given k = {1, . . . , n} and ε > 0,

gn
k (xk

1, a, δ, ε) = 1 if S(xk
1) ≥ k(a + δ) + εϕ(k),

gn
k (xk

1, a, δ, ε) = 0 if S(xk
1) < k(a + δ) + εϕ(k).

Here a, δ, ε ∈ E, δ ≥ 0, ε > 0, and ϕ is a strictly increasing function of a positive integer
argument taking positive real values. In essence, the function gn is the characteristic vector
function of the event

S(xk
1) ≥ k(a + δ) + εϕ(k), k = {1, . . . , n}.

Note that the function introduced above that the obvious property gn
k (xk

1, a, δ, ε) = gk
k(xk

1, a, δ, ε)
for k ≤ n.

We assume that the given sequence (x1, . . . , xn) satisfies the following two conditions (hy-
potheses):

• The mean hypothesis HM(xn
1 , a, m, δ) means that

| 1
m

S(xj+m−1
j )− a| ≤ δ for j = 1, . . . , n−m + 1.

• The spread hypothesis (variance) HD(xn
1 , a,m, δ,∆) means that

1
m

j+m−1∑

i=j

max{|xi − a| − δ, 0} ≤ ∆ for j = 1, . . . , n−m + 1.

We denote the set of sequences xn
1 = (x1, . . . , xn) satisfying the hypotheses HM(xn

1 , a, m, δ) and
HD(xn

1 , a, m, δ,∆) by X(n,m, a, δ,∆); thus,

X(n,m, a, δ,∆) = {xn
1

∣∣| 1
mS(xj+m−1

j )− a| ≤ δ,

1
m

j+m−1∑
i=j

max{|xi − a| − δ, 0} ≤ ∆, j = 1, . . . , n−m + 1}.

It is easy to see that if xn
1 ∈ X(n,m, a, δ,∆), then xk

1 ∈ X(k, m, a, δ,∆) for k = m, . . . , n− 1.
The soft mean of order m for a function gn is the counterpart of probability.
Problem. Determine the range of variation of µ(gn(·, a, δ, ε), xn

1 , m) as a function of the
argument xn

1 on the set X(n,m, a, δ,∆) at fixed values of the parameters a, δ, ε ∈ E, δ ≥ 0, ε > 0
for a given function ϕ.

To solve this problem, we must find the two values

max
xn
1∈X(n,m,a,δ,∆)

µ̄(gn(·, a, δ, ε), xn
1 ,m)

and

min
xn
1∈X(n,m,a,δ,∆)

µ(gn(·, a, δ, ε), xn
1 ,m)

The latter value is determined in a trivial way. Obviously, an
1 = (a, . . . , a) ∈ X(n,m, a, δ,∆),

whence gn
k (ak

1, a, δ, ε) = 0 for k = 1, . . . , n. Therefore, min
xn
1∈X(n,m,a,δ,∆)

µ(gn(·, a, δ, ε), xn
1 ,m) = 0.

Let us calculate the first value.
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4. Calculation the upper soft probability

Note that

max
xn
1∈X(n,m,a,δ,∆)

µ̄(gn(•, a, δ, ε), xn
1 ,m) = max

1≤j≤n−m+1
θ̄(gn(·, a, δ, ε), j,m),

where θ̄(gn(·, a, δ, ε), j, m) = max
xn
1∈X(n,m,a,δ,∆)

λm
j (gn(·, a, δ, ε), xj+m−1

m ).

Since the function gn takes only two values, it follows that the function λm
j (gn(·, a, δ, ε), xj+m−1

m )
takes finitely many values; therefore, it attains its maximum and minimum values on the set
X(n,m, a, δ,∆). Let us describe some properties of the set X(n,m, a, δ,∆).

Statement 4.1. If J = {1, . . . , k} and m ≤ k < n, then
⋃

f∈Pr[X(n,m,a,δ,∆),J ]

f(J, ·) = X(k, m, a, δ,∆).

