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Cab CURVES: A QUICK SHORT-CUT

A. BASIRI1, S. RAHMANY1

Abstract. The objective of this paper is to state and prove some useful theorems for realizing

the group law in the Jacobians of Cab curves, which provide an efficient and easy-to-implement

algorithm for computations within the group. The idea is a generalization of a method previously

presented in 2005, which gave an algorithm to realizing the group law on the superelliptic curves

of genus 3 or 4. As an example of our approach, we will show how this method can be used to

formulate a reasonably fast arithmetic in the Jacobian of C35 curve.
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1. Introduction

Our interest in the subject of this paper is inspired by the idea presented in [3], where the
authors use the FGLM algorithm for realizing the group law in the Jacobian group of superelliptic
curves of genus 3 or 4. Similar to the hyper-elliptic curves, the addition in the Jacobian of a
Cab curve proceeds in two steps. In the first step, the two reduced divisors are simply added
yielding a divisor of degree up to 2g (g is the genus of curve). In the second step, this divisor is
reduced to the representative of minimal degree in its class.

Several efficient algorithms exist for Jacobian arithmetic of super-elliptic and Cab curves,
[1, 9, 10]. These algorithms use the representation of Jacobian elements by polynomials and
rely on rather heavy techniques of symbolic computations like LLL, Hermite normal form and
Gröbner basis computations. As explained in [3], the core of these algorithms consists of the
reduction process, namely transforming any group element into its equivalent reduced represen-
tative. These algorithms generally admit a unifying description as follows:
Algorithm 1 (Reduction).
Input: ideal a of K[C]
Output: reduced ideal RED(a) equivalent to a

(1) Choose an integral ideal b in the class of a−1, such that b = ua−1 for some u ∈ a

(2) Let e 6= 0 be the minimum of b w.r.t the Cab order
(3) Put RED(a) = eb−1 = e

ua

In [1], the ideals of K[C] are represented by their Gröbner bases w.r.t Cab order, and u is
chosen as the Cab minimum of a. The approach relies on Buchberger’s algorithm. Whilst, in
both [9] and [10], the ideals are represented by their Hermite normal forms as K[X]-modules, or
equivalently, by their Gröbner bases w.r.t the lexicographic order. The natural choice for u is,
then, the minimum w.r.t this order. However, the minimum for the Cab order can be computed
via a variant of LLL algorithm for function fields according to Paulus [12].
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Moreover, some new algorithms were described in [3] for realizing the arithmetic in the Ja-
cobians of super-elliptic curves of genus 3 or 4. They consider a special class of ideals allowing
a simplified polynomial representation called “typical ideals”. These special ideals occur with a
probability near one. This approach follows the framework of Algorithm 1. Having represented
ideals by their lexicographic Gröbner bases, one uses the FGLM algorithm ([8]) to find the Cab

minimum.
Our purpose is to generalize the above idea to Cab curves. The paper is organized as follows.

In Section 2, some basic definitions of Jacobians of Cab curves are introduced. In Section 3 our
main results are stated and proved. Also, as an application of the presented method, we will
provide explicit formulae for realizing the group law in the Jacobians of C35 curves in Section 4.

2. Basic definitions

In this section, some basic algebraic structures of Cab curves will be reviewed. Also some
definitions which will be used throughout this paper, are introduced.

Let K be a field with characteristic different from a and K be its algebraic closure. The
following definition introduces Cab curves ([11]).

Definition 2.1. For co-prime positive integers a and b, which are also co-prime to the char-
acteristic of the ground field, a Cab curve is defined by a non-singular affine equation of the
form

C = Y a +
∑

ia+jb<ab

cijX
iY j + Xb. (1)

The coordinate ring of C is defined by K[C] = K[X,Y ]/(C), its function field by K(C), which
is the field of fractions of K[C]. A rational prime divisor of C is given by an orbit of points
on C with coordinates in K under the action of Gal(K/K), and its degree is the number of
points in the orbit. The group of K-rational divisors is the free abelian group over the prime
divisors, with the degree function extended naturally, and of special interest is its degree zero
part D0. Associating to a function in K(C), its divisors of zeroes and poles with the appropriate
multiplicities, one defines the subgroup of principal divisors PK . Finally the residue group of
D0 by PK is called Jacobian group of C.

Since C is non-singular on affine plane, K[C] is a Dedekind domain and hence the Jacobian
group of C is naturally isomorphic to the ideal class group of K[C]. So, every divisor in the
Jacobian group of C corresponds to an ideal in the ideal class group of K[C] and therefore, we
may focus only onto the arithmetic on the ideals.

For the computations of the Gröbner basis of these ideals, we need the following definition:

Definition 2.2. For α = (α1, α2) and β = (β1, β2) ∈ Z2
≥0, the order ≺Cab

which is defined as:
α ≺Cab

β if and only if a ·α1 + b ·α2 < a ·β1 + b ·β2 or a ·α1 + b ·α2 = a ·β1 + b ·β2 and β1 < α1,

is called a Cab order.

In the step 2 of Algorithm 1, we have to use the Cab order to find the minimum of the given
ideal. But as explained in Section 1, it is better to consider a special class of ideals allowing a
simplified polynomial representation w.r.t the lexicographical order, which is defined as follows:

Definition 2.3. Let C be a Cab curve and g be its genus. An ideal a (resp. a divisor D) of
K[C] (resp. of C) is called typical iff a = id(u, Y − v) (resp. D = Div(u, Y − v)) where u and v

are some polynomials in K[X] such that: deg(v) < deg(u) ≤ g and u|C(X, v).

Remark 2.1. It is known that the genus of a Cab curve is equal to (a−1)(b−1)
2 .
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3. Main theorems

The product of two ideal classes, represented by ideals ai = (ui, Y − vi), deg ui = g, deg vi =
= g − 1, i ∈ {1, 2}, is obtained in two steps as explained in Section 1. The composition (or the
first step) corresponds simply to the ideals multiplication and yields a = (u, Y −v) = a1a2 [3, 4].

In this section we compute the the second step which takes an ideal a = (u, Y − v) as input
with u of degree at most 2g and v of degree at most 2g − 1, yielding a generator set for the
equivalent ideal a′ = (u′, Y − v′), where u′(resp. v′) is a polynomial of degree at most g(resp.
g − 1), which, by [3], is the reduced representative of its class.

In this section we use the following notations and remarks:
(1) φ(s) the remainder of division s by u where s ∈ k[X, Y ] and u ∈ k[X]
(2) δ(s) the quotient of division s by u

(3) mab(S) the minimum polynomial of the set S, w.r.t the Cab order
(4) u and v some polynomials in K[X]
(5) a := id(u, Y − v) the ideal generated by u and Y − v in K[X, Y ]
(6) C a Cab. curve

Remark 3.1. We always assume that C ∈ a

(7) b := denom(a)a−1

(8) [s1, · · · , sm]K[X] the K[X]-submodule of K[X,Y ], generated by s1, · · · , sm ∈ K[X,Y ]
(9) q := C(X,Y )−C(X,v)

Y−v .

Remark 3.2. Note that Y − v divides C(X, Y )− C(X, v) (Lemma 2 of [5]).

In [5] the step 1 of Algorithm 1 is run as follows

b = denom(a)a−1 = (id(u,C) : a) =

= id(C) + [u, uY, ..., uY a−2, q]K[X] =

= {λC +
a−2∑

i=0

γiuY i + γa−1q|λ ∈ K[X, Y ] and γi ∈ K[X] for i = 0..a− 1}.

We are now in a position to state the theorem which gives a minimal element of the ideal b

w.r.t Cab order and hence runs the step 2 of the Algorithm 1.

Theorem 3.1. Let b1 = [u, uY, ..., uY a−2, q]K[X]. Then

mab(b1) = mab({u} ∪ {φ(αq)|α ∈ K[X]}).

Proof. There are polynomials qi ∈ K[X] such that q =
a−1∑
i=0

qiY
i. The degCab

(g) and mab({u} ∪
∪ {φ(αq)|α ∈ K[X]}) are replaced by Γ(g) and mab.

For 0 6= γ ∈ b1, there are polynomials γ0, γ1, . . . γa−1 ∈ K[X] such that

γ =
a−2∑

i=0

γiuY i + γa−1q =

=
a−2∑

i=0

γiuY i + φ(γa−1q) + δ(γa−1q)u
a−2∑

i=0

φ(γa−1qiY
i)φ(γa−1q) =

= (uδ(γa−1qa−1) + φ(γa−1qa−1))Y a−1 +
a−2∑

i=0

(φ(γa−1qi) + u(γi + δ(γa−1qi)))Y i.
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We have deg(φ(γa−1qi)) < deg(u), put da−1 = Γ(uδ(γa−1qa−1)) and for i = 0, 1, . . . , a − 2,
di = Γ(u(γi + δ(γa−1qi))Y i). Thus if δ(γa−1qa−1) 6= 0 or if there is an 0 ≤ i ≤ a − 2 such that
γi + δ(γa−1qi) 6= 0 then

Γ(γ) ≥ max{di| 0 ≤ i ≤ a− 1} ≥ Γ(u)

consequently γ ≥Cab
u ≥Cab

mab. On the other hand, δ(γa−1qa−1) = 0 and for all 0 ≤ i ≤
≤ a− 2γi + δ(γa−1qi) = 0, thus

γ = φ(γa−1qa−1)Y a−1 +
a−2∑

i=0

φ(γa−1qi)Y i = φ(γa−1q) ≥Cab
mab.

Hence, mab(b1) ≥Cab
mab and clearly mab(b1) ≤Cab

mab and consequently mab(b1) = mab. ¤

Here, we are at the end of the step 2 of the Algorithm 1. The following theorem computes a
generator set for the ideal RED(a) (step 3 of the Algorithm 1).

Theorem 3.2. Let b1 = [u, uY, ..., uY a−2, q]K[X] and there exist w ∈ K[X] such that C(X, v) =
= uw. Then the following hold:
i) If mab(b1) = φ(αq), for some α ∈ K[X] then

RED(a) = id(C, φ(αq), αw + δ(αq)(Y − v)).

ii) If mab(b1) = φ(q) then RED(a) = id(φ(q), w + δ(q)(Y − v)), in particular if mab(b1) = q then
RED(a) = id(q, w).
iii) If mab(b1) = u then RED(a) = a.

Proof.
i) By algorithm 1, RED(a) = id(C, (uφ(αq))/u, ((Y −v)φ(αq))/u) but by Lemma 2 of [5], q(Y −
− v) = C − wu thus (Y − v)φ(αq) = (Y − v)(αq − δ(αq)u) = α(C − wu) − δ(αq)u(Y − v) and
hence the proof of i) will be fulfilled.
ii) We have

C = q(Y − v) + wu =

= φ(q)(Y − v) + (w + δ(q)(Y − v))u ∈
∈ id(φ(q), w + δ(q)(Y − v)),

hence

RED(a) = id(φ(q), w + δ(q)(Y − v)).

iii)

RED(a) = id(C, (u2)/u, (u(Y − v))/u) = id(C, u, Y − v) = id(u, Y − v) = a.

¤

Corollary 3.1. We have presented the above formulas to compute the form of a minimal element
of ideal b w.r.t. Cab order (it is either u or φ(αq) for a α ∈ K[X], Theorem 3.1). We have also
presented a generator set for ideal RED(a) (Theorem 3.2).
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4. Example: Arithmetic in the Jacobians of C35 curves

In this section, we provide explicit formulae for realising the group law in the Jacobians of
C35 curves. To do so, we compute a Gröbner basis for the reduced ideal associated with ideal a

in K[X,Y ]/id(C) where C is a C35 curve.
We use a well-known tricks to speed up the computations. By using two linear changes of

variables, we can assume that C := Y 3 + C1Y + C0 where C1 and C0 are some polynomials in
K[X] of degree 3 and 5, respectively, and the coefficient of X4 in C0 is zero.

Also, we denote the coefficient of a polynomial in front of Xi by a subscript i and keep the
following notations:

• K is a field of characteristic different from 3 and K its algebraic closure.
• C1 and C0 are some polynomials of degree 3 and 5 in K[X], where C0 := C00 +

+ C01X + C02X
2 + C03X

3 + X5, and C := Y 3 + C1Y + C0.
• v is a polynomial of degree 7 and u a monic polynomial of degree 8 in K[X] and v3 +

+ C1v + C0 = wu.
• q = Y 2 + vY + v2 + C1.
• b := [id(u,C) : a] = id(C, u, q) = id(C) + [u, uY, q]K[X].

Remark 4.1. We consider the general case, where deg(u) = 8 and deg(v) = 7, the other cases
are easier.

Theorem 4.1. If a = id(u(X), Y − v(X)) then the reduced ideal of a is

RED(a) = id(C, φ(αq), αw + (δ(αv)Y + δ(αv2 + C1))(Y − v)),

where α is a polynomial in k[X] such that φ(αq) = minC35(b).

