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SURVEY

ON GENERALIZED METRIC SPACES: A SURVEY

ZORAN KADELBURG1, STOJAN RADENOVIĆ1

Abstract. We present a survey of fixed point results in generalized metric spaces (g.m.s.) in

the sense of Branciari [Branciari, A., (2000), A fixed point theorem of Banach-Caccioppoli type

on a class of generalized metric spaces, Publ. Math. Debrecen, 57, 31–37]. Since it may happen

that the topology of such space is not Hausdorff, several authors added Hausdorfness (or some

other condition) as an additional assumption in order to obtain their results. We show here that

such assumptions are usually superfluous. Finally, we state some open questions on the topic.
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1. Introduction

Metric spaces form a natural environment for exploring fixed points of single and multivalued
mappings. Metric fixed point theory has been an area of vigorous scientific activity since the
basic result of Banach in 1922. Applications of such results cover several areas of mathematics
and other sciences.

It may be noted that the use of triangle inequality in metric arguments is of extreme impor-
tance since it implies, among other things, the following:

(1) The metric d is continuous in both variables.
(2) The respective topology is Hausdorff.
(3) In particular, a sequence may converge to at most one point.
(4) Each open ball is an open set.
(5) Each convergent sequence is a Cauchy sequence.

Due to the nature of mathematics science, there has been many attempts to generalize the
metric setting by modifying some of the axioms of metric spaces. Thus, several other types of
spaces has been introduced and a lot of metric results has been extended to new settings.

One of the interesting generalizations of the notion of metric space was introduced by Branciari
in 2000 [8], where the triangle inequality was replaced by a so-called rectangular (or quadrilat-
eral) inequality, involving four (or more) instead of three points. It was not immediately observed
that such spaces (called rectangular or generalized metric spaces, g.m.s., for short) may fail to
satisfy conditions (1)–(5). Hence, in some of the first papers that followed, the authors implicitly
used some of these conditions, so that their proofs were flawed.

Samet [35] and Sarma et al. [37] presented examples showing that there exist g.m. spaces that
do not satisfy any of the properties (1)–(5). As a consequence, most of the authors dealing with
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such spaces made some additional requirements in order to deduce their results. However, we
will show in this article that such requirements are usually superfluous, since some easy results,
included those of Turinici [38], can be used to compensate the lack of (some of the) properties
(1)–(5).

2. Generalized (rectangular) metric spaces

The following definition was given by Branciari in 2000.

Definition 2.1. [8] Let X be a nonempty set, and let d : X ×X → [0, +∞) be a mapping such
that for all x, y ∈ X and all distinct points u, v ∈ X, each distinct from x and y,

(i) d(x, y) = 0 iff x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (“quadrilateral inequality”)

hold. Then (X, d) is called a generalized metric space (g.m.s., for short).

Thereafter, a great number of researchers deduced several (common) fixed point results in
g.m. spaces, mostly extending known results from the setting of standard metric spaces (see
[2-18, 20-32, 34-38]).

Convergent and Cauchy sequences in g.m.s., completeness, as well as open balls Br(p), are
introduced in a standard way. For example, Br(p) = {x ∈ X | d(p, x) < r}. However, their
properties (1)–(5) (see the Introduction) may not hold. This was overlooked by some authors in
the first papers concerning these spaces and, hence, the proofs of the corresponding fixed point
results seemed not to be correct (see, e.g., [3, 6, 8, 12, 13, 28, 29]). Samet [35] and Sarma et al.
[37] were the first to present examples showing this fact. We recall here the following

Example 2.1. [37, Example 1.1] Let A = {0, 2}, B = { 1
n : n ∈ N} and X = A ∪ B. Define

d : X ×X → [0, +∞) as follows:

d(x, y) =





0, x = y

1, x 6= y and {x, y} ⊂ A or {x, y} ⊂ B

y, x ∈ A, y ∈ B

x, x ∈ B, y ∈ A.