Proof. Take a vector xk
1 ∈ X(k, m, a, δ,∆) and the corresponding f -vector f [J, xk

1]. Consider
another f -vector h ∈ Φ({1, . . . , n}\J) defined by h({1, . . . , n}\J, k + i) = xk−m+(i mod m).

Joining f [J, x] with the f -vector h ∈ E({1, . . . , n}\J), we obtain f [J, xk
1]⊕h ∈ Φ({1, . . . , n}).

It is easy to see that f [J, xk
1]⊕ h({1, . . . , n}, ·) ∈ X(n,m, a, δ,∆). It follows that

Sec[X(n,m, a, δ,∆), J, f [J, xk
1]] 6= ∅; therefore,

X(k, m, a, δ,∆) ⊆
⋃

f∈Pr[X(n,m,a,δ,∆),J ]

f(J, ·).

Let f ∈ Pr[X(n,m, a, δ,∆), J ]. This means that f ∈ Φ(J) and there exists an h ∈ Φ({1, . . . , n}\J)
for which f ⊕ h({1, . . . , n}, ·) ∈ X(n,m, a, δ,∆). Thus, f [J, ·] ∈ X(k, m, a, δ,∆), that is,

X(k, m, a, δ,∆) ⊇
⋃

f∈Pr[X(n,m,a,δ,∆),J ]

f(J, ·).

This proves the required assertion. ¤

Statement 4.2. If m ≤ k < n and 1 ≤ j ≤ n−m + 1, then

θ̄(gn(·, a, δ, ε), j, m) = θ̄(gj+m−1(·, a, δ, ε), j,m).

Proof. By definition,

λm
j (gn(·, a, δ, ε), xj+m−1

1 ) =
1
m

j+m−1∑

i=j

gn
i (xi

1, a, δ, ε) =

=
1
m

j+m−1∑

i=j

gj+m−1
i (xi

1, a, δ, ε) = λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ).

Therefore,

δ̄(gn(·, a, δ, ε), j, m) = max
xn
1∈X(n,m,a,δ,∆)

λm
j (gn(·, a, δ, ε), xj+m−1

1 ) =

= max
xn
1∈X(n,m,a,δ,∆)

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ).
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Since the function λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) does not depend on the components of the
vector xn

1 with indices larger than j + m− 1, it follows that

max
xn
1∈X(n,m,a,δ,∆)

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) =

= max
f∈Pr[X(n,m,a,δ,∆),{1,...,j+m−1}]

λm
j (gj+m−1(·, a, δ, ε), f({1, . . . , j + m− 1}, ·)) =

= max
xj+m−1
1 ∈X(j+m−1,m,a,δ,∆)

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) =

= θ̄(gj+m−1(·, a, δ, ε), j,m).

¤

The required assertion follows.

Statement 4.3. If 1 ≤ j ≤ n−m + 1 and

ϑ(j) =

{
j mod m, j mod m > 0,

m, j mod m = 0,

then
θ̄(gj+m−1(·, a, δ, ε), j,m) ≤ θ̄(gϑ(j)+m−1(·, a, δ, ε), ϑ(j), m).

Proof. Take any vector xj+m−1
1 ∈ X(j + m− 1,m, a, δ,∆).

Consider the f -vector

h = f [{j − ϑ(j) + 1, . . . , j + m− 1}, xj+m−1
j−ϑ(j)+1] ∈ Φ({j − ϑ(j) + 1, . . . , j + m− 1}).

Obviously, y = h({j − ϑ(j) + 1, . . . , j + m− 1}, ·) ∈ X(m + ϑ(j)− 1,m, a, δ,∆). It is sufficient
to prove that

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) ≤ λm
ϑ(j)(g

ϑ(j)+m−1(·, a, δ, ε), y).

For this purpose, it suffices to show that, for any k = 0, 1, . . . , m− 1, we have

gj+m−1
j+k (xj+k

1 , a, δ, ε) ≤ g
ϑ(j)+m−1
ϑ(j)+k (yϑ(j)+k

1 , a, δ, ε).

