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NUMERICAL CONFORMAL MAPPING VIA A BOUNDARY INTEGRAL
EQUATION WITH THE ADJOINT GENERALIZED NEUMANN KERNEL

MOHAMED M.S. NASSER1, ALI H.M. MURID2,3, ALI W.K. SANGAWI3,4

Abstract. This paper presents a new uniquely solvable boundary integral equation for com-

puting the conformal mapping, its derivative and its inverse from bounded multiply connected

regions onto the five classical canonical slit regions. The integral equation is derived by re-

formulating the conformal mapping as an adjoint Riemann-Hilbert problem. From the adjoint

Riemann-Hilbert problem, we derive a boundary integral equation with the adjoint generalized

Neumann kernel for the derivative of the boundary correspondence function θ′. Only the right-

hand side of the integral equation is different from a canonical region to another. The function

θ′ is integrated to obtain the boundary correspondence function θ. The integration constants as

well as the parameters of the canonical region are computed using the same uniquely solvable

integral equation. A numerical example is presented to illustrate the accuracy of the proposed

method.
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1. Introduction

The classical canonical slit regions for multiply connected regions are: an annulus with con-
centric circular slit region, a disk with concentric circular slit region, the circular slit region, the
radial slit region, and the parallel slit region (see [5, 24]). Assume that Ω is any one of these
five canonical regions. It is well-known that a conformal mapping w = ω(z) form any bounded
multiply connected region G in the z-plane onto the canonical slit region Ω in the w-plane always
exist. Several numerical methods have been proposed for computing such mapping functions
[1, 2, 10, 11, 13, 15, 19-21, 25, 27, 29-35, 39-41]. Most of these numerical methods can be
used to calculate the mapping function onto only one canonical region [15, 29-35, 39]. Other
methods can be used to compute the mapping function, in a unified way, onto two canonical
regions [1, 11, 13, 25, 27] or three canonical regions [2]. Only the method presented in [19-21]
can be used to compute the mapping function onto the five canonical regions in a unified way.
The method is based on a boundary integral equation with the generalized Neumann kernel

Most of the above numerical methods require solving Riemann-Hilbert (RH) problems [1, 2,
11, 15, 19-22, 25]. The iterative method in [36] requires at each iterative step the solution of
a RH problem. In [1, 2, 15, 25], the mapping function is expressed in terms of a solution of a
modified Dirichlet problem which is a special case of the RH problem.
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In [19, 20], the mapping function ω(z) onto the above five classical canonical slit regions
was reformulated in terms of an auxiliary function f(z) which is a solution of a RH problem.
Then, by the properties of the mapping function on the boundary Γ := ∂G, the function f(z)
is written as a solution of a RH problem with the coefficient function A(t) = η(t), where η(t)
is a parametrization of the boundary Γ. The RH problem is solved using a uniquely solvable
boundary integral equation with the generalized Neumann kernel. By solving the integral equa-
tion, we obtain the boundary values of the auxiliary function f(z) and the parameters of the
canonical regions, and hence we obtain the boundary values of the mapping function ω(z). The
values of the mapping function ω(z) for interior points are computed by the Cauchy integral
formula. The method can be used for regions G with smooth or piecewise smooth boundaries.

A formulation of the conformal mapping from unbounded multiply connected circular regions
onto the radial or circular slit domain, or to domains with both radial and circular slit in terms
of a RH problem is given in [11]. The same approach was used in [16] for conformal mapping
from multiply connected circular regions onto the circular slit domain. These methods can be
used only if the boundaries of the original region G are circles. The function ω′(z)/ω(z) was
reformulated in terms of an auxiliary function which, by properties of the function ω′(z)/ω(z)
on the boundary Γ, is a solution of a RH problem. Since the boundaries of the original region G

are circles, the coefficient function of the RH problem formulated in [11, 16] is equivalent to the
function Ã(t) = η̇(t), where Ã is the adjoint of the function A(t) = 1 (see [38, Eq. (11)] for the
definition of the adjoint function). Hence, the RH problem formulated in [11, 16] is the adjoint
of the RH problem with the coefficient function A(t) = 1.

This paper presents a combination of the approaches presented in [11, 16] and [19-21]. In
formulating the mapping function as a RH problem, we shall use the approach presented [11, 16].
For solving the RH problem, we shall use the boundary integral equation approach as in [19-22].

Firstly, we used the approach presented in [11, 16], with slight modifications, to reformulate
the mapping function from bounded multiply connected regions onto the above five classical
canonical slit regions in terms of a RH problems. The mapping function will be written in terms
of an auxiliary function F (z). We define also an auxiliary function f(z) in terms of the function
F (z) and its derivative F ′(z). For the first four canonical regions, the properties of the function
ω′(z)/ω(z) on the boundary Γ implies that the function f(z) is a solution of a RH problem with
the coefficient function Ã(t) = η̇(t)/η(t). For the last canonical region, we get the same RH
problem form the properties of the function ω′(z) on the boundary Γ. The RH problem which
will be formulated in this paper is the adjoint of the RH problem formulated in [19, 20]. Only
the right-hand side of the RH problem is different from a canonical region to another.

Secondly, based on the results presented in [38], we shall use the formulated RH problem
to derive a boundary integral equation for the derivative θ′ of the boundary correspondence
function. The kernel of the derived integral equation is the adjoint of the generalized Neumann
kernel in [19, 20]. The derived integral equation has appeared in [23] for solving the Dirichlet
problem and the Neumann problem in multiply connected regions. It is not uniquely solvable.
However, based on the properties of the function θ′ and in view of the results presented in [23],
the integral equation can be modified to obtain a uniquely solvable boundary integral equation
for computing the function θ′. Only the right-hand side of the integral equation is different
from a canonical region to another. The boundary correspondence function θ will be computed
as an anti-derivative of the function θ′. The integration constants as well as the parameters of
the canonical regions will be calculated by solving the same uniquely solvable integral equation.
Hence, we obtain the boundary values of the mapping function ω(z) and the boundary values
of its derivative ω′(z). The values of the mapping function w = ω(z) and its derivative ω′(z) for
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z ∈ G will be calculated by means of the Cauchy integral formula. The presented method can
also be used to compute the inverse mapping function z = ω−1(w) from Ω onto G. The values of
the inverse mapping function z = ω−1(w) will be calculated from the boundary correspondence
function θ and its derivative θ′ using the same approach used in [12, p. 380] for simply connected
regions.

Other integral equations for numerical computing of conformal mapping of multiply connected
regions have been derived in [31-35, 39]. The approach used in [31-35, 39] for deriving the integral
equations is completely different from the approach used in this paper or in [19-22]. It is an
extension of the approach used in [18, 26] to derive boundary integral equation for conformal
mapping of simply connected regions. It has been used also in [17] to derive an integral equation
for conformal mapping of bounded multiply connected regions onto an annulus with circular
slits.

The method presented in [31-35, 39] depends on three integral equations. The first two
boundary integral equations were derived from certain boundary relationships on the bound-
ary Γ. The third integral equation is the boundary integral equation with adjoint generalized
Neumann kernel which has been derived in [23]. The first integral equation is used to calculate
the derivative ω′(z). However, the kernel of this integral equation contains the parameters of
the canonical region which should be calculated first using the third integral equation. The
second integral equation is used to calculate θ′. The kernel of the second integral equation is the
adjoint Neumann kernel which is different from the adjoint generalized Neumann kernel. Then,
the boundary values of the mapping function ω(z) are computed from a certain boundary rela-
tionship that relates the mapping function ω(z) on the boundary Γ with its derivative ω′(z), θ′,
and the parameters of the canonical regions.

2. Notations and auxiliary material

We consider bounded multiply connected regions G of connectivity m + 1 ≥ 1 with boundary
Γ = ∪m

j=0Γj consisting of m + 1 smooth closed Jordan curves Γj , j = 0, 1, 2, . . . , m. The outer
boundary curve Γ0 is oriented counterclockwise and the inner boundaries Γ1, . . . ,Γm are oriented
clockwise. The complement G− := C \G consists of m bounded simply connected components
Gj interior to Γj , j = 1, 2, . . . , m, and an unbounded simply connected component G0 exterior
to Γ0 (see Figure 2).

Γ0

Γ2Γ
m

Γ1G−

2

G−

m G G−

1

G−

0

Figure 1. The bounded multiply connected region G.

The curves Γj are parameterized by a 2π-periodic twice continuously differentiable complex
functions ηj(t) with non-vanishing first derivatives

η̇j(t) = dηj(t)/dt 6= 0, t ∈ Jj := [0, 2π], j = 0, 1, . . . ,m. (1)
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The total parameter region J is the disjoint union of the intervals Jj . We define a parametrization
of the whole boundary Γ as the complex function η defined on J by

η(t) :=





η0(t), t ∈ J0,
...
ηm(t), t ∈ Jm.

(2)

Let H be the space of all real Hölder continuous 2π−periodic functions φ(t) of the parameter
t on Jj for j = 0, . . . , m, i.e.,

φ(t) =





φ0(t), t ∈ J0,
...
φm(t), t ∈ Jm,

with real Hölder continuous 2π−periodic functions φ0, . . . , φm. In view of the smoothness of
η, a real Hölder continuous function φ̂ on Γ can be interpreted via φ(t) := φ̂(η(t)), t ∈ J , as
a function φ ∈ H; and vice versa. Let S be the subspace of H that consists of real piecewise
constant functions of the form

h(t) =





h0, t ∈ J0,
...
hm, t ∈ Jm,

with real constants h0, . . . , hm. For simplicity, the piecewise constant function h will be denoted
by

h(t) = (h0, . . . , hm).

Let w = ω(z) be the mapping function from the region G onto Ω where Ω is any of the above
canonical regions and let L := ∂Ω. Let also L be parametrized by

ζ(t), t ∈ Ĵ , (3)

where Ĵ is a suitable parameter region. The function ζ(s) contains unknown parameters known
as the parameters of the canonical region. The mapping function w = ω(z) is completely
described by its boundary values which can be described by

ω(η(t)) = ζ(θ(t)), t ∈ J, (4)

where the function θ(t) is called the boundary correspondence function. It follows from (4) that
determining the function θ(t) and the parameters of the canonical region completely determine
the boundary values of the mapping function ω(z).

By differentiation both sides of (4) with respect to the parameter t, we obtain

η̇(t)ω′(η(t)) = θ′(t)ζ(θ(t)), t ∈ J. (5)

Hence, the function θ(t) and its derivative θ′(t) determine the boundary values of the derivative
ω′(z) of the mapping function.

3. Generalized Neumann kernel

Let A be the continuously differentiable complex function defined by

A(t) := η(t), t ∈ J. (6)
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We define two real kernels

N(s, t) :=
1
π

Im
(

A(s)
A(t)

η̇(t)
η(t)− η(s)

)
, (7)

M(s, t) :=
1
π

Re
(

A(s)
A(t)

η̇(t)
η(t)− η(s)

)
. (8)

The kernel N(s, t) is known as the generalized Neumann kernel formed with A. The kernel N is
continuous and the kernel M has a cotangent singularity type (see [38] for more details). Thus,
the operator

Nµ(s) :=
∫

J

N(s, t)µ(t)dt, s ∈ J, (9)

is a Fredholm integral operator and the operator

Mµ(s) :=
∫

J

M(s, t)µ(t)dt, s ∈ J, (10)

is a singular integral operator.
The function Ã defined by

Ã(t) =
η̇(t)
A(t)

=
η̇(t)
η(t)

(11)

is known as the adjoint function to the function A. Then, the generalized Neumann kernel Ñ

formed with Ã is defined by

Ñ(s, t) :=
1
π

Im

(
Ã(s)
Ã(t)

η̇(t)
η(t)− η(s)

)
. (12)

We define also the real kernel M̃ by

M̃(s, t) :=
1
π

Re

(
Ã(s)
Ã(t)

η̇(t)
η(t)− η(s)

)
. (13)

Then,
Ñ(s, t) = −N∗(s, t) and M̃(s, t) = −M∗(s, t), (14)

where N∗(s, t) = N(t, s) is the adjoint kernel of the generalized Neumann kernel N(s, t) and
M∗(s, t) = M(t, s) is the adjoint kernel of the kernel M(s, t) (see [23, 38]). Let the Fredholm
operator Ñ and the singular operator M̃ be defined as in (9) and (10). Then (14) implies that

N∗ = −Ñ, M∗ = −M̃, (15)

where N∗ and M∗ are the adjoint operators to the operators N and M respectively.
Finally, we define an integral operator J by

Jµ(s) :=
∫

J

1
2π

m∑

j=0

χ[j](s)χ[j](t)µ(t)dt, (16)

where χ[j] is the piecewise constant functions defined on J by

χ[j](t) :=
{

1, if t ∈ Jj ,

0, if t /∈ Jj ,
(17)

j = 0, 1, . . . , m. Then, by [23, Theorem 4], we have

Null(I + N∗ + J) = {0}. (18)
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For j = 0, . . . , m, let φ[j] be the unique solution of the integral equation

(I + N∗ + J)φ[j] = −χ[j]. (19)

Thus, we have from [23] the following theorem.

Theorem 3.1. Let γ, µ ∈ H and h, p ∈ S such that

Af = γ + h + i[µ + ν] (20)

are boundary values of an analytic function f(z) in G. Then the functions h = (h0, . . . , hm) and
ν = (ν0, . . . , νm) are given by

h =
m∑

k=0

(
γ, φ[k]

)
χ[k], (21)

ν =
m∑

k=0

(
µ, φ[k]

)
χ[k]. (22)

Proof. The formula (21) follows from [23, Theorem 5]. For the formula (22), the function

f̂(z) := −if(z)

is analytic function in G and has the boundary values

Af̂ = µ + ν + i(−γ − h). (23)

Then the formula (22) follows from [23, Theorem 5]. ¤

Theorem 3.2. Let υ, ϕ, ψ, φ ∈ H, f(z) be analytic function in G and g(z) be analytic function
in G− with g(∞) = 0 such that the boundary values of the functions f and g are given by

Ã(t)f(η(t)) + Ã(t)g(η(t)) = υ + iϕ, (24)

where
Jϕ = h̃ = (h̃0, . . . , h̃m) (25)

is given function. Let also the boundary values of the function g are given by

Ã(t)g(η(t)) = ψ + iφ. (26)

Then the function ϕ is the unique solution of the integral equation

(I + N∗ + J)ϕ = M∗υ + 2φ + h̃. (27)

Proof. It follows from (24) and from (26) that the boundary values of the function f are given
by

Ã(t)f(η(t)) = (υ(t)− ψ(t)) + i(ϕ(t)− φ(t)), (28)

which implies that the function f(z) is a solution of the interior adjoint Riemann-Hilbert problem

Re[Ã(t)f(η(t))] = υ(t)− ψ(t). (29)

Then, in view of (14) and (28), it follows from [38, Theorem 2(c)] that the function ϕ−φ satisfies
the integral equation

(I + N∗)(ϕ− φ) = M∗(υ − ψ). (30)

Similarly, it follows from (26) that the function g(z) is a solution of the exterior adjoint Riemann-
Hilbert problem

Re[Ã(t)g(η(t))] = ψ(t). (31)
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Then, in view of (14) and (26), it follows from [38, Theorem 2(d)] that the function φ satisfies
the integral equation

(I−N∗)φ = −M∗ψ. (32)

Subtracting (32) form (30) yields the integral equation

(I + N∗)ϕ = 2φ + M∗υ. (33)

By adding (25) to (33), we obtain (27). ¤

The Riemann-Hilbert problem (29) is the adjoint of the Riemann-Hilbert problem (11) in [20].
The operator N∗ is also the adjoint of the operator N in [20]. In this paper, the integral
equation (27) will be used to derive an integral equation for θ′. Although, the operator M∗

appears on the right-hand side of the integral equation (27), the term M∗υ will vanish for the
integral equation for θ′ as we shall see in late sections.

Lemma 3.1. If f(z) is an analytic in G with a simple pole at z = 0 with

c = Res
z=0

ω(z), (34)

then the functions f(z) and f ′(z) can be computed for z ∈ G by

f(z) =
c

z
+

1
2πi

∫

Γ

f(η)
η − z

dη, (35)

f ′(z) = − c

z2
+

1
2πi

∫

Γ

f ′(η)
η − z

dη. (36)

Proof. The function

f̂(z) := f(z)− c

z
(37)

and its derivative

f̂ ′(z) := f ′(z) +
c

z2
(38)

are analytic in G. Hence, by the Cauchy integral formula, we have

f̂(z) =
1

2πi

∫

Γ

f̂(η)
η − z

dη =
1

2πi

∫

Γ

f(η)
η − z

dη − 1
2πi

∫

Γ

1
η − z

c

η
dη (39)

and

f̂ ′(z) =
1

2πi

∫

Γ

f̂ ′(η)
η − z

dη =
1

2πi

∫

Γ

f ′(η)
η − z

dη +
1

2πi

∫

Γ

1
η − z

c

η2
dη. (40)

Since
1

2πi

∫

Γ

1
η − z

1
η
dη = 0 and

1
2πi

∫

Γ

1
η − z

1
η2

dη = 0,

then it follows from (37), (38), (39), and (40) that the functions f(z) and f ′(z) are given by (35)
and (36). ¤



M.M.S. NASSER et al.: NUMERICAL CONFORMAL MAPPING... 103

4. Computing the function θ

Assume that θ(t), t ∈ J , is the boundary correspondence function of the mapping function
from the region G onto any of the canonical slit regions listed above. In this paper, we shall
calculate the derivative θ′(t) using a boundary integral equation with the adjoint generalized
Neumann kernel. More precisely, we shall show that the function θ′ is the unique solution of the
integral equation

(I + N∗ + J)θ′ = φ̂, (41)

where only the the right-hand side term φ̂ is different from a canonical region to another.
For k = 0, 1, . . . ,m, the functions θk(t) can be calculated from θ′k(t) by

θk(t) =
∫

θ′k(t)dt + ck =: ρk(t) + ck, t ∈ Jk, (42)

where ck are undetermined real constants and the real functions ρk(t) are defined by

ρk(t) :=
∫

θ′k(t)dt, t ∈ Jk. (43)

The undetermined constants ck in (42) will be calculated using the method explained in Theo-
rem 3.1 and the functions ρk(t) will be calculated using Fourier series. The functions θk(t) are
not necessary a 2π-periodic. However, the derivatives θ′k(t) are 2π-periodic. Thus, the functions
θ′k(t) can be represented by a Fourier series

θ′k(t) = a
[k]
0 +

∞∑

j=1

a
[k]
j cos jt +

∞∑

j=1

b
[k]
j sin jt, t ∈ Jk. (44)

Hence the functions ρk(t) have the Fourier series representation

ρk(t) = a
[k]
0 t +

∞∑

j=1

a
[k]
j

j
sin jt−

∞∑

j=1

b
[k]
j

j
cos jt, t ∈ Jk. (45)

5. An annulus with circular slit region

This canonical region Ω consists of a circular ring centered at the origin slit along m − 1
arcs of circles. We assume that ω maps the curve Γ0 onto the unit circle |w| = 1, the curve Γ1

onto the circle |w| = R1 and the curves Γj , j = 2, 3, . . . , m, onto slits on the circles |w| = Rj ,
where R1, . . . , Rm are undetermined real constants. Then, the boundary values of the mapping
function ω are given by

ω(η(t)) = R(t)eiθ(t), (46)

where θ(t) is the boundary correspondence function and R(t) = (1, R1, . . . , Rm). Thus, by
differentiating both sides of (46), we obtain

η̇(t)
ω′(η(t))
ω(η(t))

= iθ′(t). (47)

The function ω(z) is uniquely determined by assuming

ω(0) > 0. (48)

Thus the function ω(z) can be expressed in the form

ω(z) = c

(
1− z

z1

)
ezF (z), (49)
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where c := ω(0) is an undetermined positive real constant, z1 is a fixed point in G1 and F (z) is
an auxiliary unknown function. Hence

η(t)F (η(t)) + ln c + log
(

1− η(t)
z1

)
= log(ω(η(t))). (50)

Thus, by differentiating both sides of (50) and using (47), we obtain

η̇(t)
(
F (η(t)) + η(t)F ′(η(t))

)
+ η̇(t)

1
η(t)− z1

= iθ′(t). (51)

The function f(z) defined in G by

f(z) := zF (z) + z2F ′(z) +
z

z − z1
, (52)

and the function g(z) defined in G− by g(z) := 0 satisfy the assumptions of Theorem 3.2 and
their boundary values satisfy (24) with

υ(t) = 0 and ϕ(t) = θ′(t). (53)

Since the image of the curve Γ0 is counterclockwise oriented, the image of the curve Γ1 is
clockwise oriented and the images of the curves Γj , j = 2, . . . , m, are slits so we have θ0(2π)−
θ0(0) = 2π, θ1(2π) − θ1(0) = −2π and θj(2π) − θj(0) = 0. Hence the function h̃(t) in (27) is
given by

h̃(t) = Jϕ = Jθ′ = (1,−1, 0, . . . , 0). (54)

Then, by Theorem 3.2, the function θ′(t) is the unique solution of the integral equation

(I + N∗ + J)θ′ = h̃(t). (55)

In view of (6), (42) and (46), it follows from (50) that the boundary values of the function
F (z) satisfy

A(t)F (η(t)) = γ(t) + h(t) + i[(ρ(t) + µ(t)) + ν(t)] (56)

where

h(t) =
(

ln
1
c
, ln

R1

c
, . . . , ln

Rm

c

)
∈ S,

ν(t) = (c0, c1, . . . , cm) ∈ S,

and the real functions γ, µ are defined by

γ(t) + iµ(t) := − log
(

1− η(t)
z1

)
. (57)

The boundary values of the mapping function ω are given by (46). By (47), the boundary
values of the derivative ω′ are given by

ω′(η(t)) =
iθ′(t)R(t)eiθ(t)

η̇(t)
. (58)

Then, we have for z ∈ G,

ω(z) =
1

2πi

∫

Γ

ω(η)
η − z

dη =
1

2πi

∫

J

R(t)eiθ(t)

η(t)− z
η̇(t)dt, (59)

and

ω′(z) =
1

2πi

∫

Γ

ω′(η)
η − z

dη =
1
2π

∫

J

θ′(t)R(t)eiθ(t)

η(t)− z
dt. (60)
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If w ∈ Ω, then by the Cauchy integral formula,

ω−1(w) =
1

2πi

∫

∂Ω

ω−1(ξ)
ξ − w

dξ, (61)

which on introducing ξ = R(θ)eiθ and θ = θ(t), we obtain

ω−1(w) =
1

2πi

∫

J

η(t)
R(t)eiθ(t) − w

R(t)eiθ(t)iθ′(t)dt, (62)

where we use the notation R(θ(t)) = R(t) since R is constant on each interval Jj , j = 0, 1, . . . ,m.

6. A disc with circular slit region

This canonical region Ω is the interior of the unit circle which has been slit along m arcs
of circles. We assume that ω maps the curve Γ0 onto the unit circle |w| = 1 and the curves
Γj , j = 1, 2, . . . ,m, onto slits on the circles |w| = Rj , where R1, . . . , Rm are undetermined real
constants. Then, the boundary values of the mapping function ω are given by

ω(η(t)) = R(t)eiθ(t), (63)

where θ(t) is the boundary correspondence function and R(t) = (1, R1, . . . , Rm). Thus, by
differentiating both sides of (63), we obtain

η̇(t)
ω′(η(t))
ω(η(t))

= iθ′(t). (64)

The function ω(z) is uniquely determined by assuming

ω(0) = 0, ω′(0) > 0. (65)

Thus the function ω(z) can be expressed in the form

ω(z) = c z ezF (z), (66)

where c := ω′(0) is an undetermined positive real constant and F (z) is an auxiliary unknown
function. Hence

η(t)F (η(t)) + ln c + log η(t) = log(ω(η(t))). (67)

Thus, by differentiating both sides of (67) and using (64), we obtain

η̇(t)
(
F (η(t)) + η(t)F ′(η(t))

)
+

η̇(t)
η(t)

= iθ′(t). (68)

The function f(z) defined in G by

f(z) := zF (z) + z2F ′(z) + 1, (69)

and the function g(z) defined in G− by g(z) := 0 satisfy the assumptions of Theorem 3.2 and
their boundary values satisfy (24) with

υ(t) = 0 and ϕ(t) = θ′(t). (70)

Since the image of the curve Γ0 is counterclockwise oriented and the images of the curves Γj ,
j = 1, . . . ,m, are slits so we have θ0(2π)−θ0(0) = 2π and θj(2π)−θj(0) = 0. Hence the function
h̃(t) in (27) is given by

h̃(t) = Jϕ = Jθ′ = (1, 0, . . . , 0). (71)

Then, by Theorem 3.2, the function θ′(t) is the unique solution of the integral equation

(I + N∗ + J)θ′ = h̃(t). (72)



106 TWMS J. PURE APPL. MATH., V.5, N.1, 2014

In view of (6), (42) and (63), it follows from (67) that the boundary values of the function
F (z) satisfy

A(t)F (η(t)) = γ(t) + h(t) + i[(ρ(t) + µ(t)) + ν(t)] (73)

where

h(t) =
(

ln
1
c
, ln

R1

c
, . . . , ln

Rm

c

)
∈ S,

ν(t) = (c0, c1, . . . , cm) ∈ S,

and the real functions γ, µ are defined by

γ(t) + iµ(t) := − log(η(t)). (74)

The boundary values of the mapping function ω are given by (63). By (64), the boundary
values of the derivative ω′ are given by

ω′(η(t)) =
iθ′(t)R(t)eiθ(t)

η̇(t)
. (75)

Hence, the values of mapping function ω(z) and its derivative ω′(z) are given for z ∈ G by

ω(z) =
1

2πi

∫

Γ

ω(η)
η − z

dη =
1

2πi

∫

J

R(t)eiθ(t)

η(t)− z
η̇(t)dt, (76)

and

ω′(z) =
1

2πi

∫

Γ

ω′(η)
η − z

dη =
1
2π

∫

J

θ′(t)R(t)eiθ(t)

η(t)− z
dt. (77)

The values of inverse mapping function ω−1(w) are given for w ∈ Ω by

ω−1(w) =
1

2πi

∫

∂Ω

ω−1(ξ)
ξ − w

dξ, (78)

which on introducing ξ = R(θ)eiθ and θ = θ(t) becomes

ω−1(w) =
1

2πi

∫

J

η(t)
R(t)eiθ(t) − w

R(t)eiθ(t)iθ′(t)dt. (79)

7. Circular slit region

This canonical region Ω is the entire w−plane with m+1 slits along the circles |w| = Rk where
R0, R1, . . . , Rm are undetermined real constants. Then, the boundary values of the mapping
function ω are given by

ω(η(t)) = R(t)eiθ(t) (80)

where θ(t) is the boundary correspondence function and R(t) = (R0, R1, . . . , Rm). Thus, by
differentiating both sides of (80), we obtain

η̇(t)
ω′(η(t))
ω(η(t))

= iθ′(t). (81)

The function ω can be uniquely determined by assuming

ω(α) = 0, ω(0) = ∞, Res
z=0

ω(z) = 1, (82)

where α is a fixed point in G. Hence ω can be written as

ω(z) =
(

1
z
− 1

α

)
ezF (z), (83)
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where F (z) is an auxiliary unknown function. Hence

η(t)F (η(t)) + log
(

1
η(t)

− 1
α

)
= log(ω(η(t))). (84)

Thus, by differentiating both sides of (84) and using (81), we obtain

η̇(t)
(
F (η(t)) + η(t)F ′(η(t))

)
+

η̇(t)
η(t)

α

η(t)− α
= iθ′(t). (85)

The function f(z) defined in G by

f(z) := zF (z) + z2F ′(z), (86)

and the function g(z) defined in G− by

g(z) :=
α

z − α
, (87)

satisfy the assumptions of Theorem 3.2 and their boundary values satisfy (24) with

υ(t) = 0 and ϕ(t) = θ′(t). (88)

Since the image of the curves Γj , j = 0, 1, . . . ,m, are slits so we have θj(2π)− θj(0) = 0. Hence
the function h̃(t) in (27) is given by

h̃(t) = Jϕ = Jθ′ = (0, 0, . . . , 0). (89)

Then, by Theorem 3.2, the function θ′(t) is the unique solution of the integral equation

(I + N∗ + J)θ′ = 2φ, (90)

where

φ(t) := Im[Ã(t)g(η(t))] = Im
[
η̇(t)
η(t)

α

η(t)− α

]
.

In view of (6), (42) and (80), it follows from (84) that the boundary values of the function
F (z) satisfy

A(t)F (η(t)) = γ(t) + h(t) + i[(ρ(t) + µ(t)) + ν(t)], (91)

where
h(t) = (lnR0, ln R1, . . . , lnRm) ∈ S,

ν(t) = (c0, c1, . . . , cm) ∈ S,

and the real functions γ, µ are defined by

γ(t) + iµ(t) := − log
(

1
η(t)

− 1
α

)
. (92)

The boundary values of the mapping function ω are given by (80). By (81), the boundary
values of the derivative ω′ are given by

ω′(η(t)) =
iθ′(t)R(t)eiθ(t)

η̇(t)
. (93)

Since Resz=0 ω(z) = 1, then, by (35) and (36), the values of the mapping function ω(z) and its
derivative ω′(z) are given for z ∈ G by

ω(z) =
1
z

+
1

2πi

∫

Γ

ω(η)
η − z

dη =
1
z

+
1

2πi

∫

J

R(t)eiθ(t)

η(t)− z
η̇(t)dt, (94)
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and

ω′(z) = − 1
z2

+
1

2πi

∫

Γ

ω′(η)
η − z

dη = − 1
z2

+
1
2π

∫

J

θ′(t)R(t)eiθ(t)

η(t)− z
dt. (95)

For w ∈ Ω, then by the Cauchy integral formula and since ω−1(∞) = 0, the values of the
inverse mapping function ω−1(w) are given by

ω−1(w) =
1

2πi

∫

∂Ω

ω−1(ξ)
ξ − w

dξ, (96)

which on introducing ξ = R(θ)eiθ and θ = θ(t) becomes

ω−1(w) =
1

2πi

∫

J

η(t)
R(t)eiθ(t) − w

R(t)eiθ(t)iθ′(t)dt. (97)

8. Radial slit region

This canonical region Ω is the entire w−plane with m + 1 slits along the rays arg(w) = Rk

where Rk, k = 0, 1, . . . ,m, are undetermined real constants. Then, the boundary values of the
mapping function ω are given by

ω(η(t)) = eθ(t)eiR(t), (98)

where θ(t) is the boundary correspondence function and R(t) = (R0, R1, . . . , Rm). We use
the notation eθ(t) to emphasize that the functions multiplied by eiRk are positive. Thus, by
differentiating both sides of (98), we obtain

η̇(t)
ω′(η(t))
ω(η(t))

= θ′(t). (99)

The function ω can be uniquely determined by assuming

ω(α) = 0, ω(0) = ∞, Res
z=0

ω(z) = 1, (100)

where α is a fixed point in G. Hence ω can be written as

ω(z) =
(

1
z
− 1

α

)
eizF (z) (101)

where F (z) is an auxiliary unknown function. Hence

−η(t)F (η(t)) + i log
(

1
η(t)

− 1
α

)
= i log(ω(η(t))). (102)

Thus, by differentiating both sides of (102) and using (99), we obtain

η̇(t)
(−F (η(t))− η(t)F ′(η(t))

)
+

η̇(t)
η(t)

αi
η(t)− α

= iθ′(t). (103)

The function f(z) defined in G by

f(z) := −zF (z)− z2F ′(z), (104)

and the function g(z) defined in G− by

g(z) :=
αi

z − α
, (105)

satisfy the assumptions of Theorem 3.2 and their boundary values satisfy (24) with

υ(t) = 0 and ϕ(t) = θ′(t). (106)
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Since the image of the curves Γj , j = 0, 1, . . . ,m, are slits so we have θj(2π)− θj(0) = 0. Hence
the function h̃(t) in (27) is given by

h̃(t) = Jϕ = Jθ′ = (0, 0, . . . , 0). (107)

Then, by Theorem 3.2, the function θ′(t) is the unique solution of the integral equation

(I + N∗ + J)θ′ = 2φ (108)

where

φ(t) := Im[Ã(t)g(η(t))] = Im
[
η̇(t)
η(t)

αi
η(t)− α

]
.

It follows from (6), (98) and (102) that the boundary values of the function F (z) satisfy

A(t)F (η(t)) = i log
(

1
η(t)

− 1
α

)
− i(θ(t) + iR(t)). (109)

Thus, in view of (42), the boundary values of the function F (z) are given by

A(t)F (η(t)) = γ(t) + h(t) + i[(−ρ(t) + µ(t)) + ν(t)] (110)

where
h(t) = (R0, R1, . . . , Rm) ∈ S,

ν(t) = −(c0, c1, . . . , cm) ∈ S,

and the real functions γ, µ are defined by

γ(t) + iµ(t) := i log
(

1
η(t)

− 1
α

)
. (111)

The boundary values of the mapping function ω are given by (98). By (99), the boundary
values of the derivative ω′ are given by

ω′(η(t)) =
θ′(t)eθ(t)eiR(t)

η̇(t)
. (112)

Since Resz=0 ω(z) = 1, then, by (35) and (36), the values of the mapping function ω(z) and its
derivative ω′(z) are given for z ∈ G by

ω(z) =
1
z

+
1

2πi

∫

Γ

ω(η)
η − z

dη =
1
z

+
1

2πi

∫

J

eθ(t)eiR(t)

η(t)− z
η̇(t)dt, (113)

and

ω′(z) = − 1
z2

+
1

2πi

∫

Γ

ω′(η)
η − z

dη = − 1
z2

+
1

2πi

∫

J

θ′(t)eθ(t)eiR(t)

η(t)− z
dt. (114)

For w ∈ Ω, then by the Cauchy integral formula and since ω−1(∞) = 0, the values of the
inverse mapping function ω−1(w) are given by

ω−1(w) =
1

2πi

∫

∂Ω

ω−1(ξ)
ξ − w

dξ, (115)

which on introducing ξ = eθeiR(θ) and θ = θ(t) becomes

ω−1(w) =
1

2πi

∫

J

η(t)
eθ(t)eiR(t) − w

eθ(t)eiR(t)θ′(t)dt. (116)
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9. Parallel slit region

This canonical region Ω is the entire w−plane with m + 1 straight slits on the straight lines

Re
[
ei(π/2−δ) w

]
= Rj , j = 0, 1, . . . , m, (117)

where R0, R1, . . . , Rm are undetermined real constants and δ is the angle of intersection between
the lines (117) and the real axis. Thus, the boundary values of the mapping function ω satisfy

ei(π/2−δ)ω(η(t)) = R(t) + iθ(t), (118)

where θ(t) is the boundary correspondence function and R(t) = (R0, R1, . . . , Rm). Thus, by
differentiating both sides of (118), we obtain

ei(π/2−δ)η̇(t)ω′(η(t)) = iθ′(t). (119)

The mapping function ω is uniquely determined by the normalization

ω(0) = ∞, lim
z→0

(ω(z)− 1/z) = 0. (120)

Thus, the function ω can be written as

ω(z) =
1
z

+ e−i(π/2−δ)zF (z), (121)

where F (z) is an auxiliary unknown function. Hence

η(t)F (η(t)) +
ei(π/2−δ)

η(t)
= ei(π/2−δ)ω(η(t)). (122)

Thus, by differentiating both sides of (122) and using (119), we obtain

η̇(t)
(
F (η(t)) + η(t)F ′(η(t))

)
+ η̇(t)

−ei(π/2−δ)

η(t)2
= iθ′(t). (123)

The function f(z) defined in G by

f(z) := zF (z) + z2F ′(z), (124)

and the function g(z) defined in G− by

g(z) := −ei(π/2−δ)

z
, (125)

satisfy the assumptions of Theorem 3.2 and their boundary values satisfy (24) with

υ(t) = 0 and ϕ(t) = θ′(t). (126)

Since the image of the curves Γj , j = 0, 1, . . . ,m, are slits so we have θj(2π)− θj(0) = 0. Hence
the function h̃(t) in (27) is given by

h̃(t) = Jϕ = Jθ′ = (0, 0, . . . , 0). (127)

Then, by Theorem 3.2, the function θ′ is the unique solution of the integral equation

(I + N∗ + J)θ′ = 2φ, (128)

where

φ(t) := Im[Ã(t)g(η(t))] = − Im

[
η̇(t)
η(t)

ei(π/2−δ)

η(t)

]
.

In view of (6), (42) and (118), it follows from (122) that the boundary values of the function
F (z) satisfy

A(t)F (η(t)) = γ(t) + h(t) + i[(ρ(t) + µ(t)) + ν(t)], (129)
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where
h(t) = (R0, R1, . . . , Rm) ∈ S,

ν(t) = (c0, c1, . . . , cm) ∈ S,

and the real functions γ, µ are defined by

γ(t) + iµ(t) := −ei(π/2−δ)

η(t)
. (130)

The boundary values of the mapping function ω and its derivative ω′ are given by (98)
and (99). Since Resz=0 ω(z) = 1, then, by (35) and (36), the values of the mapping function
ω(z) and its derivative ω′(z) are given for z ∈ G by

ω(z) =
1
z

+
1

2πi

∫

Γ

ω(η)
η − z

dη =
1
z

+
1

2πi

∫

J

e−i(π/2−σ)[R(t) + iθ(t)]
η(t)− z

η̇(t)dt, (131)

and

ω′(z) = − 1
z2

+
1

2πi

∫

Γ

ω′(η)
η − z

dη = − 1
z2

+
1
2π

∫

J

e−i(π/2−σ)θ′(t)
η(t)− z

dt. (132)

For w ∈ Ω, then by the Cauchy integral formula and since ω−1(∞) = 0, the values of the
inverse mapping function ω−1(w) are given by

ω−1(w) =
1

2πi

∫

∂Ω

ω−1(ξ)
ξ − w

dξ, (133)

which on introducing ξ = e−i(π/2−σ)[R(θ) + iθ] and θ = θ(t) becomes

ω−1(w) =
1

2πi

∫

J

η(t)
e−i(π/2−σ)[R(θ) + iθ]− w

e−i(π/2−σ)iθ′(t)dt. (134)

10. Numerical example

Since the functions Aj and ηj are 2π-periodic, a reliable procedure for solving the integral
equation (27) numerically is by using the Nyström method with the trapezoidal rule [3]. The
computational details are similar to previous works [19-21].

By using the trapezoidal rule with n (an even positive integer) equidistant collocation points
on each boundary component, solving the integral equation (27) reduces to solving an (m+1)n by
(m+1)n linear system. Since the integral equation (27) is uniquely solvable, then for sufficiently
large values of n the obtained linear system is also uniquely solvable [3]. In this paper, the linear
system is solved using the Gauss elimination method. For calculating the functions ρk(t) in (45),
we approximate the functions θ′k(t) in (44) by the interpolating trigonometric polynomial of
degree n/2 that interpolate θ′(t) at the n equidistant points (see [37, p. 364]). Then ρk(t) are
calculated by integrating the obtained interpolating trigonometric polynomial.

