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ON A PARALLEL COMPUTATION METHOD FOR SOLVING LINEAR
ALGEBRAIC SYSTEM WITH ILL-CONDITIONED MATRIX

M. OTELBAEV1, D. ZHUSUPOVA1, B. TULEUOV1

Abstract. A new method of finding approximate solutions of linear algebraic systems with ill-
conditioned or singular matrices is presented. This method can effectively be used for arranging
parallel computations for matrices of large size. Difference of the method suggested from the
known is that existence of zero eigenvalues of the matrix of system doesn’t influence by no
means efficiency of iterative process. Only small but nonzero singular values of the matrix are
important.
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1. Introduction

This work is to continue [1], where we have considered the equation

Ax = f. (1)

Here A is a quadratic matrix of order n and f is n-dimensional vector. In [1] the problem of
parallel computation for solving equation (1) has been considered and effective parallel algorithm
has been developed for the matrix A with bounded inverse.

In this paper we suggest a method for finding and parallel computation algorithm for the
approximate solutions of the problem (1), when matrix A is noninvertible or ill-conditioned.
Raising effeciency of solving of the large system of linear equations dependes on development
of the high-effective calculating techniques. Now multiprocessor systems and supercomputers
is highly developed. Distribution of calculations into parallel branches implies the increase of
solving of the general problem. Parallel computation of linear algebraic problems have been
considered, for example, in monographs [2], [5], [8], and software realization questions in [3].

The difference of the offered method from the known ones consists of the existence of zero
eigenvalues of the matrix A, doesn’t influence efficiency of iterative process in any way. Only
small, but nonzero eigenvalues of A∗A are important. Besides, estimates obtained here in the
Theorem 3 for the solution does not depend on small and nonzero eigenvalues of the matrix
A∗ × A. Offered parallelizing process for the linear algebraic system with an arbitrary matrix
when using of k computers (processes) reduces time expenses approximately k times. The main
known methods are applied to cases of the band and sparse matrices. But even in these cases
the effect received by us wasn’t reached.

2. Problem statement and main results

We denote by A∗ adjoint matrix of A. Nonnegative square roots of the eigenvalues of the
nonnegative matrix A∗A we denote by sj(A) = sj(j = 1, 2, ...) and numerate them in non-
increasing order taking into account multiplisities. Orthonormal eigenvectors of the operator
A∗A corresponding to s2

j we write as ej (j = 1, 2, ...; A∗Aej = s2
jej).

Numbers s1(A) ≥ s2(A) ≥ ... ≥ sn(A) are called singular numbers of the matrix A.
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Note that the notion ”ill-conditioned matrix” is relative, which often depends on hardware
capabilities and may be compensed by the increase of the possibilities of the computing tech-
niques. We, roughly speaking, say that the matrix A is ill-conditioned if some of its singular
numbers are small enough or zero (indeed, it is possible to show easily that this definition is
equivalent to the traditional one, if take as norm ‖A‖ = sup

i
si).

Further vector’s Euclid norm and modulus of the number we write as |·|, and operator’s norm
of matrix as ‖·‖, and scalar composition as 〈·, ·〉.

Let A and f be from (1) and for ε ≥ 0 consider the functional

Jε(x) = |Ax− f |2 + ε|x|2.
We will find x̊, which is a solution of the problem

inf Jε(x) = Jε(̊x). (2)

In the left-hand side of (2) infimum is taken with respect to all vectors x ∈ Rn. Since unit ball
in Rn is compact, solution of (2) exists.

Remark 2.1. If matrix A is invertible, then for ε = 0 problem (2) has the unique solution
x̊ = A−1f . If A is noninvertible, then Ax̊ gives the best approximation of f by the elements Ax.
If ε 6= 0 and A is invertible, then x̊ is the approximate solution of the equation Ax = f .

If ε = 0 and matrix A is noninvertible, then the problem (1) may have several solutions. In
this case we search for solution with minimal norm.

Lemma 2.1. If ε ≥ 0 and x̊ is a solution of (2), then A∗(Ax̊− f) + εx̊ = 0.