Moreover, it suffices to prove this inequality only for those k = 0, 1, . . . ,m− 1 which satisfy the
condition gj+m−1

j+k (xj+k
1 , a, δ, ε) = 1; for other k, the required inequality is obvious. This condition

means that S(xj+k
1 ) ≥ (j + k)(a + δ) + εϕ(j + k). By assumption, we have 1 ≤ j ≤ n−m + 1,

whence j ≥ ϑ(j). Obviously, in the case j = ϑ(j), the required assertion is valid. Consider the
case where j > ϑ(j). Let us decompose the sum S(xj+k

1 ) into two parts as

S(xj+k
1 ) = S(xj−ϑ(j)

1 ) + S(xj+k
j−ϑ(j)+1)

By the construction of the vector y, we have S(xj+k
j−ϑ(j)+1) = S(yk+ϑ(j)

1 ), and since j − ϑ(j) is a
multiple of m, we have

S(xj−ϑ(j)
1 ) ≤ (j − ϑ(j))(a + δ).

This implies

(j − ϑ(j))(a + δ) + S(yk+ϑ(j)
1 ) ≥ S(xj−ϑ(j)

1 ) + S(yk+ϑ(j)
1 ) = S(xj+k

1 ) ≥ (j + k)(a + δ) + εϕ(j + k).

Elementary transformations yield

S(yk+ϑ(j)
1 ) ≥ (k + ϑ(j))(a + δ) + εϕ(j + k).
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Since the function ϕ increases, we obtain

S(yk+ϑ(j)
1 ) ≥ (k + ϑ(j))(a + δ) + εϕ(k + ϑ(j)),

which means that g
ϑ(j)+m−1
ϑ(j)+k (yϑ(j)+k

1 , a, δ, ε) = g
ϑ(j)+k
ϑ(j)+k(yϑ(j)+k

1 , a, δ, ε) = 1. ¤

Statement 4.4. The following relation holds:

max
xn
1∈X(n,m,a,δ,∆)

µ̄(gn(·, a, δ, ε), xn
1 ,m) = max

1≤j≤m
θ̄(gn(·, a, δ, ε), j,m),

This assertion follows from Statement 3.
Together with the set X(n,m, a, δ,∆), we consider its modification, which is determined by

fewer constraints:

Y (n,m, a, δ,∆) = {xn
1

∣∣| 1
mS(xj+m−1

j )− a| ≤ δ,

1
m

j+m−1∑
i=j

max{|xi − a| − δ, 0} ≤ ∆, j = 1, n−m + 1}.

Obviously, X(n,m, a, δ,∆) ⊆ Y (n, m, a, δ,∆), and X(m,m, a, δ,∆) = Y (m,m, a, δ,∆).
Consider also the function

ψ̄(gn(·, a, δ, ε), j, m) = max
xj+m−1
1 ∈Y (j+m−1,m,a,δ,∆)

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ),

which is an analogue of θ̄(gn(·, a, δ, ε), j,m).
Obviously, we have

θ̄(gn(·, a, δ, ε), j,m) ≤ ψ̄(gn(·, a, δ, ε), j, m)

for j = 2, . . . , n−m + 1 and

θ̄(gn(·, a, δ, ε), 1,m) = ψ̄(gn(·, a, δ, ε), 1,m).

We also introduce the solution set of the problem ψ̄(gn(·, a, δ, ε), j, m):

Ψ(gn(·, a, δ, ε), j,m) = {xj+m−1
1 ∈ Y (j + m− 1,m, a, δ,∆)|,

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) = ψ̄(gn(·, a, δ, ε), j, m)}.

Statement 4.5. If m ≥ j > 1, then there exists an xj+m−1
1 ∈ Ψ(gn(·, a, δ, ε), j, m) for which

S(xj−1
1 ) ≤ S(xj+m−1

m+1 ).