Proof. Note that the set

B := {XiY j |0 ≤ i ≤ 7 & 0 ≤ j ≤ 1}
is a generator for the vector space K[C]/b and |B| = 16 thus dimK(K[C]/b) ≤ 16 (we mean
by XiY j + b by XiY j). This ensures that there is a linear relation between the set of the
first seventeen monomials of K[C]/b w.r.t C35 order, i.e., B′ := {XiY j |3i + 5j ≤ 20, j ≤ 2}.
There for degC35

(minC35(b)) ≤ degC35
(X5Y ) = 20 but since degC35

(u) = 24, we deduce from
Theorem 3.1 that there is a α ∈ K[X] (with deg(α) ≤ 3) such that minC35(b) = φ(αq).

Since degC35
(φ(q)) = 26, there is an α ∈ K[X] with 1 ≤ deg(α) ≤ 3 such that minC35(b) =

= φ(αq). Especially in the general case, α is a polynomial of degree 3 and is derived in such
a way that ϕ := φ(αv) = αv mod u be of degree 5, and ψ := φ(αv2 + αC1) = φ(ϕv) + αC1 of
degree 6. In this case

e := min
C35

(b) = φ(αq) = αY 2 + ϕY + ψ. (2)

Then, the reduced ideal RED(a) = e
ua is computed as follows (by Theorem 3.2):

RED(a) = id(C, φ(αq), αw + (δ(αv)Y + δ(αv2))(Y − v)),

but δ(αv2) = δ(ϕv) + δ(αv)v hence:

RED(a) = id(C, φ(αq), αw + (δ(αv)(Y + v) + δ(ϕv))(Y − v)).

¤



74 TWMS J. PURE APPL. MATH., V.4, N.1, 2013

Now we compute a Gröbner basis for RED(a) w.r.t ≺Lex order in the general case (where
there is no division by zero). Let α be a polynomial of K[X] such that minC35(b) = φ(αq) = e.
We denote by

e1(Y ) = Y 3 + C1Y + C0,
e2(Y ) = αw + (δ(αv)(Y + v) + δ(ϕv))(Y − v),
e(Y ) = αY 2 + ϕY + ψ,

the elements of a generator set for RED(a) which is obtained in Theorem 4.1.

Lemma 4.1. In the general case, α divides the Resultant(e2, e, Y ) and

Resultant(e2, e, Y )
α

= 3δ(αv)2αwvu + δ(αv)2αv2C1 − 3δ(αv)2αvC0 +

+2δ(αv)3uC0 + 3αv2δ(ϕv)2 + δ(αv)2αC2
1 −

−δ(ϕv)3u + αC1δ(ϕv)2 + α3w2 − 3α2wδ(αv)v2 −
−3α2wvδ(ϕv)− 2α2wδ(αv)C1 + 6αwδ(αv)δ(ϕv)u−
−2αvδ(ϕv)δ(αv)C1 − 3δ(αv)αδ(ϕv)C0 − δ(αv)3u2w −
−3δ(αv)2v2δ(ϕv)u− 3vδ(ϕv)2δ(αv)u− δ(αv)2C1δ(ϕv)u

is an element of the ideal id(e1, e2, e).

Proof. By Proposition 9, Section 3.5 of [7], we have

Resultant(e2, e, Y ) = λ2(α)e2 + λ3(α)e,

where
λ2(α) = det(M1)Y + det(M2), λ3(α) = det(M3)Y + det(M4)

and

M1 =




0 0 b0 0
0 a0 b1 b0

0 a1 b2 b1

1 a2 0 b2


 ,M2 =




a0 0 b0 0
a1 0 b1 b0

a2 0 b2 b1

0 1 0 b2


 ,

M3 =




a0 0 0 0
a1 a0 0 b0

a2 a1 0 b1

0 a2 1 b2


 ,M4 =




a0 0 b0 0
a1 a0 b1 0
a2 a1 b2 0
0 a2 0 1




and for i = 0, 1, 2 :
ai = coeff(e2, Y

2−i) , bi = coeff(e, Y 2−i).

But

λ2(α) = α3w + ((δ(αv)v − δ(ϕv))Y − δ(αv)C1 − δ(αv)v2 − 2vδ(ϕv))α2 +

+(−vδ(αv)2u + 2δ(αv)δ(ϕv)u− Y δ(αv)2u)α + δ(αv)3u2

and

λ3(α) = −δ(αv)α2w + (δ(αv)(δ(ϕv)− δ(αv)v)Y + δ(αv)2C1 + 2δ(αv)2v2 +

+δ(ϕv)2)α + δ(αv)3uY − vδ(αv)3u,

hence
λ2(0) = δ(αv)3u2
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and
λ3(0) = uδ(αv)3(Y − v).

