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IMPACT AND OPTIMAL CONTROL OF MOVEMENT ON A
MULTIPATCH HEPATITIS C VIRUS MODEL

OKOSUN KAZEEM OARE1

Abstract. In this paper, a deterministic multipatch hepatitis C virus model is considered and
analyzed. Investigated also is the existence and stability of equilibria. It is found that if 18%
to 20% movement of susceptibles are allowed between patches, the disease will persist.
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1. Introduction

Hepatitis C a most common viral infection of the liver is usually caused by hepatitis C virus.
Hepatitis C virus (HCV) was first identified in the year 1989. Globally, hepatitis has infected an
estimated 130 million people, most of whom are chronically infected [32]. The hepatitis C virus
has also been estimated to account for 27% of cirrhosis and 25% hepatocellular carcinoma, Alter
(2007). Hepatitis C virus (HCV) is a liver disease caused by infection with the hepatitis C virus
(HCV). This disease is spread through contacts between susceptible individuals with the blood
of an infected person, and can lead to liver inflammation and scarring (fibrosis). It is estimated
that 85% of the individuals exposed to HCV develop chronic hepatitis C, of which about 15%
have the possibility to clear the virus spontaneously within a few months of infection. Unless
the disease is successfully treated, otherwise, once a chronic stage develops HCV remains in the
body [28]. It has also been suggested that having HIV may impair the clearance of HCV. For
example the rate of HCV seroprevalence rate among pregnant women is estimated to be 1%
(Roberts and Yeung [34]) and among the HIV infected pregnant women, the rate is as high as
30% to 50% in certain areas (Papaevangclou et al [30]). As a matter of fact, Hepatitis C virus
in pregnancy is emerging and today it is becoming an increasing source of concern (Jamieson et
al [13]).

Treatment for Hepatitis C does exist though, however, the current drug therapies being
in use (that is, Peginterferon and Ribavirin) are ineffective in completely eradicating the
disease.Unfortunately, there is no effective vaccine yet developed which may help control the
spread of the disease. Efforts are already in progress for a vaccine [7] to control the disease.

Mathematical modeling of the spread of infectious diseases continues to become an important
tool in understanding the dynamics of diseases and in decision making processes regarding
diseases intervention programs for disease in many countries. For instance, Daozhou and Shigui
[8] proposed a multipatch model to study the effects of population dispersal on the spatial
spread of malaria between patches. Cai and Li [6] considered an SEI epidemic model with acute
and chronic stages using Bendixon-Dulax criterion. Also Martcheva and Castillo-Chavez [23]
considered a model of hepatitis C virus with chronic infectious stage in a varying population,
which was extended by Yuan and Yang [40] by incorporating the latent period.

Specifically, there have been various studies of epidemiological models where optimal control
methods were applied. Just to mention a few, these include Zaman et al [41] who studied
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a general SIR epidemic model and applied stability analysis theory to find the equilibrium
solutions and then used optimal control to determine the optimal vaccination strategies to reduce
the susceptible and infective individuals. Suresh [35] formulated and analyzed an optimal control
problem with a simple epidemic model to examine the effect of a quarantine program. Gupta
and Rink [12] considered the application of optimal control to find the most economical use
of active and passive immunization in controlling infectious disease. Kirschner et al [17] used
optimal control to examine the role of chemotherapy in controlling the virus reproduction in an
HIV patient. Adam et al [1] derived HIV therapeutic strategies by formulating and analyzing
an optimal control problem using two types of dynamic treatments. Wickwire [37] applied
optimal control to mathematical models of pests and infectious diseases control. Marco and
Takashi [22] used optimal control to study dengue disease transmission. Wiemer [38] studied
Schistosomiasis using optimal control methods. Okosun et al [29] derived and analyzed a
malaria disease transmission mathematical model that includes treatment and vaccination with
waning immunity and applied optimal control to study the impact of a possible vaccination with
treatment strategies in controlling the spread of malaria.

In this paper, we considered an SEITV (susceptible, exposed, acute infected, treatment
and chronic infected) model of a multipatch hepatitis C virus model. Our model is a modified
and extended version of the hepatitis C virus model presented in Yuan and Yang [40] with the
inclusion of treatment class, movement of susceptibles, infective, treated and chronic infected
individuals between patches and time dependent control strategies, in order to determine the
optimal strategy for the control of the disease.

The paper is organized as follows, in Section 2, we derive a model consisting of ordinary
differential equations (ODE) that describes the interactions and the dynamics of the disease
with the underlying assumptions. In Section 3, we use Pontryagin’s Maximum Principle to
investigate optimal strategies and to find the necessary conditions for the optimal control of the
disease. In Section 4, we show the simulation results and the cost-effectiveness analysis. Our
conclusions are discussed in Section 5.

2. Model formulation

The model sub-divides the total Patch 1 population at time t, denoted by N(1), into the
following sub-populations of susceptible individuals S1(t), individuals with acute infection I1(t),
individuals undergoing treatment T1(t) and individuals with chronic infection C1(t). So that

N1(t) = S1(t) + I1(t) + T1(t) + C1(t).

The total Patch 2 population at time t, denoted by N2(t), is sub-divided into susceptible
individuals S2(t), individuals with acute infection I2(t), individuals undergoing treatment T2(t)
and individuals with chronic infection C2(t). So that

N2(t) = S2(t) + I2(t) + T2(t) + C2(t).

Susceptible individuals are recruited into Patches at a rate Λi (i = 1, 2). The µ is the natural
death rate, κi (i = 1, 2), is the progression from acute infected class to both treatment and
chronic infected class in the Patches. The term εi (i = 1, 2), is the rate of progression from
chronic infected class to treatment class. The transmission rate of hepatitis C (that is, the
effective contact rate (φi) multiplied by the probability that transmission occurs (ηi) between
individuals with acute hepatitis C, chronic hepatitis C and individuals undergoing treatment
but not yet cured) are respectively βi = φiηi . The rate of progression for treatment from acute
infected and chronic hepatitis are π1 and π2 respectively. The rate of progression for treatment
from acute infected and chronic hepatitis are π1 and π2 respectively. The term ωj , is the
proportion of acute infected, chronic and individuals on treatment who move from one Patch to
the other.

Thus, putting the above formulations and assumptions together gives the following hepatitis
climate model, given by system of ordinary differential equations below as
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d
dtS1 = Λ1 − µS1 − β1S1(I1 + T1 + C1) + ρ1T1 + ωS2S2

d
dtI1 = β1S1(I1 + T1 + C1)− (κ1 + µ)I1 + ωI2I2

d
dtT1 = π1κ1I1 + ε1C1 − (ρ1 + µ)T1 + ωT2T2
d
dtC1 = (1− π1)κ1I1 − (ε1 + µ)C1 + ωC2C2

d
dtS2 = Λ2 − µS2 − β2S2(I2 + T2 + C2) + ρ2T2 + ωS1S1

d
dtI2 = β2S2(I2 + T2 + C2)− (κ2 + µ)I2 + ωI1I1

d
dtT2 = π2κ2I2 + ε2C2 − (ρ2 + µ)T2 + ωT1T1

d
dtC2 = (1− π2)κ2I2 − (ε2 + µ)C2 + ωC1C1

(1)

2.1. Stability of the disease-free equilibrium (DFE). The single Hepatitis model (1) has
a DFE, obtained by setting the right-hand sides of the equations in the model to zero, given by

E0 = (S∗1 , I∗1 , T ∗1 , C∗
1 , S∗2 , I∗2 , T ∗2 , C∗

2 ) =

(
Λ1 + ωS2S

∗
2

µ
, 0, 0, 0,

Λ2 + ωS1S
∗
1

µ
, 0, 0, 0

)
.

The linear stability of E0 can be established using the next generation operator method in
Driessche and Watmough [9] on the system (1), the matrices F and Ψ, for the new infection
terms and the remaining transfer terms, are, respectively, given by,

It follows that the reproduction number of the Hepatitis model (1), denoted by R0 , is given
by

R0 = max{R1, R2},
where

R1 = S∗1β1

(
(µ + ε1)(µ + κ1) + (µ + ε1 + κ1(1− π1))ρ1

(µ + ε1)(µ + κ1)(µ + ρ1)

)
,

R2 = S∗2β2

(
(µ + ε2)(µ + κ2) + (µ + ε2 + κ2(1− π2))ρ2

(µ + ε2)(µ + κ2)(µ + ρ2)

)
.

(2)

Further, using Theorem 2 in Driessche and Watmough [9], the following result is established.
The DFE is locally asymptotically stable if R0 < 1 and unstable if R0 > 1.
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Figure 1. Simulation of the model showing contour plots of R1 and R2 as a function of movement terms ωS1

and ωS2 . Parameter values used in simulation is as shown in Table 1.

Figure 1 show the contour plots of the reproductive numbers a of patch 1 and patch 2
respectively, this simulation suggest that the disease will persist in patch 1 if at least 20%
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movement of susceptibles from patch 2 is allowed into patch 1, and similarly, the disease will
persist in patch 2 if at least 18% movement of susceptibles from patch 1 is allowed into patch 2.

3. Analysis of optimal control

In the this section, we apply optimal control method using Pontryagin’s Maximum Principle
to determine the necessary conditions for the optimal control of the Hepatitis disease. We
incorporate time dependent controls into the model (1) to determine the optimal strategy for
controlling the disease. Hence, we have,





d
dtS1 = Λ1 − µS1 − β1S1(I1 + T1 + C1) + ρ1T1 + ωS2S2

d
dtI1 = β1S1(I1 + T1 + C1)− (u3κ1 + µ)I1 + (1− u2)ωI2I2

d
dtT1 = u3π1κ1I1 + u4ε1C1 − (ρ1 + µ)T1 + (1− u2)ωT2T2

d
dtC1 = u3(1− π1)κ1I1 − (u4ε1 + µ)C1 + (1− u2)ωC2C2

d
dtS2 = Λ2 − µS2 − β2S2(I2 + T2 + C2) + ρ2T2 + ωS1S1

d
dtI2 = β2S2(I2 + T2 + C2)− (u3κ2 + µ)I2 + (1− u1)ωI1I1

d
dtT2 = u3π2κ2I2 + u4ε2C2 − (ρ2 + µ)T2 + (1− u1)ωT1T1

d
dtC2 = u3(1− π2)κ2I2 − (u4ε2 + µ)C2 + (1− u1)ωC1C1

(3)

The control functions, u1(t), u2(t), u3(t) and u4(t) are bounded, Lebesgue integrable
functions. The control u1(t) represents the effort from Patch 1 on screening of movement of
acute infected (ωI1 ), chronic (ωC1 ) and individuals on treatment (ωI1 ) to reduce the movement
of individuals that may be infectious into Patch 2. The control u2(t) represents the effort from
Patch 2 on screening of movement of acute infected (ωI2 ), chronic (ωC2 ) and individuals on
treatment (ωI2 ) to reduce the movement of individuals that may be infectious into Patch 1.

The control on treatment u3(t) satisfies 0 6 u3 6 g2 , where g2 is the drug efficacy use
for treatment of acutely infected individuals. The control on treatment of chronic infected
individuals u4(t) satisfies 0 6 u3 6 g3 , where g3 is the drug efficacy use for treatment of
chronic infected individuals. Our control problem involves a situation in which the number
of infectious individuals, those with acute infections and the cost of applying screening and
treatment controls u1(t), u2(t), u3(t) and u4(t) are minimized subject to the system (3). The
objective functional is defined as:

J = min
u1,u2,u3

tf∫

0

[A1I1 + A2I2 + B1u
2
1 + B2u

2
2 + B3u

2
3 + B4u

2
4]dt, (4)

where tf is the final time and the coefficients, A1, A2, B1, B2, B3, B4 are balancing cost factors
due to scales and importance of the five parts of the objective function. We seek to find an
optimal control, u∗1 , u∗2 , u∗3 , and u∗4 such that

J(u∗1, u
∗
2, u

∗
3, u

∗
4) = min{J(u1, u2, u3, u4)|u1, u2, u3, u4 ∈ U}, (5)

where U = {(u1, u2, u3, u4) such that u1, u2, u3, u4 are measurable with 0 ≤ u1 ≤ 1,
0 ≤ u2 ≤ 1,0 ≤ u3 ≤ g2 and 0 ≤ u4 ≤ g3 , for t ∈ [0, tf ]} is the control set. The necessary
conditions that an optimal solution must satisfy come from the Pontryagin et al [31] Maximum
Principle. This principle converts (3)-(4) into a problem of minimizing pointwise a Hamiltonian
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H , with respect to u1, u2, u3 and u4

H = A1I1 + A2I2 + B1u
2
1 + B2u

2
2 + B3u

2
3 + B4u

2
4+

+MS1 {[Λ1 − µS1 − β1S1(I1 + T1 + C1) + ρ1T1 + ωS2S2}+

+MI1 {β1S1(I1 + T1 + C1)− (u3κ1 + µ)I1 + (1− u2)ωI2I2}+

+MT1 {u3π1κ1I1 + u4ε1C1 − (ρ1 + µ)T1 + (1− u2)ωT2T2}+

+MC1 {u3(1− π1)κ1I1 − (u4ε1 + µ)C1 + (1− u2)ωC2C2}+

+MS2 {Λ2 − µS2 − β2S2(I2 + T2 + C2) + ρ2T2 + ωS1S1}+

+MI2 {β2S2(I2 + T2 + C2)− (u3κ2 + µ)I2 + (1− u1)ωI1I1}+

+MT2 {u3π2κ2I2 + u4ε2C2 − (ρ2 + µ)T2 + (1− u1)ωT1T1}+

+MC2 {u3(1− π2)κ2I2 − (u4ε2 + µ)C2 + (1− u1)ωC1C1} ,

(6)

where the MS1 ,MI1 ,MT1 ,MC1 ,MS2 , MI2 ,MT2 and MC2 are the adjoint variables or co-state
variables. The system of equations is found by taking the appropriate partial derivatives of the
Hamiltonian (6) with respect to the associated state variable.

Theorem 3.1. Given optimal control u∗1, u
∗
2, u

∗
3, u

∗
4 and solutions S1, I1, T1, C1, S2, I2, T2, C2 of

the corresponding state system (3)- (4) that minimize J(u1, u2, u3, u4) over U . Then there exists
adjoint variables MS1 ,MI1 , MT1 ,MC1 ,MS2 ,MI2 ,MT2 ,MC2 satisfying

−dMi

dt
=

∂H

∂i
, (7)

where i = S1, I1, T1, C1, S2, I2, T2, C2 and with transversality conditions

MS1(tf ) = MI1(tf ) = MT1(tf ) = MC1(tf ) = MS2(tf ) = MI2(tf ) = MT2(tf ) = MC2(tf ) = 0,
(8)

u∗1 = min
{

1, max
(

0,
MI2ωI2I1 + MT2ωT2T1 + MC2ωC2C1

2B1

)}
, (9)

u∗2 = min
{

1, max
(

0,
MI1ωI2I2 + MT1ωT1T2 + MC1ωC1C2

2B2

)}
, (10)

u∗3 = min
{

1, max
(

0,
κ1I1(MI1 −MC1) + π1κ1I1(MC1 −MT1) + Q

2B3

)}
, (11)

and

u∗4 = min
{

1, max
(

0,
ε1C1(MC1 −MT1) + ε2C2(MC2 −MT2)

2B4

)}
, (12)

where Q = κ2I2(MI2 −MC2) + π2κ2I2(MC2 −MT2).

Proof. Corollary 4.1 of Fleming and Rishel [11] gives the existence of an optimal control due to
the convexity of the integrand of J with respect to u1, u2, u3 and u4 , a priori boundedness of the
state solutions, and the Lipschitz property of the state system with respect to the state variables.
The differential equations governing the adjoint variables are obtained by differentiation of the
Hamiltonian function, evaluated at the optimal control. Then the adjoint equations can be
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written as

−dMS1

dt
= µMS1 + (MS1 −MI1)β1(I1 + T1 + C1)−MS2ωS2 ,

−dMI1

dt
= −A1 + (MS1 −MI1)β1S1 + u3κ1(MI1 −MC1) + u3π1κ1(MC1 −MT1)

+ µMI1 − (1− u1)ωI2MI2 ,

−dMT1

dt
= (MS1 −MI1)β1S1 − ρ1MS1 + (ρ1 + µ)MT1 − (1− u1)ωT2MT2 ,

−dMC1

dt
= (MS1 −MI1)β1S1 − u4ε1MT1 + (u4ε1 + µ)MC1 − (1− u1)ωC2MC2 ,

−dMS2

dt
= −MS1ωS1 + MS2µ + (MS2 −MI2)β2(I2 + T2 + C2),

−dMI2

dt
= −A2 − (1− u2)ωI1MI1 + β2S2(MS2 −MI2) + MI2(u3κ2 + µ)

− MT2u3π2κ2 −MC2u3(1− π2)κ2,

−dMT2

dt
= −MT1(1− u2)ωT1 + (MS2 −MI2)β2S2 − ρ2MS2 + MT2(ρ2 + µ),

−dMC2

dt
= β2S2(MS2 −MI2)−MC1(1− u2)ωC1 − u4ε2MT2 + MC2(u4ε2 + µ).

(13)

Solving for u∗1, u
∗
2 and u∗3 subject to the constraints, the characterization (9-11) can be derived

and we have

0 =
∂H

∂u1
= 2B1u1 −MI2ωI2I1 −MT2ωT2T1 −MC2ωC2C1,

0 =
∂H

∂u2
= 2B2u2 −MI1ωI2I2 −MT1ωT1T2 −MC1ωC1C2,

0 =
∂H

∂u3
= 2B3u3 − κ1I1(MI1 −MC1)− π1κ1I1(MC1 −MT1)−Q,

0 =
∂H

∂u4
= 2B4u4 − ε1C1(MC1 −MT1)− ε2C2(MC2 −MT2).

(14)

Hence, we obtain (see Lenhart and Workman (2007))

u∗1 =
MI2ωI2I1 + MT2ωT2T1 + MC2ωC2C1

2B1
,

u∗2 =
MI1ωI2I2 + MT1ωT1T2 + MC1ωC1C2

2B2
,

u∗3 =
κ1I1(MI1 −MC1) + π1κ1I1(MC1 −MT1) + Q

2B3
,

u∗4 =
ε1C1(MC1 −MT1) + ε2C2(MC2 −MT2)

2B4
.

(15)

By standard control arguments involving the bounds on the controls, we conclude

u∗1 =





0 If ξ∗1 ≤ 0
ξ∗1 If 0 < ξ∗1 < 1
1 If ξ∗1 ≥ 1,

u∗2 =





0 If ξ∗2 ≤ 0

ξ∗2 If 0 < ξ∗2 < 1
1 If ξ∗2 ≥ 1,

u∗3 =





0 If ξ∗3 ≤ 0

ξ∗3 If 0 < ξ∗3 < 1
1 If ξ∗3 ≥ 1,
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u∗4 =





0 If ξ∗4 ≤ 0

ξ∗4 If 0 < ξ∗4 < 1
1 If ξ∗4 ≥ 1,

where

ξ∗1 =
MI2ωI2I1 + MT2ωT2T1 + MC2ωC2C1

2B1
,

ξ∗2 =
MI1ωI2I2 + MT1ωT1T2 + MC1ωC1C2

2B2
,

ξ∗3 =
κ1I1(MI1 −MC1) + π1κ1I1(MC1 −MT1) + Q

2B3
,

ξ∗4 =
ε1C1(MC1 −MT1) + ε2C2(MC2 −MT2)

2B4
.

¤

Next, we discuss the numerical solutions of the optimality system and the corresponding
results of varying the optimal controls u1, u2, u3 and u4 , the parameter choices, and the
interpretations from various cases.

4. Numerical results and discussions

In this section, we investigate numerically the effect of the following itemized optimal control
strategies listed below on the spread of hepatitis C virus in the two population. The optimal
control solution is obtained by solving the optimality system, which consists of the state system
and the adjoint system. An iterative scheme is used for solving the optimality system. We
begin by solving the state equations with a guess for the controls over the simulated time
using the fourth order Runge-Kutta scheme. Because of the transversality conditions (8), the
adjoint equations are solved by the backward fourth order Runge-Kutta scheme using the current
iterations solutions of the state equations. Then the controls are updated by using a convex
combination of the previous controls and the value from the characterizations (9) - (13). This
process is repeated and the iterations are stopped if the values of the unknowns at the previous
iterations are very close to the ones at the present iteration ([2, 3, 18, 19])

We have chosen the same set of the weight factors, A1 = 950, A2 = 800, B1 = 600, B2 = 600,
A3 = 800, A4 = 850 and same initial state variables S1(0) = 800, I1(0) = 10, T1(0) = 50,
C1(0) = 50, S2(0) = 750, I2(0) = 10, T2(0) = 40 and C2(0) = 10 to illustrate the effect of
different optimal control strategies on the spread of the disease.

Table 1. Values of parameters used in the numerical simulation.

Parameter Value(range) Units Source
Λ1, Λ2 85 per year [24, 25]
µ 0.085 per year [24, 25]
β1, β2 (0,1) per year [24, 25]
π1, π2 0.24 - 0.27 - [24, 25]
ρ 1.992 per year [25]
ψ (0,1] - Variable
ε1 0.06 - Assumed
b 0.4 - Assumed
κ1, κ2 0.5 - 0.7 - Assumed
ε2 0.05 - Assumed
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Strategy A: Optimal restriction of movement of infectives without treatments. In
Figure 4, the movement restrictions control (u1 and u2 ) are used to optimize the objective
function (J ) while we set the treatment of acute infected (u3 ) and chronic infected control (u4 )
to zero. We observe that in patch 1, Figure 4(a-b), the number of acute infected (I ) and chronic
infected individuals decreases significantly compared with the case without control, while in
patch 2 Figure 4(c-d), there is only a significant decrease in the number of chronic infected
individuals. The control profile is shown in Figure 4(e).

Figure 2. Simulations of the hepatitis C virus model

Strategy B: Optimal treatment of infectives without restriction of movements. In
Figure 4, the treatment of acute infected (u3 ) and chronic infected control (u4 ) are used to
optimize the objective function (J ) while we set the movement restrictions control (u1 and
u2 ) to zero. We observe that in patch 1, Figure 4(a-b) there is no significant reduction in the
number of acute infected (I ) and the chronic infected individuals indicates an increase in time.
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Similar scenario is observed in patch 2 Figure 4(c-d). The control profile is shown in Figure
4(e). This strategy clearly show the impact of unrestricted movement of infectives on the disease
transmission.

Figure 3. Simulations of the hepatitis C virus model

Strategy C: Optimal treatment and restriction of movement of infectives only from
patch (population) 1. In Figure 4, the movement restriction (u1 ) on patch 1, treatment of
acute infected (u3 ) and chronic infected control (u4 ) are used to optimize the objective function
(J ) while we set the movement restrictions control (u2 ) to zero. We observe that in patch 1,
Figure 4(a-b) there is no significant reduction in the number of acute infected (I ) and the chronic
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infected individuals indicates significant decrease in time. However, in patch 2 Figure 4(c-d),
we observed a significant difference in the number of acute infected (I ) with optimal control
compared to the case without control and the chronic infected individuals indicates significant
decrease in time. The control profile is shown in Figure 4(e). This strategy clearly show the
impact of unrestricted movement of infectives from patch 2 on the disease transmission.

Figure 4. Simulations of the hepatitis C virus model

Strategy D: Optimal treatment and restriction of movement of infectives only from
patch (population) 2. In Figure 4, the movement restriction (u2 ) on patch 2, treatment of
acute infected (u3 ) and chronic infected control (u4 ) are used to optimize the objective function



90 TWMS J. PURE APPL. MATH., V.5, N.2, 2014

(J ) while we set the movement restrictions control (u1 ) to zero. We observed that in patch 1,
Figure 4(a-b) there is significant reduction in the number of acute infected (I ) and the chronic
infected individuals indicates significant decrease in time. Also, in patch 2 Figure 4(c-d), we
observed no significant difference in the number of acute infected (I ) with optimal control
compared to the case without control and the chronic infected individuals indicates significant
decrease in time.

Figure 5. Simulations of the hepatitis C virus model

The control profile is shown in Figure 4(e). This strategy clearly show the impact of
unrestricted movement of infectives from patch 1 on the disease transmission.
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Strategy E: Optimal treatment and restriction of movement of infectives from both
patches (populations). In Figure 4, the movement restrictions (u1 and u2 ) on patches 1 and
2, treatment of acute infected (u3 ) and chronic infected control (u4 ) are all used to optimize the
objective function (J ). We observe that in patch 1, Figure 4(a-b) there is significant reduction
in the number of acute infected (I ) and the chronic infected individuals indicates significant
decrease over time.

Figure 6. Simulations of the hepatitis C virus model

However, in patch 2 Figure 4(c-d), we observed a significant difference in the number of acute
infected (I ) with optimal control compared to the case without control and the chronic infected
individuals indicates significant decrease in time. The control profile is shown in Figure 4(e).
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In Figure 4 the simulation shows the effects of varying the proportion of acute infected
individuals who move from patch 2 to patch 1 on the total number of infected individuals
in patch 1 with optimal control and without control.
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Figure 7. Simulation showing the impact of movement of infectives from patch 2 on patch 1 when there is
optimal control and without control

4.1. Cost-effectiveness analysis. The difference between the total infectious individuals
without control and the total infectious individuals with control was used to determine the
“no of infection averted” term in IAR formula. Using the parameter values as in table 1, the
combination of controls yielding maximum IAR was determined for each intervention strategy.

From Figures 4 and 4, one can see that the most cost-effective strategy in-terms of IAR and
total costs of interventions is the combination of treatment of infective individuals and spray of
insecticides. However, for more clarity, we examine the cost effectiveness ratio of the strategies,
so that we can draw our conclusions.

For the purpose of our study, we consider the incremental cost-effectiveness ratio (ICER).
It allows us to compare the cost-effectiveness of combination of at least two of the control
strategies, use of treatment of infective individuals and movement restrictions. Based on the
model simulation results, we rank the strategies in order of increasing effectiveness.

Strategies Total infection averted Total costs ($) ICER
No Strategy 0 0 −
Strategy B 784.81 $7789.9 9.9258

Strategy A 3631.3 $193880 65.3753

Strategy E 4025.4 $345910 385.765

The ICER, is calculated as follows:

ICER(C) = 7789.9
784.81 = 9.9258,

ICER(A) = 193880−7789.9
3631.3−784.81 = 65.3753,

ICER(B) = 345910−193880
4025.4−3631.3 = 385.765.

The comparison between strategies B and A shows a cost saving of $9.9258 for strategy B over
strategy A. The lower ICER for strategy B indicates that strategy A is “strongly dominated”.
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That is, strategy A is more costly and less effective than strategy B. Therefore, strategy A is
excluded from the set of alternatives so it does not consume limited resources.

We recalculate ICER

Strategies Total infection averted Total costs ($) ICER

Strategy B 784.81 $7789.9 9.9258

Strategy E 4025.4 $345910 104.3391

The comparison between strategies B and E shows a cost saving of $9.9258 for strategy B
over strategy E. Similarly, the high ICER for strategy E indicates that strategy E is “strongly
dominated”. That is, strategy E is more costly and less effective than strategy B. Therefore,
strategy E is excluded from the set of alternatives so it does not consume limited resources.
With this result, we conclude that strategy B (Optimal treatment of infective individuals and
without restriction of movements) has the least ICER and therefore is more cost-effective than
strategy E.

5. Conclusions

In this paper, a deterministic multipatch hepatitis C virus model is considered in order to
study the impact of movement between the patches and optimal control movement of infectives
and treatments on the transmission dynamics of the disease. Derived also is the condition
in which disease-free equilibrium is locally asymptotically stable and established that a stable
disease-free equilibrium can only be achieved in the absence of movement of infectives. From
the contour plots of the reproductive numbers a of patch 1 and patch 2 respectively, we found
that the disease will persist in patch 1 if at least 20% movement of susceptibles from patch 2 is
allowed into patch 1, and similarly, the disease will persist in patch 2 if at least 18% movement of
susceptibles from patch 1 is allowed into patch 2. Furthermore, the impact of control mechanism
on each individual population is investigated. The costs associated with each of these strategies
are also investigated by formulating the costs function problem as an optimal control problem
and then use the Pontryagin’s Maximum Principle to solve the optimal control problems. The
cost-effectiveness analysis was also investigated to determine which control strategy is most cost-
effetive. From the results, it is found that optimal treatment of infective individuals and without
restriction of movements strategy is most cost-effective strategy of all strategies considered.
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