Then (X, d) is a complete g.m.s. However, it is easy to see that:
• the sequence { 1

n}n∈N converges to both 0 and 2 and it is not a Cauchy sequence;
• there is no r > 0 such that Br(0) ∩ Br(2) = ∅; hence, the respective topology is not

Hausdorff;
• B2/3(1

3) = {0, 2, 1
3}, however there does not exist r > 0 such that Br(0) ⊆ B2/3(1

3);
• lim

n→∞
1
n = 0 but lim

n→∞ d( 1
n , 1

2) 6= d(0, 1
2); hence d is not a continuous function.

This can be also interpreted by saying that the topology induced by a generalized metric may
be not sequential (see [14, Note 1]).

Consequently, most of the authors that worked in g.m.s. afterwards, assumed some additional
conditions, usually the Hausdorffness of the induced topology (see, e.g.[5, 7-11, 15, 16, 18, 30,
37]). As samples, we present some of their results.

Theorem 2.1. [37, Theorem 1.3] Let (X, d) be a Hausdorff and complete g.m.s. and let T :
X → X be a mapping such that for some λ ∈ [0, 1) and all x, y ∈ X,

d(Tx, Ty) ≤ λd(x, y)
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holds. Then T has a unique fixed point.

Theorem 2.2. [5, Theorem 2.1] Let (X, d) be a Hausdorff and complete g.m.s. Suppose that
T : X → X is such that for all x, y ∈ X,

d(Tx, Ty) ≤ 1
2
(d(x, Tx) + d(y, Ty))− φ(d(x, Tx), d(y, Ty)),

where φ : [0, +∞) → [0, +∞) is continuous, and φ(a, b) = 0 iff a = b = 0. Then T has a unique
fixed point.

Theorem 2.3. [10, Theorem 2.3] Let (X, d) be a Hausdorff and complete g.m.s, and let ϕ :
[0, +∞) → [0, +∞) satisfies: (ϕ1) ϕ(t) < t for all t > 0 and ϕ(0) = 0; (ϕ2) lim inftn→t ϕ(tn) < t

for all t > 0. Let S, T, F, G : X → X be such that for all x, y ∈ X,

d(Sx, Ty) ≤ ϕ(max{d(Fx, Gy), d(Fx, Sx), d(Gy, Ty)}).
Assume that T (X) ⊆ F (X) and S(X) ⊆ G(X) and the pairs {S, F} and {T, G} are compatible.
If F or G is continuous, then S, T, F and G have a unique common fixed point in X.

3. Generalized metric spaces without Hausdorff property

As shown in Example 2.1, a sequence in a g.m.s. may have two limits. However, there is a
special situation where this is not possible, and this can be useful in some proofs. The following
lemma is a variant of [19, Lemma 1.10].

Lemma 3.1. Let (X, d) be a g.m.s. and let {xn} be a Cauchy sequence in X such that xm 6= xn

whenever m 6= n. Then the sequence {xn} can converge to at most one point.

Proof. Suppose, to the contrary, that lim
n→∞xn = x, lim

n→∞xn = y and x 6= y. Since xm and xn are
distinct elements, as well as x and y, it is clear that there exists ` ∈ N such that x and y are
different from xn for all n > l. For m,n > `, the rectangular inequality implies that

d(x, y) ≤ d(x, xm) + d(xm, xn) + d(xn, y).

Taking the limit as m,n →∞, it follows that d(x, y) = 0, i.e., x = y. Contradiction. ¤

Also, if a sequence in an g.m.s. is both convergent and Cauchy, then pathologies as in Example
2.1 cannot happen, as shown by the following result due to Turinici.

Lemma 3.2. ([38, Proposition 1], [27, Propostion 3]) Let (X, d) be a g.m.s. and let {xn} be
a sequence in X which is both Cauchy and convergent. Then the limit x of {xn} is unique.
Moreover, if z ∈ X is arbitrary, then lim

n→∞ d(xn, z) = d(x, z).

Finally, the proof of the following lemma is similar as in the standard metric case. As an
illustration, we reproduce it here.

