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SOME RESULTS CONCERNING FRAMES ASSOCIATED WITH
MEASURABLE SPACES
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Abstract. In this note some necessary or/and sufficient conditions for the perturbation of a
(Ω, µ)-frame are given. We also discussed (Ω, µ)-frames of subspaces.
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1. Introduction

Frames for Hilbert spaces were introduced by Duffin and Schaeffer [8] while addressing some
deep problems in non-harmonic Fourier series. Recently, various generalizations of frames have
been introduced and studied. Frames of subspaces in Hilbert spaces were first introduced and
studied by Casazza and Kutyniok [4] and then by Asgari and Khosravi [3], pseudo frames were
introduced by Li and Ogawa [15], oblique frames were first introduced and studied by Eldar [9]
and then by Christensen and Eldar [6], outer frames were introduced and studied by Aldourbi,
Cabrelli and Molter [1] and Bounded quasi-projectors were studied by Fornasier [11, 12]. Sun
[17] introduced a more general concept called G-frames and pointed out that most of the above
generalizations of frames may be regarded as a special cases of G-frames and many of their basic
properties can be derived within this more general setup.

Another generalization of frames was proposed by Kaiser [14] and independently by Ali
Tawreque, Antoine and Gazedu [2] who named it as continuous frames while Kaiser used the
terminology generalized frames. Recently, Gabardo and Han [13] studied continuous frames and
use the terminology (Ω, µ)-frame.

Discrete and continuous frames arise in many applications in both pure and applied
mathematics and, in particular, they play important roles in digital signal processing and
scientific computations. For a nice introduction to frames an interested reader may refer to
[5] and references therein.

In this note, sufficient condition for the exactness of a (Ω, µ)-frame is obtained. Some
necessary and sufficient conditions for the stability of an (Ω, µ)-frame are given. A condition
for the perturbation of an (Ω, µ)-frame is obtained. Finally, (Ω, µ)-frames of subspaces are
discussed.

2. Preliminaries

Throughout the paper, H will denote an infinite dimensional Hilbert space. For a family
{xω} ⊂ H , [xω] denotes the closure of the {xω} in the norm topology of H .

Definition 2.1. Let (Ω, µ) be a measure space and H be Hilbert space with inner product. A
vector-valued mapping F : Ω → H ( i.e. a collection of vectors F ≡ {F (ω)}ω∈Ω ⊂ H) is said
to be a (Ω, µ)-frame for H if
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(1) F is a weakly measurable function.
(2) There exist constants A and B with 0 < A ≤ B < ∞ such that

A‖x‖2 ≤
∫

Ω

|〈x, F (ω)〉|2dµ(ω) ≤ B‖x‖2, x ∈ H . (1)

The positive constants A and B , respectively, are called lower and upper frame bounds of the
(Ω, µ)-frame F ≡ {F (ω)}ω∈Ω . They are not unique. The inequality (1) is called the (Ω, µ)-
frame inequality. If A = B , then {F (ω)}ω∈Ω is called tight and normalized tight if A = B = 1.
The supremum of all A and infimum of all B which satisfy (1) are called best bounds for (Ω, µ)-
frame. A (Ω, µ)-frame F ≡ {F (ω)}ω∈Ω is said to be exact if for arbitrary Ω0 ⊂ Ω, with
µ(Ω0) > 0, {F (ω)}ω∈Ω∼Ω0 ceases to be a frame for H . If upper inequality of (1) holds then
F ≡ {F (ω)}ω∈Ω is called a (Ω, µ)-Bessel family. The operator TF : H → L2(Ω, µ) defined by

(TF x)(ω) = 〈x, F (ω)〉, ω ∈ Ω, x ∈ H
is bounded linear operator called the analysis operator and its conjugate T ∗F is called synthesis
operator and the operator T ∗F TF : H → H is called frame operator of (Ω, µ)-frame.

A (Ω, µ)-Bessel family F ≡ {F (ω)}ω∈Ω is a (Ω, µ)-frame for H if and only if their exists a
(Ω, µ)-Bessel family G ≡ {G(ω)} such that

〈x, y〉 =
∫

ω

〈x,G(ω)〉〈F (ω), y〉 dµ(ω), for all x, y ∈ H.

In this case we say that {G(ω)}ω∈Ω is a dual (Ω, µ)-frame for {F (ω)}ω∈Ω and ({F (ω)}, {G(ω})
a dual pair.

A (Ω, µ)-frame {F (ω)}ω∈Ω is complete in H i.e. H = [F (ω)]ω∈Ω .

3. Main results

The following lemma provides a sufficient condition for exactness of (Ω, µ)-frame for a Hilbert
space.

Lemma 3.1. A (Ω, µ)-frame F ≡ {F (ω)}ω∈Ω is exact if for arbitrary Ω0 ⊂ Ω with µ(Ω0) > 0,
F (ξ) /∈ [F (ω)]ω∈Ω∼Ω0 , for almost all ξ ∈ Ω0 .

Proof. Let, if possible, there exist Ω0 ⊂ Ω with µ(Ω0) > 0, {F (ω)}ω∈Ω∼Ω0 be a (Ω, µ)-frame
for H . Then, by frame inequality of {F (ω)}ω∈Ω∼Ω0 , we have [F (ω)]ω∈Ω∼Ω0 = H . This gives
F (ξ) ∈ [F (ω)]ω∈Ω∼Ω0 , for all ξ ∈ Ω, a contradiction. Hence F ≡ {F (ω)}ω∈Ω is exact. ¤

Now, we show that exact (Ω, µ)-frames are invariant under a linear homeomorphism. An
inequality concerning best bounds is also given in the following theorem.

Theorem 3.1. Let F ≡ {F (ω)}ω∈Ω be a (Ω, µ)-frame for H with best bounds A1, B1 and
U : H → H be a linear homeomorphism , then {U(F (ω))}ω∈Ω is a (Ω, µ)-frame for H and its
best bounds A2, B2 satisfy the inequalities

A1‖U‖−2 ≤ A2 ≤ A1‖U−1‖2,

B1‖U‖−2 ≤ B2 ≤ B1‖U‖2.

Proof. Since F : Ω → H is weakly measurable i.e. the map ω → 〈F (ω), x〉 from Ω into C is
measurable for all x ∈ H . So, the map ω → 〈U(F (ω)), x〉 from Ω into C is also measurable for
all x ∈ H .
Now for all x ∈ H , we have∫

Ω

|〈x,U(F (ω))〉|2dµ(ω) =
∫

Ω

|〈U∗(x), F (ω)〉|2dµ(ω) ≤ B1‖U∗(x)‖2 ≤ B1‖U‖2‖x‖2.
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Also

‖x‖2 = ‖UU−1(x)‖2 ≤ ‖U‖2 ‖U−1(x)‖2 ≤ ‖U‖2

A1

∫

Ω

|〈U−1(x), F (ω)〉|2dµ(ω) =

=
‖U‖2

A1

∫

Ω

|〈U(U−1(x)), U(F (ω))〉|2dµ(ω) =
‖U‖2

A1

∫

Ω

|〈x, U(F (ω))〉|2dµ(ω).

This gives

A1‖U‖−2‖x‖2 ≤
∫

Ω

|〈x,U(F (ω))〉|2dµ(ω), for all x ∈ H.

Therefore

A1‖U‖−2 ≤ A2, B2 ≤ B1‖U‖2.

Now, for all x ∈ H , we have

A2‖x‖2 ≤
∫

Ω

|〈x, U(F (ω))〉|2dµ(ω) ≤ B2‖x‖2

and

‖x‖2 = ‖U−1U(x)‖2 ≤ ‖U−1‖2‖U(x)‖2.

This gives

A2‖U−1‖−2‖x‖2 ≤ A2‖U(x)‖2 ≤
∫

Ω

|〈U(x), U(F (ω))〉|2dµ(ω)
(

=
∫

Ω

|〈x, F (ω)〉|2dµ(ω)
)
≤

≤ B2‖U(x)‖2 ≤ B2‖U‖2 ‖x‖2, for all x ∈ H.

Therefore, we have

A2‖U−1‖−2 ≤ A1, B1 ≤ B2 ‖U‖2.

Hence

A1‖U‖−2 ≤ A2 ≤ A1‖U−1‖2,

B1‖U‖−2 ≤ B2 ≤ B1‖U‖2.

Corollary 3.1. If {F (ω)}ω∈Ω is exact, then so is {U(F (ω))}ω∈Ω .

The following theorem gives a necessary and sufficient condition for the perturbation of a
(Ω, µ)-frame.

Theorem 3.2. Let {F (ω)}ω∈Ω be a (Ω, µ)-frame for a Hilbert space H and G : Ω → H be a
vector-valued function. Then the following statements are equivalent:

(1) {G(ω)}ω∈Ω is a (Ω, µ)-frame for H .
(2) there exists M > 0 such that

∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) ≤ M min





∫

Ω

|〈x, F (ω)〉|2dµ(ω),
∫

Ω

|〈x,G(ω)〉|2dµ(ω)



 .

(3) There exists K > 0 such that
∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) ≤ K

∫

Ω

|〈x,G(ω)〉|2dµ(ω).
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Proof. (i) ⇒ (ii) Let AF , BF and AG,BG be frame bounds for the (Ω, µ)-frames {F (ω)}ω∈Ω

and {G(ω)}ω∈Ω respectively. Then, for all x ∈ H , we have
∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) =
∫

Ω

|〈x, F (ω)〉 − 〈x,G(ω)〉|2dµ(ω) ≤

≤ 2
( ∫

Ω

|〈x, F (ω)〉|2dµ(ω) +
∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)
≤ 2

( ∫

Ω

|〈x, F (ω)〉|2dµ(ω) + BG ‖x‖2

)
≤

≤ 2
( ∫

Ω

|〈x, F (ω)〉|2dµ(ω) +
BG

AF

∫

Ω

|〈x, F (ω)〉|2dµ(ω)
)

= 2
(

1 +
BG

AF

) ∫

Ω

|〈x, F (ω)〉|2dµ(ω).

Similarly, we can show that
∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) ≤ 2
(

1 +
BF

AG

)∫

Ω

|〈x,G(ω)〉|2dµ(ω).

(ii) ⇒(i) For all x ∈ H , we have

AF ‖x‖2 ≤
∫

Ω

|〈x, F (ω)〉|2 ≤ 2
(∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) +
∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)
≤

≤ 2
(

M

∫

Ω

|〈x,G(ω)〉|2dµ(ω) +
∫

Ω

|〈x, G(ω)〉|2dµ(ω)
)
≤ 2(M + 1)

( ∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)
≤

≤ 4(M + 1)
(∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) +
∫

Ω

|〈x, F (ω)〉|2dµ(ω)
)
≤ 4(M + 1)×

×
(

M

∫

Ω

|〈x, F (ω)〉|2dµ(ω) +
∫

Ω

|〈x, F (ω)〉|2dµ(ω)
)

= 4(M + 1)2
∫

Ω

|〈x, F (ω)〉|2dµ(ω) ≤

≤ 4(M + 1)2BF ‖x‖2.

This gives

AF

2(1 + M)
‖x‖2 ≤

∫

Ω

|〈x,G(ω)〉|2dµ(ω) ≤ 2(M + 1) BF ‖x‖2 , x ∈ H.

Hence {G(ω)}ω∈Ω is a (Ω, µ)-frame for H .

(ii)⇒ (iii) is clear.
(iii)⇒ (i) Since

AF ‖x‖2 ≤
∫

Ω

|〈x, F (ω)〉|2 ≤ 2
( ∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) +
∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)
≤

≤ 2
(

K

∫

Ω

|〈x, G(ω)〉|2dµ(ω) +
∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)

= 2(K + 1)
(∫

Ω

|〈x,G(ω)〉|2dµ(ω)
)
≤

≤ 2(K + 1)‖x‖2, for all x ∈ H.

Hence {G(ω)}ω∈Ω is a (Ω, µ)-frame for H. ¤

Now, we give a sufficient condition for perturbation of an (Ω, µ)-frame.
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Theorem 3.3. Let {F (ω)}ω∈Ω be a (Ω, µ)-frame for H and z0 ∈ H such that 〈z0, F (ω)〉 =
λ, for all ω ∈ Ω, where λ is non-zero scalar. Then,

(1) there exists a non-zero vector v ∈ H such that {F (ω) + v}ω∈Ω is not a (Ω, µ)-frame for
H .

(2) for each ξ ∈ Ω, there exists a non-zero vector Zξ ∈ H such that {F (ω) + Zξ}ω∈Ω is not
a (Ω, µ)-frame for H .

Proof. (1) Choose a vector x ∈ H (which may be equal to z0 ) such that 〈z0, x〉 = α, where α is
a non-zero scalar. Put v = −(λ

α)x. Then, v is a non-zero vector in H such that {F (ω) + v}ω∈Ω

is not a (Ω, µ)-frame for H . Indeed, let 0 < A ≤ B < ∞ be positive constants such that

A‖x‖2 ≤
∫

Ω

|〈x, F (ω) + v〉|2dµ(ω) ≤ B‖x‖2, for all x ∈ H.

Then, in particular for x = z0 , we have

A‖z0‖2 ≤
∫

Ω

|〈z0, F (ω) + v〉|2dµ(ω) ≤ B‖z0‖2.

Now, for all ω ∈ Ω, we have
〈z0, F (ω) + v〉 = 〈z0, F (ω)〉 + 〈z0, v〉 = λ + 〈z0,−(λ

α)x〉 = 0. By lower inequality, we obtain
z0 = 0. This is a contradiction.

(2) Fix ξ ∈ Ω. Put Zξ = −F (ξ). Then, Zξ is a non-zero vector in H such that
{F (ω) + Zξ}ω∈Ω is not a (Ω, µ)-frame for H . ¤

Let {F (ω)}ω∈Ω be a (Ω, µ)-frame for H and G : Ω → H be a vector-valued function such
that {F (ω)−G(ω)}ω∈Ω be a (Ω, µ)-Bessel family. Then, in general, {G(ω)}ω∈Ω is not a (Ω, µ)-
frame for H . The reason is that Bessel bound for {F (ω) − G(ω)}ω∈Ω is not less that lower
bound for the frame {F (ω)}ω∈Ω or the following inequality

∫

Ω

|〈x, F (ω)〉|2dµ(ω)−
∫

Ω

|〈x, G(ω)〉|2dµ(ω) ≤ γ

(∫

Ω

|〈x, F (ω)〉|2dµ(ω)−

−
∫

Ω

|〈x,G(ω)〉|2dµ(ω) +
∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω)
)

, for some γ ≥ 2. (2)

is not satisfied. In this direction we have

Theorem 3.4. Let {F (ω)}ω∈Ω be a (Ω, µ)-frame for H with the bounds A, B and a vector-
valued function G : Ω → H such that {F (ω) − G(ω)}ω∈Ω is a (Ω, µ)-Bessel family for
H with bound M < A, such that (2) holds. Then {G(ω)}ω∈Ω is a (Ω, µ)-frame for H .
Conversely, if {F (ω)}ω∈Ω and {G(ω)}ω∈Ω are (Ω, µ)-frames for H with bounds A1, B1 and
A2, B2 respectively, and U : H → H is a linear homeomorphism such that U(F (ω)) =
G(ω), ω ∈ Ω, then {F (ω) − G(ω)}ω∈Ω is a (Ω, µ)-Bessel family for H with best bound
M = min{B1‖I − U‖2, B2‖I − U−1‖2}.

Proof. A simple calculation show that {G(ω)}ω∈Ω is an (Ω, µ)-frame for H .
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Conversely, since
∫

Ω

|〈x, F (ω)−G(ω)|2dµ(ω) =
∫

Ω

|〈x, F (ω)〉 − 〈x,U(F (ω))〉|2dµ(ω) =

=
∫

Ω

|〈(I − U∗)x, F (ω)〉|2dµ(ω) ≤ B1‖(I − U∗)x‖2 ≤ B1‖I − U‖2‖x‖2.

and ∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) =
∫

Ω

|〈x, U−1(G(ω))−G(ω)|2dµ(ω) =

=
∫

Ω

|〈(U−1 − I)∗x,G(ω)〉|2dµ(ω) ≤ B2‖(U−1 − I)∗x‖2 ≤ B2‖I − U−1‖2‖x‖2, for all x ∈ H.

Hence ∫

Ω

|〈x, F (ω)−G(ω)〉|2dµ(ω) ≤ M = min{B1‖I − U‖2, B2‖I − U−1‖2}‖x‖2.