Proof. First, let us prove that the set Ψ(gn(·, a, δ, ε), j,m) is compact. Note that the set Y (j +
m− 1, m, a, δ,∆) is compact. The condition

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) = ψ̄(gn(·, a, δ, ε), j,m)

is equivalent to
λm

j (gj+m−1(·, a, δ, ε), xj+m−1
1 ) ≥ ψ̄(gn(·, a, δ, ε), j, m).

Since the function gn(·, a, δ, ε) takes only the values 0 and 1, there exists a nonnegative integer
k such that ψ̄(gn(·, a, δ, ε), j, m) = k

m . We set

Y ∗(j + m− 1,m, a, δ,∆, J) = {xj+m−1
1 ∈ Y (j + m− 1,m, a, δ,∆)|gj

j (x
j
1, a, δ, ε) = 1, j ∈ J}.

By the definition of the function gn, we have

Y ∗(j+m−1,m, a, δ,∆, J) = {xj+m−1
1 ∈ Y (j+m−1,m, a, δ,∆)|S(xj

1) ≥ j(a+δ)+εϕ(j), j ∈ J},
which implies the compactness of Y ∗(j + m− 1,m, a, δ,∆, J).
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Since
Ψ(gn(·, a, δ, ε), j,m) =

⋃

J⊂{1,...,j+m−1}
|J|=k

Y ∗(j + m− 1,m, a, δ,∆, J),

it follows that the set Ψ(gn(·, a, δ, ε), j,m) is compact as well.
Choose xj+m−1

1 ∈ Ψ(gn(·, a, δ, ε), j, m) so that S(xj+m−1
m+1 ) ≥ S(yj+m−1

m+1 ) for any yj+m−1
1 ∈

Ψ(gn(·, a, δ, ε), j, m). We can do this because of the continuity of the function S and the com-
pactness of the set Ψ.

If both conditions

| 1
m

S(xj+m−1
j )− a| ≤ δ and

1
m

j+m−1∑

i=j

max{|xi − a| − δ, 0} ≤ ∆

in the definition of the set Y (j +m−1,m, a, δ,∆) hold as strict inequalities, then we can slightly
increase the component xj+m−1 without violating these conditions; this means that the sum
S(xj+m−1

m+1 ) is not maximum. Therefore, at least one of the conditions on the vector xj+m−1
1

holds as an equality.
Let | 1

mS(xj+m−1
j )−a| = δ. It is easy to show that the cases 1

mS(xj+m−1
j )−a = −δ and δ > 0

are impossible too.
If 1

mS(xj+m−1
j )− a = δ, then we obtain

1
m

S(xm
1 )− a ≤ | 1

m
S(xm

1 )− a| ≤ δ =
1
m

S(xj+m−1
j )− a,

or S(xm
1 ) ≤ S(xj+m−1

j ).
It follows that

S(xm
1 ) = S(xj−1

1 ) + S(xm
j ) ≤ S(xj+m−1

j ) = S(xm
j ) + S(xj+m−1

m+1 ),

that is, S(xj−1
1 ) ≤ S(xj+m−1

m+1 ).
Now, consider the case where the vector satisfies the following constraint (as an equality):

1
m

j+m−1∑

i=j

max{|xi − a| − δ, 0} = ∆.

For l = m + 1, . . . , j + m− 1, we have holds |xi − a| − δ = xi − a− δ ≥ 0. Indeed, otherwise, we
could slightly increase the corresponding component xi, and the sum S(xj+m−1

m+1 ) would not be
maximum. Therefore,

1
m

m∑

i=j

max{|xi − a| − δ, 0}+
1
m

j+m−1∑

i=m+1

(xi − a− δ) = ∆m.

Hence we have
m∑

i=j

max{|xi − a| − δ, 0}+
j+m−1∑

i=m+1

(xi − a− δ) =

= ∆m ≥
m∑

i=1

max{|xi − a| − δ, 0} =
j−1∑

i=1

max{|xi − a| − δ, 0}+
m∑

i=j

max{|xi − a| − δ, 0} ≥

≥
j−1∑

i=1

(|xi − a| − δ) +
m∑

i=j

max{|xi − a| − δ, 0} ≥
j−1∑

i=1

(xi − a− δ) +
m∑

i=j

max{xi − a− δ, 0}.
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It follows that
j+m−1∑

i=m+1

(xi − a− δ) ≥
j−1∑

i=1

(xi − a− δ),

or

S(xj+m−1
m+1 ) =

j+m−1∑

i=m+1

xi ≥
j−1∑

i=1

xi = S(xj−1
1 ).

¤

This completes the proof of the statement.

Statement 4.6. The following relation holds:

max
1≤j≤m

ψ̄(gn(·, a, δ, ε), j, m) = ψ̄(gn(·, a, δ, ε), 1,m).

Proof. Let m ≥ j > 1. Consider the problem

ψ̄(gn(·, a, δ, ε), j, m) = max
xj+m−1
1 ∈Y (j+m−1,m,a,δ,∆)

λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ).

According to Statement 5, we can choose a vector xj+m−1
1 ∈ Ψ(gn(·, a, δ, ε), j, m) for which

S(xj−1
1 ) ≤ S(xj+m−1

m+1 ). Recall that

ψ̄(gn(·, a, δ, ε), j,m) = λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ).

Let us partition the index set {1, . . . , j + m− 1} into the three disjoint sets J1 = {1, . . . , j − 1},
J2 = {j, . . . ,m}, and J3 = {m + 1, . . . , j + m− 1}. Note that the sets J1 and J3 have the same
cardinality.

Let y = xj+m−1
m+1 ; then y1 = xm+1, . . . , yj−1 = xj+m−1. Let us prove that

gj+m−1
m+k (xm+k

1 , a, δ, ε) ≤ gk
k(yk

1 , a, δ, ε)

for any k ∈ J1. It suffices to consider only those indices k ∈ J1 for which

gj+m−1
m+k (xm+k

1 , a, δ, ε) = 1,

that is, S(xm+k
1 ) ≥ (m + k)(a + δ) + εϕ(m + k). We decompose the sum S(xm+k

1 ) into two
parts as S(xm+k

1 ) = S(xm
1 ) + S(xm+k

m+1)). Since y = xj+m−1
m+1 , we have S(xm+k

m+1) = S(yk
1 )). It

follows from the condition xj+m−1
1 ∈ Y (j + m − 1,m, a, δ,∆) that | 1

mS(xm
1 ) − a| ≤ δ, whence

S(xm
1 ) ≤ m(a + δ). Therefore, we have the chain of inequalities

m(a + δ) + S(ym
1 ) ≥ S(xm

1 ) + S(xm+k
m+1) ≥ (m + k)(a + δ) + εϕ(m + k).

Performing elementary transformations and taking into account the function ϕ being increasing,
we obtain

S(ym
1 ) ≥ k(a + δ) + εϕ(m + k) ≥ k(a + δ) + εϕ(k).

This inequality means that gk
k(yk

1 , a, δ, ε) = 1. Thus, we have proved the inequality

gj+m−1
m+k (xm+k

1 , a, δ, ε) ≤ gk
k(yk

1 , a, δ, ε)

for k = 1, . . . , j − 1.
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Let z = xm
j and consider the vector w = (f [J1, y]⊕ f [J2, z])({1, . . . , m}, ·). Simply speaking,

the vector w is the concatenation of the vectors y and z. The construction of w is schematically
shown in Figure 1.

x = 1, . . . , j − 1,
z

j, . . . , m
y

m + 1, . . . , j + m− 1

w = (y, z)

w = m + 1, . . . , j + m− 1 j, . . . ,m

Fig. 1.

It is easy to see that w ∈ Y (m,m, a, δ,∆).
Let us prove that

gj+m−1
j+k (xj+k

1 , a, δ, ε) = gj+k
j+k(xj+k

1 , a, δ, ε) ≤ gj+k
j+k(wj+k

1 , a, δ, ε)

for k = 0. . . . ,m− j. These inequalities follow from the estimates

S(xj+k
1 ) = S(xj−1

1 ) + S(xj+k
j ) ≤ S(xj+m−1

m+1 ) + S(xj+k
j ) = S(yj−1

1 ) + S(z1+k
1 ) = S(wj+k

1 ),

which use the inequality S(xj−1
1 ) ≤ S(xj+m−1

m+1 ). Thus, we have shown that
m−1∑

k=0

gj+m−1
j+k (xj+k

1 , a, δ, ε) ≤
m−1∑

k=0

gm
1+k(w

1+k
1 , a, δ, ε).

This means that

ψ̄(gn(·, a, δ, ε), j, m) = λm
j (gj+m−1(·, a, δ, ε), xj+m−1

1 ) ≤ λm
j (gm(·, a, δ, ε), wm

1 ),

which proves the required assertion. ¤

The following statement follows directly from Statement 6.

Statement 4.7. The following relation holds: max
1≤j≤m

θ̄(gn(·, a, δ, ε), j,m) = θ̄(gm(·, a, δ, ε), 1,m).

Now, let us calculate θ̄(gm(·, a, δ, ε), 1,m). Recall that

θ̄(gm(·, a, δ, ε), 1,m) = max
xm
1 ∈X(m,m,a,δ,∆)

λm
1 (gm(·, a, δ, ε), xm

1 )

X(m, m, a, δ,∆) = {xm
1 ∈ Em

∣∣| 1
m

S(xm
1 )− a| ≤ δ,

1
m

m∑

i=1

max{|xi − a| − δ, 0} ≤ ∆}.

Statement 4.8. If xm
1 ∈ X(m,m, a, δ,∆) and there exists an index k ∈ 1, . . . , m− 1 for which

gm
k (xk

1, a, δ, ε) = 0 and gm
k+1(x

k+1
1 , a, δ, ε) = 1, then there exists a vector ym

1 ∈ X(m,m, a, δ,∆)
for which λm

1 (gm(·, a, δ, ε), xm
1 ) < λm

1 (gm(·, a, δ, ε), ym
1 ).

Proof. The conditions gm
k (xk

1, a, δ, ε) = 0 and gm
k+1(x

k+1
1 , a, δ, ε) = 1 imply the relations

S(xk
1) < k(a + δ) + εϕ(k),

S(xk
1) + xk+1 ≥ (k + 1)(a + δ) + εϕ(k + 1).

Rewriting these relations in the form

S(xk
1) = k(a + δ) + εϕ(k)− β, β > 0,

S(xk
1) + xk+1 = (k + 1)(a + δ) + εϕ(k + 1) + γ, γ ≥ 0,

we see that
xk+1 = a + δ + ε[ϕ(k + 1)− ϕ(k)] + γ + β.
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Let ym
1 ∈ Em be the vector in which yk = xk + β, yk+1 = xk+1 − β, and all of the remaining

components ym
1 are the same as in the vector xm

1 . It follows from the definition of ym
1 that

S(xj
1) = S(yj

1), j ∈ {1, . . . ,m}\{k}, and S(yk
1 ) = S(xk

1)+β = k(a+ δ)+ εϕ(k). This means that
gm
j (xj

1, a, δ, ε) = gm
j (yj

1, a, δ, ε) for j ∈ {1, . . . ,m}\{k} and gm
k (yk

1 , a, δ, ε) = 1. It remains to verify
that ym

1 ∈ X(m,m, a, δ,∆). The condition | 1
mS(xm

1 )−a| ≤ δ does hold, because S(ym
1 ) = S(xm

1 ).