Lemma 3.3. [21, Lemma 2] Let (X, d) be a g.m.s. and let {yn} be a sequence in X with distinct
elements (yn 6= ym for n 6= m). Suppose that d(yn, yn+1) and d(yn, yn+2) tend to 0 as n → ∞
and that {yn} is not a Cauchy sequence. Then there exist ε > 0 and two sequences {mk} and
{nk} of positive integers such that nk > mk > k and the following four sequences tend to ε as
k →∞:

d(ymk
, ynk

), d(ymk
, ynk+1), d(ymk−1, ynk

), d(ymk−1, ynk+1). (1)
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Proof. Since {yn} is not a Cauchy sequence, there exist ε > 0 and two sequences {mk} and
{nk} of positive integers such that nk > mk > k, d(ymk

, ynk
) ≥ ε and nk is the smallest integer

satisfying this inequality, i.e., d(ymk
, yl) < ε for mk < l < nk.

Let us prove that the first of the sequences in (1) tends to ε as k → ∞. Note that, by the
assumption, d(ymk

, ymk+1) → 0 and d(ymk
, ymk+2) → 0 as k →∞. Hence, it is impossible that

nk = mk + 1 or nk = mk + 2 (because in either of these cases it would be impossible to have
d(ymk

, ynk
) ≥ ε). Thus, we can apply the quadrilateral inequality to obtain

ε ≤ d(ymk
, ynk

) ≤ d(ymk
, ynk−2) + d(ynk−2, ynk−1) + d(ynk−1, ynk

) ≤
≤ ε + d(ynk−2, ynk−1) + d(ynk−1, ynk

) → ε,

as k →∞, implying that d(ymk
, ynk

) → ε as k →∞.
In order to prove that the second sequence in (1) tends to ε as k →∞, consider the following

two quadrilateral inequalities:

d(ymk
, ynk+1) ≤ d(ymk

, ynk
) + d(ynk

, ynk−1) + d(ynk−1, ynk+1)

d(ymk
, ynk

) ≤ d(ymk
, ynk+1) + d(ynk+1, ynk−1) + d(ynk−1, ynk

),

which, together with d(ymk
, ynk

) → ε imply that d(ymk
, ynk+1) → ε as k →∞.

The proof for the other two sequences can be done in a similar way, using the following
quadrilaterals:

(ymk−1, ynk
, ynk−2, ymk

) and (ymk
, ynk

, ymk−1, ymk−2),

resp.
(ymk−1, ynk+1, ynk

, ymk
) and (ymk

, ynk
, ymk+1, ynk−1).

¤

Using the preceding lemmas, it is easy to show that all the mentioned results from [3, 6, 8, 12,
13, 28, 29] are in fact true as their proofs can be repaired. As a sample, consider the following

Theorem 3.1. [29, Theorem 1] Let T be a quasicontraction (in the sense of Lj. Ćirić, see [33,
(24)]) on a g.m.s. (X, d) which is T -orbitally complete. Then:

a) T has a unique fixed point u in X;
b) lim

n→∞Tnx = u for each x ∈ T ;

c) d(Tnx, u) ≤ qn

1−q max{d(x, Tx), d(x, T 2x)} for all n ∈ N.

Kikina and Kikina claim in [26] that the proof of this Theorem in [29] is wrong, since it is
concluded that from

d(Tnx, Tmx) ≤ qn

1− q
max{d(x, Tx), d(x, T 2x)}, (2)

where m > n, x ∈ X is arbitrary, and 0 ≤ q < 1, it follows that {Tnx} converges (to some
u ∈ X) and that

d(Tnx, u) ≤ qn

1− q
max{d(x, Tx), d(x, T 2x)}. (3)

Then, in [26], a rather complicated argument is presented as a substitute for this conclusion.
However, it is easy to show that this conclusion in [29] is actually correct. Namely, (2) implies

that {Tnx} is a Cauchy sequence. Since X is T -orbitally complete, {Tnx} converges to some
u ∈ X. By Lemma 3.2, this limit is unique and, moreover, replacing xn and z in Lemma 3.2 by
Tmx and Tnx, respectively, and letting m →∞, (3) readily follows.

In a very similar way, it can be shown that all standard metric fixed point results listed
in the well-known paper [33] by Rhoades can be easily extended to g.m.s., without additional
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assumptions. This also applies to all results of the mentioned papers [5, 7-11, 15, 16, 18, 29, 30,
37], including Theorems 2.1, 2.2 and 2.3.