Proof. Let x̊ be a solution of (2) and ω = A∗(Ax̊−f)+εx̊ 6= 0. Considering Jε(̊x+ δω) we have:

Jε(̊x + δω) = Jε(̊x) + 2δ〈A∗(Ax̊− f) + εx̊, ω〉+ δ2(|Aω|2 + ε|ω|2) =

= Jε(̊x) + 2δ|ω|2 + δ2(|Aω|2 + ε|ω|2).
Let a number δ to satisfy the following conditions

δ < 0,−2δ < δ2 |Aω|2 + ε|ω|2
|ω|2 .

Such a choice is possible by assumption ω ≡ A∗(Ax̊−f)+εx̊ 6= 0 . Then we get Jε(̊x+δω) < Jε(̊x)
that is a contradiction. ¤

Lemma 2.2. Let ε ≥ 0 and x̊ be a solution of (2). Then for all x ∈ H we have

εx + A∗(Ax− f) = (ε + A∗A)(x− x̊).

Proof. Using Lemma 2.1 we obtain

εx + A∗(Ax− f) = εx + A∗(Ax− f)− εx̊−A∗(Ax̊− f) =

= ε(x− x̊) + A∗A(x− x̊) = (ε + A∗A)(x− x̊).

¤

Now we define the sequence xj (j = 1, 2, ...) by the following formula

xj = δ

j−1∑

k=0

[E − δ(A∗A + εE)]kA∗f, (3)

where δ satisfies the condition

0 < δ <
2

‖A∗A‖+ ε
. (4)
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Theorem 2.1. Let ε ≥ 0, δ be given by (4) and x̊ be a solution of (2), xj be constructed by (3).
Then

xj − x̊ = −[E − δ(A∗A + εE)]j x̊, (5)
and xj converges to x̊ as j → +∞ at the geometric rate, i.e. there exists ρ > 0 and

|xj − x̊| ≤ C · ρj , (6)

where C is a constant which depends on δ and ε.

Proof. By using Lemma 2.1 we have

A∗f = εx̊ + A∗Ax̊.

Substituting A∗f into (3) we get

xj = δ

j−1∑

k=0

[E − δ(A∗A + εE)]k[εx̊ + A∗Ax̊] =

=
j−1∑

k=0

[E − δ(A∗A + εE)]k[E − E + δ(ε + A∗A)]̊x =

= −
j∑

k=1

[E − δ(A∗A + ε)]kx̊ +
j−1∑

k=0

[E − δ(A∗A + εE)]kx̊ = −(E − δ(A∗A + ε))j x̊ + x̊.

This implies (5).
Further, since the matrix E − δ(A∗A + εE) is self-adjoint, its norm is equal to the maximum

of modulus of eigenvalues. These eigenvalues indeed are 1 − δ(sj
2 + ε), (j = 1, 2, ..., n). If for

each j = 1, 2, ..., n eigenvalues satisfy

−1 < 1− δ(sj
2 + ε) < 1,

then we get
‖E − δ(A∗A + εE)‖ < 1. (7)

These inequalities hold, if conditions δ( max
j=1,2,...,n

sj
2 + ε) < 2 and δ > 0 take place. But

max
j=1,2,...,n

sj
2 = ‖A∗A‖. From the condition (4) follows (7) and by (7) we get (6). ¤

Note that results similar to Theorem 2.1 for linear ill-posed problems have been obtained in
[4] (see [4], p. 238).

We denote the space generated by eigenvectors of the matrix A∗A corresponding to zero
eigenvalues by R

(n)
0 , i. e. if x̊ ∈ R

(n)
0 then x =

∑n
k=j0

xjej and A∗Aek = 0 for k = j0, ..., n. R
(n)
0

is the kernel of matrix A∗A.
If matrix A is invertible, then the space R

(n)
0 is empty.

Lemma 2.3. If x ∈ R
(n)
0 then 〈A∗f, x〉 = 0, i.e. A∗f belongs to R(n) ª R

(n)
0 which is the

orthogonal complement of R
(n)
0 .

Proof. For ε = 0 by using the Lemmas 2.1 and 2.2 we obtain A∗f = A∗Ax̊. Let x ∈ R
(n)
0 , then

〈A∗f, x〉 = 〈A∗Ax̊, x〉 = 〈̊x,A∗Ax〉 = 0.

¤
Lemma 2.4. If ε > 0 and x̊ is a solution of (2), x ∈ R

(n)
0 , then 〈̊x, x〉 = 0, i.e. x̊ belongs to

R(n) ªR
(n)
0 .

Proof. For ε > 0 using Lemmas 2.1 and 2.2 we have

ε〈̊x, x〉 = 〈A∗f, x〉 = 〈A∗Ax̊, x〉 = −〈̊x,A∗Ax〉 = 0.

For ε > 0 this implies the lemma. ¤
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Note that for ε = 0 the solution of (2) is determined up to a term, which is a solution of the
equation Ax = 0, but sequence xj (j = 1, 2, ...) by Lemma 2.2 converges to the solution of (2)
belonging to R(n) ªR

(n)
0 . In further for ε = 0 we take as x̊(0) the limit of the sequence xj from

(3).
Obviously the solution of (2) depends on ε. So sometimes we write x̊ = x̊(ε).
We have

Lemma 2.5. If x̊(0) is a solution of (2), then for every ε > 0 and δ ≥ 0

x̊(ε) = (A∗A + εE)−1A∗Ax̊(o) = (A∗A + εE)−1A∗f,

x̊(0) = (E + ε(A∗A)−1)̊x(ε),
x̊(ε) = (A∗A + εE)−1(A∗A + δE)̊x(δ),

x̊(ε)− x̊(δ) = (δ − ε)(A∗A + εE)−1x̊(δ).

Proof. By Lemma 2.1 for each ε, δ ≥ 0 we obtain

(A∗A + εE)̊x(ε) = (A∗A + δE)̊x(δ).

This implies assertion of Lemma 2.5. ¤
From proved lemmas and Theorem 2.1 we state

Theorem 2.2. a) The solution x̊(ε) of (2) continuously depends on ε > 0 and x̊(ε) = (A∗A +
εE)−1A∗f .

b) For j → +∞ the limit of sequence xj(ε) from (3) continuously depends on ε ≥ 0.
c) If s1 ≥ s2 ≥ . . . ≥ sj0 > 0, sj0+1 = sj0+2 = ... = 0 are the eigenvalues of the matrix

A∗A and e1, e2, ..., en are corresponding orthonormal system of eigenvectors, x̊(ε) (ε > 0) is a
solution of (2) and xj(ε) is from (3), then x̊(ε), xj(ε) ∈ R(n) ªR

(n)
0 , (j = 1, 2, . . .)

xjk(ε)− x̊k(ε) = (1− δ(s2
k + ε))j x̊k(0) by 1 ≤ k ≤ j0,

xjk(ε) = x̊k(ε) by j0 + 1 ≤ k.
(8)

Here xjk(ε) = 〈xj(ε), ek〉, x̊k(ε) = 〈̊x(ε), ek〉.
d) Number ρ > 0 from Theorem 2.1 is defined by

ρ = min{(1− δ(s2
j0 + ε)), (1− δ(‖A∗A‖+ ε))} < 1.

Note that if the matrix A∗A hasn’t zero eigenvalues, then j0 is taken as n.
The item c) of Theorem 2.2 implies that the vector x̊(ε) for ε = 0 has minimal norm among

all solutions of problem 1. Furthermore, for each ε ≥ 0 x̊(ε) and xj(ε) (j = 1, 2, . . .) belong
to subspace R(n) ªR

(n)
0 , where R

(n)
0 is the kernel of matrix A∗A.

3. Parallelization

Below we suggest a method of parallel computation for solving the problem (2) based on
Theorems 2.1 and 2.2.

Let n be large enough integer and we have N + 1-processor system. Let k0, k1, . . ., kN be
such integers that km−1 +1 < km, m = 0, 1, . . . , N , k0 = 0, kN = n. We define matrices Am and
(A∗)m, m = 1, 2, . . . , N as follows

Am =




0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

akm−1+1,1 akm−1+1,2 akm−1+1,3 . . . akm−1+1,n

. . . . . . . . . . . . . . .
akm,1 akm,2 akm,3 . . . akm,n

0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0




,
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(A∗)m =




0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0

ãkm−1+1,1 ãkm−1+1,2 ãkm−1+1,3 . . . ãkm−1+1,n

. . . . . . . . . . . . . . .
ãkm,1 ãkm,2 ãkm,3 . . . ãkm,n

0 0 0 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 0




(m = 1, 2, . . . , N).