In this section, we consider a bounded multiply connected regions of connectivity 7 (see
Figure 10(a)). The boundary Γ of the bounded region G is parametrized by

ηj(t) = zj + eiσj (αj cos t + iβj sin t), j = 0, 1, . . . , 6. (135)

The values of the complex constants zj and the real constants αj , βj and σj are as in Table 1. We
use the presented method to compute the mapping functions from the original region onto the
five canonical slit regions and the inverse mapping functions from the five canonical regions onto
the original region. For parallel silt region we set δ = π/4. The numerical results, calculated
with n = 1024, are presented in Figures 10–10. We present also a comparison between the
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Table 1. The values of constants αj , βj , zj and σj in (135).

j αj βj zj σj

0 4.0 3.0 −0.5− 0.3i 1.0
1 0.7 −0.3 1.5 + 1.0i 0.6
2 0.3 −0.6 1.5− 0.4i 1.6
3 0.5 −0.7 0.5− 1.8i 2.6
4 0.6 −0.4 −2.0 + 0.8i 2.8
5 0.3 −0.7 −0.8 + 1.8i 0.3
6 0.3 −0.5 0.5 + 2.3i 0.5

Table 2. The norm ‖ωn − ω̂n‖∞.

n An annulus A disc with The circular The radial The parallel
with circular slit circular slit slit region slit region slit region

16 1.4(−01) 2.1(−01) 1.9(−01) 1.2(−01) 5.4(−02)
32 1.3(−02) 1.8(−02) 1.5(−02) 7.8(−03) 3.4(−03)
64 1.6(−04) 1.7(−04) 1.6(−04) 1.3(−04) 5.2(−05)
128 1.9(−07) 2.1(−07) 9.9(−08) 1.6(−07) 6.6(−08)
256 5.0(−13) 6.2(−13) 2.8(−13) 3.8(−13) 1.8(−13)
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Figure 2. The original region G and its images onto the five canonical regions.

presented method and the method presented in [19-21]. Table 2 lists the norm ‖ωn − ω̂n‖∞
for several values of n where ωn is the approximate boundary value of the mapping function
obtained by the present method and ω̂n is the approximate boundary value of the mapping
function obtained by the method presented in [19-21].
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Figure 3. The inverse image of the annulus with circular slit canonical region.
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Figure 4. The inverse image of the disc with circular slit canonical region.
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Figure 5. The inverse image of the circular slit canonical region.
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Figure 6. The inverse image of the radial slit canonical region.
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Figure 7. The inverse image of the parallel slit canonical region.
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11. Conclusions

A new uniquely solvable boundary integral equation has been presented in this paper for
computing, in a unified way, the conformal mapping function w = ω(z), its derivative dw

dz = ω′(z),
and its inverse z = ω−1(w) from bounded multiply connected regions onto the five classical
canonical slit regions. The presented boundary integral equation can also be used for simply
connected regions. The integral equation has been derived by reformulating the conformal
mapping as an adjoint RH problem. Then, based on the results presented in [38] and the
properties of the boundary correspondence function θ(t), a uniquely solvable boundary integral
equation has been derived for θ′(t). The function θ(t) was calculated by integrating the function
θ′ where the integration constants were computed using the same integral equation. The integral
equation was used also to compute the parameters R(t) = (R0, . . . , Rm) of the canonical regions.
By obtaining θ(t) and R(t), we obtain the boundary values of the mapping function ω(z) and
its derivative ω′(z). The values of the mapping function w = ω(z) for z ∈ G were calculated
by means of the Cauchy integral formula. We computed also the values of the inverse mapping
function z = ω−1(w) by a Cauchy type integral that involves the functions θ(t), θ′(t) and R(t).
Since computing the functions θ(t), θ′(t) and R(t) provides us with the boundary values of
the mapping function ω(z) as well as the boundary values of its derivative ω′(z), we can also
compute the values of the inverse mapping function by a Newton iteration method (see e.g., [14,
§3.8]).

The presented method is unified since it can be used to compute the mapping function, its
derivative ω′(z), and its inverse onto the five classical canonical slit regions. Only the right-hand
side of the integral equation is different from one canonical region to another. Computing the
mapping function and its derivative at the same time is important in fluid dynamics (see e.g.,
[4, 6-9, 28]).

The presented method has several advantages over the method presented in [19, 20]. The right-
hand side of the integral equation in [19, 20] contains a singular operator which requires extra
calculations. While, the right-hand side of the presented integral equation is given explicitly.
The method presented in [19-20] was used to compute only the mapping function. However, the
presented method can be used to compute the mapping function, its derivative, and its inverse.

The presented method also has several advantages over the method presented in [31-35].
Firstly, the presented method depends on only one integral equation which solvability is well
known (see [23, 38]). Whereas, the method presented in [31-35] depends on three different
integral equations. The first of these three integral equation is different from a canonical region
to another and its solvability has not been studied yet. Only numerical experiments have been
given for this equation. Secondly, the present method is used to compute the mapping function as
well as its inverse, while the method presented in [31-35] is used to compute only the mapping
function. Finally, the boundary values of the mapping function ω(z) was computed from a
formula that involves its derivative ω′(z), θ′, and the parameters of the canonical regions. This
formula contain the terms θ′(t)

|θ′(t)| . Since the function θ′(t) has positive and negative values, and

it is zero at the end of the slits, it is difficult to calculate the values of the term θ′(t)
|θ′(t)| in a stable

way. When the values of θ′(t) are near zero, small changes in the values of θ′(t) could yield
wrong values of the term θ′(t)

|θ′(t)| . We do not have such difficulties in the presented method.
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