Some new results are, also without additional assumptions, proved in [21] and [22]. This in-
cludes common fixed point results under Geraghty-type conditions, those using altering distance
or admissible functions, as well as Meir-Keeler and Boyd-Wong-type results. We will prove here
a result which is without proof stated in [21].

Theorem 3.2. [21, Theorem 2] Let (X, d) be a g.m.s. and let f, g : X → X be two self maps
such that f(X) ⊆ g(X), one of these two subsets of X being complete. If, for some altering
distance function ψ and some c ∈ [0, 1),

ψ(d(fx, fy)) ≤ cψ(d(gx, gy)) (4)

holds for all x, y ∈ X, then f and g have a unique point of coincidence. If, moreover, f and g

are weakly compatible, then they have a unique common fixed point.

Here, as usual, ψ : [0, +∞) → [0,+∞) is called an altering distance function if:
(i) ψ is increasing and continuous,
(ii) ψ(t) = 0 iff t = 0.

Proof. We will prove first that f and g cannot have more than one point of coincidence. Suppose
to the contrary that there exist w1, w2 ∈ X such that w1 6= w2, w1 = fu1 = gu1 and w2 =
fu2 = gu2 for some u1, u2 ∈ X. Then (4) would imply that

ψ(d(w1, w2)) = ψ(d(fu1, fu2)) ≤ cψ(d(gu1, gu2)) < ψ(d(w1, w2)),

which is impossible.
In order to prove that f and g have a coincidence point, take an arbitrary x0 ∈ X and, using

that f(X) ⊆ g(X), choose sequences {xn} and {yn} in X such that

yn = fxn = gxn+1, for n = 0, 1, 2, . . .

If yn0 = yn0+1 for some n0 ∈ N, then xn0+1 is a coincidence point of f and g, and yn0+1 is their
(unique) point of coincidence.

Suppose now that yn 6= yn+1 for each n ∈ N. Then, using (4), we get that

ψ(d(yn, yn+1)) = ψ(d(fxn, fxn+1)) ≤ cψ(d(gxn, gxn+1))

= cψ(d(yn−1, yn)) < ψ(d(yn−1, yn)).

Hence, {d(yn, yn+1)} is a decreasing sequence of positive real numbers, tending to some δ ≥ 0.
Suppose that δ > 0. Then, since

ψ(d(yn, yn+1)) ≤ cψ(d(yn−1, yn)),

taking the limit as n → ∞, we get that ψ(δ) ≤ cψ(δ). But this is possible only if δ = 0, a
contradiction. Hence,

d(yn−1, yn) → 0 as n →∞. (5)

In a similar way, one can prove that

d(yn−2, yn) → 0 as n →∞. (6)

Suppose now that yn = ym for some n > m (and hence, by the way yn’s are chosen, yn+k =
= ym+k for k ∈ N). Then, (4) implies that

ψ(d(ym, ym+1)) = ψ(d(yn, yn+1)) ≤ cψ(d(yn−1, yn)) < ψ(d(yn−1, yn)) ≤ · · ·
· · · ≤ cψ(d(ym, ym+1)) < d(ym, ym+1),



8 TWMS J. PURE APPL. MATH., V.5, N.1, 2014

a contradiction. Thus, in what follows, we can assume that yn 6= ym for n 6= m.
In order to prove that {yn} is a Cauchy sequence, suppose that it is not. Then, by Lemma

3.3, using (5) and (6), we conclude that there exist ε > 0 and two sequences {mk} and {nk} of
positive integers such that nk > mk > k and the sequences (1) tend to ε as k → ∞. Using (4)
with x = xmk

and y = xnk+1, one obtains

ψ(d(ymk
, ynk+1)) ≤ cψ(d(ymk−1, ynk

)).

Letting k →∞, it follows that ψ(ε) ≤ cψ(ε), a contradiction.
Suppose, e.g., that the subspace g(X) is complete (the proof when f(X) is complete is similar).

Then {yn} is a Cauchy sequence, tending to some y∗ ∈ g(X), i.e., y∗ = gz for some z ∈ X.
In order to prove that fz = gz, suppose that fz 6= gz. Then, by Lemma 3.1, it follows that
yn differs from both fz and gz for n sufficiently large. Hence, we can apply the rectangular
inequality to obtain

d(fz, gz) ≤ d(fz, fxn) + d(fxn, fxn+1) + d(fxn+1, gz) ≤
≤ cψ(d(gz, gxn)) + d(yn, yn+1) + d(yn+1, gz) → 0,

as n →∞. It follows that fz = gz is a point of coincidence of f and g.
In the case when f and g are weakly compatible, a well-known result implies that f and g

have a unique common fixed point. ¤

4. Some additional results and open questions

4.1. G.m.s. and Caristi’s theorem. Recently, in an interesting paper [27], Kirk and Shahzad
proved that the well-known Caristi’s theorem can also be proved in g.m.s. without additional
assumptions. We just state here their main result, noting that the proof (as well as in the case
of metric spaces) uses a kind of transfinite induction argument.

Theorem 4.1. [27, Theorem 2] Let (X, d) be a complete g.m.s. Let T : X → X be a mapping,
and let ϕ : X → [0, +∞) be a lower semicontinuous function. Suppose that

d(x, Tx) ≤ ϕ(x)− ϕ(Tx), x ∈ X.

Then T has a fixed point.

4.2. Fixed point results in compact g.m.s. It is well-known that in compact metric spaces,
fixed point results can be obtained under strict contractive conditions. In the case of g.m.s.
with a continuous general metric, the following results of Nemytzki and Edelstein-type can be
obtained in the same way as in the metric case.

Proposition 4.1. Let (X, d) be a compact g.m.s. with continuous generalized metric d and let
f, g : X → X be two self maps such that f(X) ⊂ g(X), one of these two subsets of X being
closed. Suppose that the following conditions hold:

d(fx, fy) < d(gx, gy) for gx 6= gy

and fx = fy whenever gx = gy.

Then f and g have a unique point of coincidence say y∗ ∈ X. Moreover, for each x0 ∈ X, the
corresponding Jungck sequence {yn} can be chosen such that lim

n→∞ yn = y∗. In addition, if f and
g are weakly compatible, then they have a unique common fixed point.
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Proposition 4.2. Let (X, d) be a g.m.s. with continuous generalized metric d and f : X → X

a contractive self mapping. If there exists a point x0 ∈ X such that the corresponding sequence
of iterates {fnx0} contains a convergent subsequence {fnix0}, then u = lim

i→∞
fnix0 is a unique

fixed point of f .

A mapping f of a g.m.s. X into itself is said to be ε-contractive if there exists ε > 0 such that

0 < d(x, y) < ε implies d(fx, fy) < d(x, y).

Proposition 4.3. Let (X, d) be a g.m.s. with continuous generalized metric d and f : X → X

an ε-contractive mapping. If for some x ∈ X, the sequence of iterates {fnx} has a subsequence
fnix → u ∈ X, then u is a periodic point, that is, there exists a positive integer k such that
fku = u.

Also, a Suzuki-Edelstein-type result can be easily obtained under some additional assump-
tions.

Proposition 4.4. Let (X, d) be a compact g.m.s. with continuous generalized metric d and let
T : X → X be a continuous mapping. Assume that, for all x, y ∈ X,

1
2
d(x, Tx) < d(x, y) implies d(Tx, Ty) < d(x, y).

Then T has a unique fixed point.

It is an open question whether continuity of d in Propositions 4.1–4.4 and continuity of T in
Proposition 4.4 can be omitted.

4.3. Multivalued mappings in g.m.s. It is well-known that there are a lot of fixed point
results for multivalued mappings in metric spaces. Most of them are based on contractive
conditions that use Hausdorff-Pompeiu metric, defined on the family CB(X) of bounded and
closed subsets of a metric space (X, d) by the formula

H(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}, (7)

for A,B ∈ CB(X). H is a metric on CB(X) and the metric space (CB(X),H) is complete if
and only if (X, d) is complete.

However, an analogous construction is not possible in g.m. spaces, as the following easy
example shows.

Example 4.1. Let X = {a, b, c} and let d : X × X → [0,+∞) be defined by d(a, b) = 4,
d(a, c) = d(b, c) = 1, and d(x, x) = 0, d(x, y) = d(y, x) for all x, y ∈ X. The rectangular
inequality (iii) has to be checked only in the case when x = y, when it becomes trivial. Hence,
(X, d) is a g.m.s., which obviously is not a metric space.

Let H be defined by (7), and consider the quadrilateral ({a}, {b}, {a, c}, {c}), with d-closed
and d-bounded vertices. It is easy to see that

H({a}, {b}) = 4 > 1 + 1 + 1 = H({a}, {a, c}) +H({a, c}, {c}) +H({c}, {b}).
Hence, rectangular inequality is not satisfied, and (CB(X),H) is not a g.m.s.

Thus, in order to obtain multivalued fixed point results in g.m.s., possibly another definition
of a metric on CB(X) is needed.
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4.4. Coupled fixed points in g.m.s. Finally, we recall that a lot of coupled fixed point results
has been obtained recently for mappings with two variables in (ordered) metric spaces. Here, for
a mapping F : X ×X → X, a pair (a, b) ∈ X2 is called a coupled fixed point if F (a, b) = a and
F (b, a) = b hold. It was shown (see, e.g., [1]) that, in most cases, these results can be deduced
from certain known results for mappings with one variable, using the well-known fact that, for
the given metric space (X, d), the following formulas

d+((x, y), (u, v)) = d(x, u) + d(y, v),

dmax((x, y), (u, v)) = max{d(x, u), d(y, v)}

define metrics on the set X×X. The following simple example shows that similar constructions
are not possible in g.m.s.

Example 4.2. Consider the g.m.s. (X, d) defined in Example 4.1, and the quadrilateral
((a, b), (b, c), (a, c), (c, c)) in X ×X. Then

d+((a, b), (b, c)) = 5 > 1 + 1 + 1 =

= d+((a, b), (a, c)) + d+((a, c), (c, c)) + d+((c, c), (b, c))

and

dmax((a, b), (b, c)) = 4 > 1 + 1 + 1 =

= dmax((a, b), (a, c)) + dmax((a, c), (c, c)) + dmax((c, c), (b, c)).

Hence, in both cases, rectangular inequality is not satisfied and (X2, d+) and (X2, dmax) are not
g.m.s.

5. Conclusion

Fixed point theory in metric spaces have many applications. It is natural that there have
been several attempts to extend it to a more general setting. One of these generalizations
was introduced by Branciari in 2000, where the triangle inequality was replaced by a so-called
quadrilateral inequality. It was not immediately observed that such spaces (called generalized
metric spaces) may fail to satisfy some standard metric properties. Hence, in some of the first
papers that followed, the authors implicitly used some of these additional conditions.

We show in this article that, nevertheless, most of these results are valid, since their proofs can
be corrected, using some easy observations due to Turinici and other authors. Moreover, all the
results of authors who, later on, assumed some additional requirements (as, e.g., Hausdorffness
of the respective topology) can be made more general, by omitting these assumptions.

Some open questions and suggestions for further work are also noted.
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[16] Erhan, I., Karapinar, E., Sekulić, T., (2012), Fixed Points of (ψ, φ)-Contractions on Rectangular Metric

Spaces, Fixed Point Theory Appl., 138p.

[17] Fora, A., Bellour, A., Al-Bsoul, A., (2009), Some results in fixed point theory concerning generalized metric

spaces, Mat. Vesnik, 61(3), pp.203–208.
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[22] Kadelburg, Z., Radenović, S., Shukla, S., Boyd-Wong and Meir-Keeler type theorems in generalized metric

spaces, submitted.

[23] Karapinar, E., (2014), Discussion on (α, ψ)-contractions in generalized metric spaces, Abstract Appl. Anal.,

Article ID 962784.

[24] Kikina, L., Kikina, K., (2011), Fixed points on two generalized metric spaces, Int. J. Math. Analysis, 5(30),

pp.1459–1467.

[25] Kikina, L., Kikina, K., (2013), A fixed point theorem in generalized metric spaces, Demonstratio Math., 46,

pp.181–190.

[26] Kikina, L., Kikina, K., (2013), On fixed point of a Ljubomir Ćirić quasi-contraction mapping in generalized
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