The lines numerated from km−1 + 1 to km of these matrices coincide. Here ãkj and akj are
elements of A∗ and A such that ãkj = ajk. Also we use vectors ωj = [E − δ(A∗A + εE)]ωj−1,
ω0 = δA∗f , j = 1, 2, . . .. Then formula (3) can be written in the following way

xj+1 = xj + ωj , x1 = ω0, j = 1, 2, . . .

The matrices Am and (A∗)m are passed to processors Cm (m = 1, 2, . . . , N) before computa-
tion and vector ω0 = δA∗f to root processor CN+1.

(1) Processor CN+1 forms j-th approximation of xj and passes vector ωj−1 to processors
Cm (m = 1, 2, . . . , N). Each processor Cm calculates Amωj−1 spending (km − km−1)n
multiplications, (km − km−1)(n− 1) additions and sends vector to CN+1.

(2) CN+1 forms vector Aωj−1 =
N∑

m=1
Amωj−1 and spends (n− 1)N additions. CN+1 trans-

mits vector Aωj−1.
(3) Processor Cm calculates (A∗)mAωj−1 and sends it to CN+1. Cm spends (km − km−1)n

multiplications and (km−km−1)(n−1) additions. Cm transmits (A∗)mAωj−1 to processor
CN+1.

(4) Summing up recieved vectors CN+1 gets A∗(Aωj−1) =
N∑

m=1
(A∗)mAωj−1. Root processor

calculates ωj = (1 − δε)ωj−1 − δ(A∗)mAωj−1 and forms approximate solution xj+1 =
xj + ωj , j = 1, 2, . . .. It spends 2n multiplications and (n− 1)N + 2n additions.

Amount of operations per cycle which root processor CN+1 carries out consists of 2n multipli-
cations and 2(n−1)N+2n additions. Each processor Cm (m = 1, 2, . . . , N) spends 2(km−km−1)n
multiplications and 2(km− km−1)(n− 1) additions per cycle. All processors spend 2n2 multipli-
cations and 2n(n− 1) additions per cycle. Since s iterations all computers spend 2sn2 + n2 + n
multiplications and 2sn(n− 1) + n(n− 1) additions. Division is absent.

4. Some discussions

It follows from Theorem 2.2 that for efficiency of the iteration formula (3) the existence
of small but nonzero eigenvalues of matrix A∗A is important, but zero eigenvalues aren’t so
important! Therefore we come to the question: Can it reduce ”noises” due to nonzero small
eigenvalues of matrix A∗A? It turns out that it is possible. We describe it by easy example.

Let ε = 0.01 and

A =
(

1 1
3 3.001

)
, f =

(
2

6.006

)
. (9)

Matrix

A∗A =
(

1 3
1 3.001

)(
1 1
3 3.001

)

has a small nonzero eigenvalue. Iterative process by formula (8) may last long. However, if
matrix A is replaced with its approximation

Ã =
(

1 1
3 3

)
, f̃ =

(
2
6

)
, (10)
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then we have

Ã∗Ã =
(

1 3
1 3

)(
1 1
3 3

)
=

(
10 10
10 10

)
.

The eigenvalues of this matrix are equal to λ2
1 = 20, λ2

2 = 0 and its norm is 20. So δ may be
taken from the interval (0, 1

10). Let’s take δ = 1
20 < 1

10 . Then by Theorem 2.2 we obtain ρ = 0.
Therefore the problem 1 with matrix Ã and vector f̃ from (10) is solved in one step.

The solution of problem 1 is the vector
(

1
1

)
.

Equation

Ã

(
x1

x2

)
=

(
2
6

)

has a solution vector
(

x1

x2

)
such that x1 + x2 = 2. Vector

(
1
1

)
satisfies this condition and has

a minimal norm among all vectors. The found vector
(

1
1

)
will be the approximate solution of

(2) with matrix A and vector f from (9). Indeed
(

1 1
3 3.001

)(
1
1

)
−

(
2

6.006

)
=

(
0

0.006

)
.

We have |Ax̊− f | = 0.006 ≈ 0. (Recall that we try to reduce the norm |Ax− f | increasing the
norm |x| not too much).

The vector x̃ =
(

x̃1

x̃2

)
=

(−4
6

)
is the actual solution of the system

(
1 1
3 3.001

) (
x1

x2

)
=

(
2

6.006

)
.

For x̊ =
(

1
1

)
we get

|Ax̊− f |2 + ε|̊x|2 =
∣∣∣∣
(

0
0.006

)∣∣∣∣
2

+ 0.01
∣∣∣∣
(

1
1

)∣∣∣∣
2

= (0.006)2 + 0.01 ≈ 0.01.

And for
(−4

6

)

|Ax̃− f |2 + ε|x̃|2 = 0 + 0.01(16 + 24) = 0.4.

Therefore, for ε = 0.01 the vector x̊ =
(

1
1

)
is closer to the solution of problem 1 than x̃ =

(−4
6

)
.

This simple idea checked simple example that we will develop in the next work with matrices
arisen in solving numerically ill-posed direct and inverse problems of mathematical physics.

In general, this effect is not always possible. But we have

Theorem 4.1. Let ε > 0 and xj (j = 1, 2, . . .) be the sequence of vectors from (3). Then
a) If γ > 0 and j satisfies (1− δ(γ + ε))2j 6 γ, then we obtain the following inequality

|Axj(ε)− f | 6 2|f |√γ + γ |̊x(ε)|+ |Ax̊(ε)− f | ;
b) If j is given by

(1− δ(γ + ε))2j 6 γ2,

then
|A∗A (xj(ε)− x̊(ε))|2 6 γ2

[
|A∗Ax̊|2 + |̊x|2

]
;

c) If j is given by

(1− δ(γ + ε))2j 6 2
5 ‖A∗‖γ,
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then
|A∗A (xj(ε)− x̊(ε))|2 6 8γ |f |2 ;

d) For ε = 0, if j is given by

(1− δγ)2j 6 2
5 ‖A∗‖γ,

then
|A∗A (xj(0)− f)|2 6 8γ |f |2 . (11)

Proof. Let ε > 0 and

inf
{x}

(
|Ax− f |2 + ε |x|2

)
= |Ax̊(ε)− f |2 + ε |̊x(ε)|2 .

For any vector u we have

|Au|2 = 〈Au, Au〉 = 〈A∗Au, u〉 =
∣∣∣(A∗A)

1
2 u

∣∣∣
2
.

Therefore, by assumption (A∗A)
1
2 ek = skek and using (8) from Theorem 2.2 we have

|A (xj(ε)− x̊(ε))|2 =
∣∣∣(A∗A)

1
2 (xj(ε)− x̊(ε))

∣∣∣
2

=
n∑

k=1

s2
k (xjk(ε)− x̊k(ε))

2 =

=
n∑

k=1

s2
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 .

Hence, for all γ > 0 we get

|A (xj(ε)− x̊(ε))|2 =
∑

s2
k>γ

s2
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 +

+
∑

s2
k6γ

s2
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 6 (1− δ(γ + ε))2j

∑

s2
k>γ

s2
k |̊xk(ε)|2 +

+γ
∑

s2
k6γ

|̊xk(ε)|2 6 (1− δ(γ + ε))2j
n∑

k=1

s2
k |̊xk(ε)|2 + γ

n∑

k=1

|̊xk(ε)|2 =

= (1− δ(γ + ε))j
∣∣∣(A∗A)

1
2 x̊(ε)

∣∣∣
2
+ γ |̊x(ε)|2 =

= (1− δ(γ + ε))j |Ax̊(ε)|2 + γ |̊x(ε)|2 .

(12)

But
|Ax̊(ε)|2 = |Ax̊(ε)− f + f |2 6 2

(
|Ax̊(ε)− f |2 + |f |2

)
=

= 2
[(

inf{x}
(
|Ax− f |2 + ε |x|2

))
+ |f |2

]
6

6 2(|f |2 + |f |2) = 4|f |2.
(13)

Using this estimate and (12) we arrive at the estimate

|A (xj(ε)− x̊(ε))|2 6 4 [1− δ(γ + ε)]2j |f |2 + γ |̊x(ε)|2 .