After simplification we have

λ2(0)e2 + λ3(0)e = αuCδ(αv)3,

hence

Resultant(e2, e, Y ) = (λ2(α)− λ2(0))e2 + (λ3(α)− λ3(0))e + λ2(0)e2 + λ3(0)e

which implies that α | Resultant(e2, e, Y ) and

Resultant(e2, e, Y )
α

=
λ2(α)− λ2(0)

α
e2 +

λ3(α)− λ3(0)
α

e + uCδ(αv)3 =

= 3δ(αv)2αwvu + δ(αv)2αv2C1 − 3δ(αv)2αvC0 +

+2δ(αv)3uC0 + 3αv2δ(ϕv)2 + δ(αv)2αC2
1 −

−δ(ϕv)3u + αC1δ(ϕv)2 + α3w2 − 3α2wδ(αv)v2 −
−3α2wvδ(ϕv)− 2α2wδ(αv)C1 + 6αwδ(αv)δ(ϕv)− u−
−2αvδ(ϕv)δ(αv)C1 − 3δ(αv)αδ(ϕv)C0 − δ(αv)3u2w −
−3δ(αv)2v2δ(ϕv)u− 3vδ(ϕv)2δ(αv)u− δ(αv)2C1δ(ϕv)u.

¤

The next corollary gives us a bound for the degree of Resultant(e2,e,Y )
α .

Corollary 4.1. In the general case,

u2 | ((αC2
0 + C1(C1ψ − C0ϕ))α + ψ(3C0ϕ− 2C1ψ))α + ϕ2(C1ψ − C0ϕ) + ψ3

and Resultant(e2,e,Y )
α is equal to

((αC2
0 + C1(C1ψ − C0ϕ))α + ψ(3C0ϕ− 2C1ψ))α + ϕ2(C1ψ − C0ϕ) + ψ3

u2

which is a polynomial of degree at most 4.

Proof. The result is done by substitution

δ(αv) =
αv − ϕ

u
, δ(ϕv) =

ϕv + αC1 − ψ

u
and w =

v3 + C1v + C0

u
(3)

for the formula obtained in Lemma 4.1.
¤

Now, to compute a Gröbner basis for RED(a), put

u′ = monic(
((αC2

0 + C1(C1ψ − C0ϕ))α + ψ(3C0ϕ− 2C1ψ))α + ϕ2(C1ψ − C0ϕ) + ψ3

u2
) (4)

and
S(Y ) = αe2 − δ(αv)e.

Then

S = (αδ(ϕv)− δ(αv)(αv − δ(αv)u)) Y +

+α(wα− v(δ(αv)v + δ(ϕv)))− δ(αv)(v(αv − δ(αv)u)− δ(ϕv)u + αC1).

Here we substitute w, δ(αv) and δ(ϕv) for the equations 3, so

S =
α(αC1 − ψ) + ϕ2

u
Y +

α2C0 + ϕψ

u
.
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Put

λ :=
α2C0 + ϕψ

u
, (5)

µ :=
α(αC1 − ψ) + ϕ2

u
,

v′ := −µ−1λ mod u′.

Here, all divisions by u are exact, that is with remainder zero.

Theorem 4.2. {u′, Y − v′} is a Gröbner basis for RED(a) = a′ = e
ua.

Proof. By Lemma 4.1, we have u′ ∈ RED(a), and it is clear that S ∈ RED(a), hence Y − v′ ∈
∈ RED(a), consequently id(u′, Y − v′) ⊂ RED(a). For the inverse case, inclusion in other sens,
we use the equations 3 and replacing Y by v′ in e1(Y ), e2(Y ) and e(Y ), one of this element
becomes a multiplication of u′. We deduce that RED(a) ⊂ id(u′, Y − v′) which completes the
proof. ¤

Therefor, we are able to use the method presented in this paper to obtain explicit formula for
realizing the group law in the Jacobian of a Cab curve. For example, in [6] it is shown that the
computational cost for addition in the Jacobian of a C35 curve is less than 400 multiplications.

5. Concluding remarks

A method based on Arita algorithm has been presented to find the explicit formula for realizing
the group law in the Jacobian of a Cab curve. These formula can be used to speed up the
computations. The number of multiplications and inversions can be also counted to add two
distinct elements in the Jacobian of the curve for given a and b, as for a = 3, b = 5 in [6].
The fact that the same method still goes for the case of Jacobian of CA curves [2] is another
advantage of the presented method.
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