To verify the second condition
m∑

i=1
max{|xi − a| − δ, 0} ≤ ∆m, it suffices to consider only the

terms corresponding to the indices k and k + 1. We have the obvious estimates

max{|xk+1 − a| − δ, 0} = ε[ϕ(k + 1)− ϕ(k)] + γ + β,

max{|yk+1 − a| − δ, 0} = ε[ϕ(k + 1)− ϕ(k)] + γ = max{|xk+1 − a| − δ, 0} − β,

max{|yk − a| − δ, 0} = max{|xk + β − a| − δ, 0} ≤ max{|xk − a|+ β − δ, 0} ≤
≤ max{|xk − a| − δ,−β}+ β ≤ max{|xk − a| − δ, 0}+ β.

It follows that

max{|yk−a|−δ, 0}+max{|yk+1−a|−δ, 0} ≤ max{|xk−a|−δ, 0}+β+max{|xk+1−a|−δ, 0}−β.

¤

According to Statement 8, an optimal solution of the problem θ̄(gm(·, a, δ, ε), 1,m) is to be
sought among those vectors xm

1 ∈ X(m,m, a, δ,∆) for which there exists a k ∈ {1, . . . , m − 1}
such that gm

j (xj
1, a, δ, ε) = 1 for any j ∈ {1, . . . , k}. Solving the maximization problem for this

k, we obtain a solution of the initial problem. Seeking a solution requires knowing solvability
conditions for some elementary systems of inequalities.

Statement 4.9. The system of inequalities

A ≤
m−k∑

i=1

yi ≤ B,

m−k∑

i=1

max{|yi − a| − δ, 0} ≤ C

with respect to a vector y ∈ Em−k is solvable if and only if

(m− k)(a− δ)− C ≤ B and A ≤ (m− k)(a + δ) + C.

Proof. It is easy to see that the rang of
m−k∑
i=1

yi, when the vector y satisfies the inequality

m−k∑
i=1

max{|yi − a| − δ, 0} ≤ C is the interval

[(m− k)(a− δ)− C, (m− k)(a + δ) + C].

Therefore, the system is solvable if and only if the required inequalities hold, q.e.d.
First, we solve first the auxiliary problem of determining conditions on the first k compo-

nents of a vector x ∈ Em under which this vector can be extended to a vector belonging to the
set X(m,m, a, δ,∆), that is, finding the projection Pr[X(m,m, a, δ,∆), {1, . . . , k}]. For conve-
nience, we set y = xm

k+1 ∈ Em−k. Calculating the projection reduces to determining necessary
and sufficient conditions for the solvability of the following system of three inequalities with
respect to y:

m(a− δ) ≤ S(xk
1) + S(ym−k

1 ) ≤ m(a + δ)
k∑

i=1

max{|xi − a| − δ, 0}+
m−k∑

i=1

max{|yi − a| − δ, 0} ≤ ∆m.



156 TWMS J. PURE APPL. MATH., V.4, N.2, 2013

Applying Statement 9, we see that the required projection is described by the inequalities

k∑

i=1

max{|xi − a| − δ, 0}+ S(xk
1) ≤ m(a + δ) + ∆m− (m− k)(a− δ),

k∑

i=1

max{|xi − a| − δ, 0} − S(xk
1) ≤ −m(a− δ) + ∆m + (m− k)(a + δ).

These two inequalities can be rewritten in the equivalent form

k∑

i=1

max{|xi − a| − δ, 0}+ |S(xk
1)− ka| ≤ m(2δ + ∆)− kδ.

Now, it remains to require that gm
j (xj

1, a, δ, ε) = 1 for any j ∈ {1, . . . , k}. These conditions
mean that

S(xj
1) = j(a + δ) + εϕ(j) + ui, ui ≥ 0, j ∈ {1, . . . , k}.

The last relations can be treated as the change of variables

x1 = a+δ+εϕ(1)+u1, xj = S(xj
1)−S(xj−1

1 ) = a+δ+ε[ϕ(j)−ϕ(j−1)]+uj−uj−1, j ∈ {2, . . . , k},
which reduces the problem to the solvability of the system of inequalities

u1 +
k∑

j=2

max{|δ + ε[ϕ(j)− ϕ(j − 1)] + uj − uj−1| − δ, 0}+ uk ≤

≤ m(2δ + ∆)− 2kδ − ε[ϕ(k) + ϕ(1)], ui ≥ 0, i ∈ {1, . . . , k}.
A solvability condition for this system is the inequality

min
uj≥0

j=1,...,k

{
u1 +

k∑

j=2

max{|δ + ε[ϕ(j)− ϕ(j − 1)] + uj − uj−1| − δ, 0}+ uk

}
≤

≤ m(2δ + ∆)− 2kδ − ε[ϕ(k) + ϕ(1)].

