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ON GENERALIZED CLASS OF p-VALENT FUNCTIONS WITH NEGATIVE
COEFFICIENTS

R.M. EL-ASHWAH1, M.K. AOUF2, H.M. ZAYED3

Abstract. In this paper we introduce and study new class Fp,θ(γ, β) of p-valent functions

with negative coefficients. We obtain coefficients inequalities, distortion theorems, extreme

points and radii of close to convexity, starlikeness and convexity for the class Fp,θ(γ, β). Also

modified Hadamard products of several functions belonging to the class Fp,θ(γ, β) are study

here. Finally, we investigate several distortion inequalities involving fractional calculus.
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1. Introduction

Let Tp(θ) denote the class of functions of the form:

f(z) = zp −
∞∑

k=1

ap+kz
p+k (eiθap+k ≥ 0; |θ| < π

2
; p ∈ N = {1, 2, ...}), (1)

which are analytic and p−valent in the open unit disc U = {z : z ∈ C and |z| < 1}. Also, let
Fp,θ(γ, β) denote the class of functions f(z) ∈ Tp(θ) which satisfy

Re

{
eiθ

(
(1− γ)

f(z)
zp

+ γ
f ′(z)
pzp−1

)}
>

β

p
, (2)

where 0 ≤ β

p
< cos θ, |θ| < π

2
, γ ≥ 0, p ∈ N and z ∈ U.

We note that for suitable choices of γ, θ and p, we obtain the following subclasses:
(1) