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AN EXISTENCE OF THE TIME OPTIMAL CONTROL FOR THE OBJECT
DESCRIBED BY THE HEAT CONDUCTIVE EQUATION WITH

NON-CLASSICAL BOUNDARY CONDITION

K.K. HASANOV1, L.K. HASANOVA1

Abstract. Many practical problems in mathematical formulation are reduced to the problems

which require to transfer the system from one state to given another one. These problems

are usually called time optimal problems and are investigated in the mathematical theory of

optimal processes. For the systems with the distributed parameters, these investigations meet

serious difficulties in differ from the systems with the concentrated parameters. Time optimal

problems arise in various technological processes, which are described by the equations of heat

conductivity, diffusions, filtrations. For example, time optimal problem appears in the control

of diffusion process of neutrons in the nuclear reactor. Until now, mainly the problems with

classical boundary conditions have been considered [2, 4, 5, 8, 9, 10].
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1. Introduction

The systems of automatic control of the concentrated parameter objects have been relatively
well studied. Important results on the existence of the time optimal control and the number of
switching of concentrated parameters optimal control have been obtained [1, 3, 8].

The similar problems are actual for the distributed parameter systems as well [2, 4, 5, 9, 10].
In the present paper, we consider time optimal control problem for the linear heat conductive

equation with non-classical boundary condition. The theorems on the existence of the time
optimal control and relay property of the control are proved.

2. Problem statement

Let the controlled system be described by the function y (x, t) that in the domain D =
{0 ≤ x ≤ 1, 0 ≤ t ≤ T} satisfies the equation

∂y

∂t
=

∂2y

∂x2
+ p (x) u (t) , (1)

on the boundary of D the initial
y (x, 0) = y0 (x) (2)

and the boundary conditions

y (0, t) = 0, yx (0, t) = yx (1, t) , (3)

where p (x) 6= 0, y0 (x) are given functions, u (t) is a control.
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As a set of admissible controls we consider the functions

u(t) ∈ U∂ = {u(t) ∈ L2(0, T ) : |u(t)| ≤ 1, a. e (0, T )}
almost everywhere on (0, T ), and the solution of the problem corresponding to the given control
is taken almost everywhere [7]. Note that for p (x) ∈ L2 (0, 1), y0 (x) ∈ W 1

2 (0, 1), y0 (0) = 0 and
for the admissible control u (t) there exists the almost everywhere unique solution y (x, t) of the
problem (1)-(3) that by the means of the function

G (x, s, t) = X0 (x) Y0 (s) +
∞∑

k=1

{
X2k (x)Y2k (s) +

[
X2k−1 (x)− 2

√
λktX2k (x)

]
Y2k−1 (s)

}
e−λkt

may be represented in the form

y (x, t) =

1∫

0

G (x, s, t) y0 (s) ds +

t∫

0

1∫

0

G (x, s, t− τ) p (s) u (τ) dsdτ, (4)

where λk are the eigenvalues, {Xk (x)} is a system of eigen and adjoint functions of the spectral
problem

X ′′ (x) + λX (x) = 0,

X (0) = 0, X ′ (0) = X ′ (1) ,

{Yk (x)} - eigen and adjoint functions of the adjoint problem [6].
For the given function ϕ (x) from L2 (0, 1) it is required to find a control u∗ (t) such that

corresponding solution y∗ (x, t) of the problem (1)-(3) satisfy the condition

y∗ (x, τ0) = ϕ (x) , τ0 ∈ (0, T ) , (5)

where τ0 is the lower bound of the values τ ∈ (0, T ) for which the condition

y (x, τ) = ϕ (x) (6)

is fulfilled for some τ ∈ (0, T ); y (x, t) is a solution of problem (1)-(3) corresponding to some
admissible control u (t).

3. Existence of the optimal control

Here we prove a theorem on the existence of the time optimal control.

Theorem 3.1. If there exists a control u (t) such that corresponding solution y (x, t) of the
problem (1)-(3) satisfies to the condition (6) for some τ ∈ (0, T ), then there exists a time
optimal control u∗ (t) as well, i.e corresponding solution y∗(x, t) of the problem (1)-(3) satisfies
to the condition τ0 = inf {τ}.
Proof. If the functions y0 (x) and ϕ (x) are equivalent on [0,1], we’ll assume that the control time
equals zero, i.e. τ0 = 0. Now suppose that the functions y0 (x) and ϕ (x) are not equivalent. Let
{un (t)} be a minimizing sequence of the admissible controls for which the sequence {yn (x, t)}
of appropriate solutions satisfy the conditions

y1 (x, τ1) = ϕ (x) , y2 (x, τ2) = ϕ (x) , y3 (x, τ3) = ϕ (x) , ... (7)

and
τ1 < τ2 < τ3 < ..., lim

n→∞ τn = τ0. (8)
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Since the set of admissible controls U∂ is bounded in L2 (0, T ), from the sequence {un (t)} we
can choose such a subsequence (denote it also by {un (t)}), that

un (t) → u∗ (t) weakly in L2 (0, τ0) , u∗ (t) ∈ U∂ . (9)

Then from the equality

yn (x, t) =

1∫

0

G (x, s, t) y0 (s) ds +

t∫

0

1∫

0

G (x, s, t− τ) p (s) un (τ) dsdτ,

passing to limit as n →∞, we get

y∗ (x, t) =

1∫

0

G (x, s, t) y0 (s) ds +

t∫

0

1∫

0

G (x, s, t− τ) p (s) u∗ (τ) dsdτ . (10)

Consequently, y∗ (x, t) is a solution of the problem (1)-(3) by the control u∗ (t).
Show that

yn (x, τn) → y∗ (x, τ0) weakly in L2 (0, 1) . (11)

Since
yn (x, τn)− y∗ (x, τ0) = [yn (x, τn)− yn (x, τ0)] + [yn (x, τ0)− y∗ (x, τ0)] (12)

taking into account
lim

n→∞ yn (x, τ0) = y∗ (x, τ0) , (13)

we must show that the relation

yn (x, τn)− yn (x, τ0) → 0 weakly in L2 (0, 1) . (14)

is valid.
From thus one may get (11).

From the identity

yn (x, τn)− yn (x, τ0) =

τn∫

τ0

∂yn (x, t)
∂t

dt

for any function η (x) ∈ L2 (0, 1) we have
1∫

0

[yn (x, τn)− yn (x, τ0)] η (x) dx =

1∫

0

τn∫

τ0

∂yn (x, t)
∂t

η (x) dxdt.

Hence applying the Cauchy-Bunyakovsky inequality, we get

∣∣∣∣∣∣

1∫

0

[yn (x, τn)− yn (x, τ0)] η (x) dx

∣∣∣∣∣∣
≤




1∫

0




τn∫

τ0

∂yn (x, t)
∂t

dt




2

dx




1
2



1∫

0

η2 (x) dx




1
2

≤

≤ (τn − τ0)
1
2




∫∫

D

(
∂yn(x, t)

∂y

)2

dxdt




1
2



1∫

0

η2(x)dx




1
2

.

Taking into account the boundedness of the sequence
{

∂yn(x,t)
∂t

}
in L2 (D) , we get the affir-

mation of (14).
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Considering into account the equalities (13) and (14), from (12) we get the affirmation of
(11). Then it follows from (8) that

y∗ (x, τ0) = ϕ (x) .

The theorem is proved. ¤

4. A theorem on relay property

There we’ll prove theorems on relay property of the high speed optimal-control.

Theorem 4.1. Let the condition of theorem 1 be fulfilled and u∗ (t) be a time optimal control
for the problem (1)-(3), (5). Then

|u∗ (t)| = 1 a. e. on (0, τ0). (15)

Proof. The existence of the time optimal control u∗ (t) follows from theorem 1. Lets prove that
for almost all t ∈ (0, τ0) condition (15) is fulfilled. Denote by y∗ (x, t) the almost everywhere
solution of the problem (1)-(3) by the control u∗ (t). Suppose that relation (15) is not fulfilled.
Then for rather small number ε > 0 there exsts the set e (ε) from (0, τ0) such that mese (ε) > 0
and

|u∗ (t)| ≤ 1− ε for almost all t ∈ e (ε) . (16)

Consider the sequence of the numbers

0 < τ1 < τ2 < τ3 < .... (τk < τ0) and lim
k→∞

τk = τ0. (17)

Denote by en the set from (0, τn) such that

|u∗ (t)| < 1 for almost all t ∈ en. (18)

Denote the characteristic function of the set en by Φn (t), and define the control un (t) by the
following relation

p (x) [un (t)− u∗ (t)] =
Φn (t)
mesen

1∫

0

G (x, s, t− τn) [y∗ (s, τ0)− y∗ (s, τn)] ds. (19)

Hence using the Cauchy - Bunyakovsky inequality, we get

‖p‖ · |un (t)− u∗ (t)| ≤ Φn (t)
mesen




1∫

0

1∫

0

G2 (x, s, t− τn) dsdx




1
2

‖y∗ (·, τ0)− y∗ (·, τn)‖ . (20)

For any ε > 0 we can show such a number N that for n ≥ N we have

|un (t)− u∗ (t)| < ε for t ∈ e (ε) . (21)

By condition (16) it follows that

|un (t)| ≤ |un (t)− u∗ (t)|+ |u∗ (t)| ≤ 1

almost everywhere on en.
Thus, the control un (t) for n ≥ N is admissible.
Assume

yn (x, t) =

1∫

0

G (x, s, t) y0 (s) ds +

t∫

0

1∫

0

G (x, s, t− τ) p (s) un (τ) dsdτ. (22)
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Then yn (x, t) is a solution of the problem (1)-(3) corresponding to the control un (t).
Substituting (19) into (22), we get

yn (x, τn) =

1∫

0

G (x, s, τn) y0 (s) ds +

τn∫

0

1∫

0

G (x, s, τn − σ) p (s) u∗ (σ) dsdσ+

+

τn∫

0

Φn (σ)
mesen

1∫

0




1∫

0

G (x, s, τn − σ) G (s, ξ, σ − τn) ds


 [y∗ (ξ, τ0)− y∗ (ξ, τn)] dξdσ.

Hence, using
1∫

0

Xk (s) Yj (s) ds = δkj ,

1∫

0

G (x, s, τn − σ) G (s, ξ, σ − τn) ds = G (x, ξ, 0) ,

one may obtain

yn (x, τn) =

1∫

0

G (x, s, τn) y0 (s) ds +

τn∫

0

1∫

0

G (x, s, τn − σ) p (s) u∗ (σ) dsdσ+

+(y∗ (x, τ0)− y∗ (x, τn)) . (23)

Further, from equality (10) we have

y∗ (x, τn) =

1∫

0

G (x, s, τn) y0 (s) ds +

τn∫

0

1∫

0

G (x, s, τn − σ) p (s) u∗ (σ) dsdσ.

Taking into account the equality in (23), we have

yn (x, τn) = y∗ (x, τ0) = ϕ (x) . (24)

Since τn < τ0, the equality (24) contradicts the assumption that τ0 is an optimal time. The
theorem is proved. ¤

5. Uniqueness

Lets prove that time optimal control is unique almost everywhere.

Theorem 5.1. Let the conditions of Theorem 2 be fulfilled. Then the time optimal control is
unique.

Proof. Assume that there exist two time optimal controls u1 (t) , u2 (t).
Then

y1 (x, τ0) = y2 (x, τ0) = ϕ (x) , (25)

where y1 (x, t) and y2 (x, t) are the solutions of problem (1)-(3), corresponding to the controls
u1 (t) and u2 (t), respectively.

For any θ ∈ (0, 1) assume

uθ (t) = (1− θ) u1 (t) + θu2 (t) .

Then, using this formula for the solutions y1 (x, t) and y2 (x, t), we get

yθ (x, τ0) = (1− θ) y1 (x, τ0) + θy2 (x, τ0) =

=

1∫

0

G (x, s, τ0) y0 (s) ds +

τ0∫

0

1∫

0

G (x, s, τ0 − σ) p (s) uθ (σ) dsdσ.
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From the condition (25) we have

yθ (x, τ0) = (1− θ) y1 (x, τ0) + θy2 (x, τ0) = (1− θ) ϕ (x) + θϕ (x) = ϕ (x) .