¤

Remark 3.1. Let {F (ω)}ω∈Ω be an (Ω, µ)-frame for H and {G(ω)}ω∈Ω be an (Ω, µ)-Bessel
family in H (with bound M ). Then, in general, {F (ω) + λG(ω)}ω∈Ω is not an (Ω, µ)-frame

for H , where λ is some scalar. However under certain conditions, namely |λ| <
√

A

M
and

∫

Ω

|〈x, F (ω)〉|2dµ(ω)−
∫

Ω

|〈x, λG(ω)〉|2dµ(ω) ≤ γ

(∫

Ω

|〈x, F (ω)〉|2dµ(ω) +

+
∫

Ω

|〈x,G(ω)〉|2dµ(ω)−
∫

Ω

|〈x, F (ω)− λG(ω)〉|2dµ(ω)

)
, for some γ ≥ 2,

the collection {F (ω)− λG(ω)}ω∈Ω turns out to be a (Ω, µ)-frame for H .

4. (Ω, µ)-frames of subspaces

Definition 4.1. Let Ω be a measure space with positive measure µ and {vω}ω∈Ω be a family of
weights, i.e., vω > 0 for all ω ∈ Ω. For each ω ∈ Ω, πWω : H → Wω denote the projection of
H onto Wω . A family of closed subspaces {Wω}ω∈Ω of a Hilbert space H is a (Ω, µ)-frame of
subspaces with respect to {vω}ω∈Ω for H if

(1) for each x ∈ H , ω → ‖πWω(x)‖ is a measurable function on Ω.
(2) there exist constants A and B with 0 < A ≤ B < ∞ such that

A‖x‖2 ≤
∫

Ω

v2
ω‖πWω(x)‖2dµ(ω) ≤ B‖x‖2, x ∈ H . (3)

The constants A and B are called (Ω, µ)-frame bounds for the (Ω, µ)-frame of subspaces. The
(Ω, µ)-frame of subspaces {Wω}ω∈Ω with respect to {vω}ω∈Ω is said to be tight, if in inequality
(3) the constants A and B can be chosen so that A = B . It is called Parseval (Ω, µ)-frame
of subspaces with respect to {vω}ω∈Ω provided A = B = 1. The family {Wω}ω∈Ω is called
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a (Ω, µ)-Bessel family of subspaces with respect to {vω}ω∈Ω with (Ω, µ)-Bessel bound B if it
satisfies the upper inequality in (3).

Definition 4.2. A family {xω}ω∈Ω ⊂ H is said to be a (Ω, µ)-frame family for H if {xω}ω∈Ω

is a (Ω, µ)-frame for [xω]ω∈Ω .

The following theorem gives necessary and sufficient condition for a family of closed subspaces
of a Hilbert space to be a (Ω, µ)-frame of subspaces

Theorem 4.1. For each ω ∈ Ω, let vω > 0 and let {Nω}ω∈Ω be a family of disjoint subspaces
of Ω such that

⋃
ω∈Ω

Nω = Ω. For each ω ∈ Ω, let {xjω}j∈Nω be a (Ω, µ)-frame family with

(Ω, µ)-frame family bounds Aω and Bω . Define Wω = spanj∈Nω
{xjω} for all ω ∈ Ω. Suppose

that 0 < A = infω∈Ω Aω ≤ B = supω∈Ω Bω < ∞. Then {vωxjω}j∈Nω ,ω∈Ω is a (Ω, µ)-frame for
H if and only if {Wω}ω∈Ω is a (Ω, µ)-frame of subspaces of H .

Proof. Since for each ω ∈ Ω, {xjω}j∈Wω is a (Ω, µ)-frame for Nω with (Ω, µ)-frame bounds Aω

and Bω . So, for each x ∈ H
A

∫

ω∈Ω

v2
ω‖πWω(x)‖2dµ(ω) ≤

∫

ω∈Ω

Aωv2
ω‖πWω(x)‖2dµ(ω) ≤

≤
∫

ω∈Ω

∫

j∈Nω

|〈πWω(x), vωxjω〉|2dµ(j)dµ(ω) ≤ B

∫

ω∈Ω

v2
ω‖πWω(x)‖2dµ(ω),

by hypothesis∫

ω∈Ω

∫

j∈Nω

|〈πWj (x), vωxjω〉|2dµ(j)dµ(ω) =
∫

ω∈Ω

∫

j∈Nω

|〈x, vωxjω〉|2dµ(j)dµ(ω) .

Hence, we conclude that if {vωxjω}j∈Nω ,ω∈Ω is a (Ω, µ)-frame for H with bounds C and D ,
then the collection {Wω}ω∈Ω form a (Ω, µ)-frame of subspaces with respect to {vω}ω∈Ω for H
with frame bound C/B and D/A . ¤
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