Then
|Axj(ε)− f | = |A (xj(ε)− x̊(ε)) + Ax̊(ε)− f | 6 [|A (xj(ε)− x̊(ε))|+ |Ax̊(ε)− f |] 6

6 2|f | (1− δ(γ + ε))j + |̊x(ε)| √γ + |Ax̊(ε)− f | .
Since

(1− δ(γ + ε))2j 6 γ

we have
|Axj(ε)− f | 6 2|f |√γ +

√
γ |̊x(ε)|+ |Ax̊(ε)− f | .

It implies item a) of the theorem.
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Furthermore, using (8) we have

|A∗A (xj(ε)− x̊(ε))|2 =
n∑

k=1

s4
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 =

=
∑

s2
k>γ

s4
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 +

∑

s2
k6γ

s4
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 6

6
∑

s2
k>γ

s4
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 +

∑

s2
k6γ

s4
k

(
1− δ(s2

k + ε)
)2j |̊xk(ε)|2 .

(14)

It follows
|A∗A (xj(ε)− x̊(ε))|2 6 (1− δ(γ + ε))2j |A∗Ax̊|2 + γ |̊x|2.

If j is taken by
(1− δ(γ + ε))2j 6 γ2,

we obtain
|A∗A (xj(ε)− x̊(ε))|2 6 γ2

[
|A∗Ax̊|2 + |̊x|2

]
.

It implies assertion of item b) of the theorem.
By (14) we have

|A∗A (xj(ε)− x̊(ε))|2 6
n∑

k=1

(1− δ(γ + ε))2j
∣∣s2

kx̊k(ε)
∣∣2 +

n∑

k=1

s2
k |̊xk(ε)|2 =

= (1− δ(γ + ε))2j |A∗Ax̊k(ε)|2 + γ |A∗Ax̊k(ε)|2 =

= (1− δ(γ + ε))2j |A∗(Ax̊k(ε)− f) + A∗f |2 + γ |Ax̊k(ε)|2 6
6 2 (1− δ(γ + ε))2j

(
|A∗(Ax̊k(ε)− f)|2 + |A∗f |2

)
+ γ |Ax̊k(ε)|2 .

By applying (13) we get the following inequalities

|A∗(Ax̊k − f)|2 6 ‖A∗‖2
(
|Ax̊k|2 + |f |2

)
6 5 ‖A∗‖2 |f |2 ,

|Ax̊k(ε)|2 6 4 |f |2 .

Therefore

|A∗A (xj(ε)− x̊(ε))|2 6 2 (1− δ(γ + ε))2j
[
5 ‖A∗‖2 |f |2 + |A∗f |2

]
+

+4γ |f |2 6 10 (1− δ(γ + ε))2j ‖A∗‖2 |f |2 + 4γ |f |2 .

Choosing j from
(1− δ(γ + ε))2j 10 ‖A∗‖2 6 4γ,

we get
|A∗A (xj(ε)− x̊(ε))|2 6 8γ |f |2 .

This completes the proof of item c) of the theorem.
For ε = 0 using Lemma 2.2 we have

A∗Ax̊ = Af.

Therefore item d) of the theorem is proved.
Usually it is important in practice to reduce the difference in Ax− f (less important to find

solution of equation Ax = f !). Thus, the theorem allows one to solve problem (2) effectively.
Note that usage of formula for xj doesn’t require ε > 0. Much more suitable case is ε = 0.

Now we can suggest the next numerical algorithm based on the Theorem 4.1. We can form
sufficiently effective process of solving problem (2) with ill-conditioned or non-invertible matrix.
The algorithm will be distinguished from above one only by these points:

It is chosen γ > 0 (stands for accuracy). The number ε is chosen to be zero. The conditions
from item d) Theorem 4.1 are verified after every cycle of iteration. Computation is finished
when condition (11) holds.
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Implementation of the suggested algorithm is realized in K. Satpayev Kazakh National Tech-
nical University.

Some of results of this work have been announced in [6] (see also [7]).
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