Thus, the control uθ (t) is also time optimal. Therefore, the control uθ (t) should satisfy the
condition |uθ (t)| = 1 almost everywhere on (0, τ0). But it is possible only if u1 (t) = u2 (t)
almost everywhere. The theorem is proved. ¤

6. First order necessary conditions of optimality

Let u∗ (t) be a time optimal control, y∗ (x, t) be a solution of problem (1)-(3) corresponding
the control u∗ (t), t ∈ [0, τ0], τ0 be an optimal time. Determine the adjoint state z (x, t) as a
solution of the equation

∂z

∂t
+

∂2z

∂x2
= 0 in Dτ0 = {0 < x < 1, 0 < t < τ0} , (26)

satisfying initial
z (x, τ0) = h (x) , 0 ≤ x ≤ 1, (27)

and boundary conditions

zx (1, t) = 0, z (0, t) = z (1, t) , 0 ≤ t ≤ τ0, (28)

where h (x) ∈ L2 (0, 1).

Theorem 6.1. Let the conditions of Theorem 1 be fulfilled and u∗ (x) , t ∈ (0, τ0) be a time
control. Then there exists a function h (x) ∈ L2 (0, 1) corresponding to the solution z (x, t) of
problem (26)-(28) such that for any v ∈ [0, 1] the inequality




1∫

0

z (x, t) p (x) dx


 (v − u∗ (t)) ≤ 0, (29)

holds true on (0, τ0).

Proof. Take an arbitrary admissible control u (t) and denote by y (x, t) the solution of problem
(1)-(3) corresponding to this control. Represent the solution y (x, t) in the form

y (x, t) =

1∫

0

G (x, s, t) y0 (s) ds +

t∫

0

1∫

0

G (x, s, t− σ) p (s) u (σ) dsdσ .

Then we have

y (x, τ0)− y∗ (x, τ0) =

τ0∫

0

1∫

0

G (x, s, τ0 − σ) p (s) (u (σ)− u∗ (σ)) dsdσ ,

where y∗ (x, t) is a solution of the problem (1)-(3) corresponding to the control u∗ (t). Multiplying
the both hand sides of this equality by the function h (x) and integrating we get

1∫

0

[y (x, τ0)− y∗ (x, τ0)]h (x) dx =

1∫

0




τ0∫

0

1∫

0

G (x, s, τ0 − σ) p (s) (u (σ)− u∗ (σ)) dsdσ


h (x) dx.

Hence, changing the integration sign, we have
1∫

0

[y (x, τ0)− y∗ (x, τ0)]h (x) dx =
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=

τ0∫

0

1∫

0




1∫

0

G (s, x, τ0 − σ) h (s) ds


 p (x) (u (σ)− u∗ (σ)) dxdσ. (30)

We can directly verify that the function

z (x, t) =

1∫

0

G (s, x, τ0 − t) h (s) ds (31)

is a solution of the problem (26)-(28).
Taking into account (31) in (30), we get

1∫

0

[y (x, τ0)− y∗ (x, τ0)]h (x) dx =

τ0∫

0

1∫

0

z (x, t) p (x) (u (t)− u∗ (t)) dxdt. (32)

Since |u (t)| ≤ 1 and |u∗ (t)| = 1 almost everywhere on (0, τ0), then u (t) − u∗ (t) ≤ 0 almost
everywhere on (0, τ0). Choose h (x) from L2 (0, 1) so that the solution z (x, t) of the problem
(26)-(28) satisfy the inequality

1∫

0

z (x, t) p (x) dx ≥ 0, a.e. on (0, τ0) .

Then from (32) we get that for any function u (t) ∈ ϑ∂ the following condition is fulfilled:
τ0∫

0

1∫

0

z (x, t) p (x) (u (t)− u∗ (t)) dxdt ≤ 0. (33)

Hence, taking into account the availability of local restrictions on the controls we get the in-
equality




1∫

0

z (x, t) p (x) dx


 (v − u∗ (t)) ≤ 0 a.e. on (0, τ0) , and for any v ∈ [0, 1] . (34)

The last inequality indeed is the first order necessary condition of optimality for the considered
problem.

¤
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