We write min rather than inf because, as we shall prove in what follows, the minimum is attained.
Since the variables change independently, we minimize the function with respect to its variables
successively, starting with the variable u1. This variable is contained only in the first two terms,
and the function to be optimized has the form

G1(u1) = u1 + max{|δ + ε[ϕ(2)− ϕ(1)] + u2 − u1| − δ, 0}.
This is a piecewise linear function of the form

G1(u1) = ε(ϕ(2)− ϕ(1)) + u2, under u1 ∈ [0, ε(ϕ(2)− ϕ(1)) + u2],

G1(u1) = u1, under u1 ∈ [ε(ϕ(2)− ϕ(1)) + u2, ε(ϕ(2)− ϕ(1)) + u2 + 2δ],

G1(u1) = 2u1 − u2 − ε(ϕ(2)− ϕ(1))− 2δ, under u1 ∈ [ε(ϕ(2)− ϕ(1)) + u2 + 2δ,+∞).

The minimum of this function is attained at zero, that is, at u1 = 0. Let us substitute the found
value of u1 and consider the function of the argument u2. It has the form

G2(u2) = max{|δ + ε[ϕ(2)− ϕ(1)] + u2| − δ, 0}+ max{|δ + ε[ϕ(3)− ϕ(2)] + u3 − u2| − δ, 0} =

= ε[ϕ(2)− ϕ(1)] + u2 + max{|δ + ε[ϕ(3)− ϕ(2)] + u3 − u2| − δ, 0}.
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This function is of the same type as in the first case; therefore, its minimum is attained again
at zero. At all other steps, except at the last one, the results are similar. Consider the last step.
The function to be minimized has the form

Gk(uk) = max{|δ + ε[ϕ(k)− ϕ(k − 1)] + uk| − δ, 0}+ uk = ε[ϕ(k)− ϕ(k − 1)] + 2uk.

It is easy to see that the minimum is again attained at zero. Now, the solvability condition takes
the form

k∑

i=2

ε[ϕ(j)− ϕ(j − 1)] ≤ m(2δ + ∆)− 2kδ − ε[ϕ(k) + ϕ(1)],

and elementary transformations yield

εϕ(k) + kδ ≤ m(δ +
∆
2

).

¤

We have obtained the following result.

Theorem 4.1. Suppose that a sequence (x1, . . . , xn) satisfies the mean and the spread hypothesis,
that is, (x1, . . . , xn) ∈ X(n,m, a, δ,∆). Let ϕ be a strictly increasing function of a positive integer
argument taking positive real values. Suppose that a, δ, ε ∈ E, δ ≥ 0, and ε > 0. Then the range
of variation of the function µ(gn(·, a, δ, ε), xn

1 ,m), which determines the soft probability of the
event

S(xk
1) ≥ k(a + δ) + εϕ(k), k = 1, . . . , n,

is given by

min
xn
1∈X(n,m,a,δ,∆)

µ(gn(·, a, δ, ε), xn
1 ,m) = 0,

max
xn
1∈X(n,m,a,δ,∆)

µ̄(gn(·, a, δ, ε), xn
1 ,m) =

k∗

m
,

where k∗ is the maximum solution of the inequality εϕ(k)+kδ ≤ m(δ+ ∆
2 ) on the positive integer

interval k ∈ [1, . . . , m − 1]. If there are no solutions in this interval, then the corresponding
quantity vanishes.

Note that possible bounds for the soft probability of deviations do not depend of the size of
the database, that is, on n.
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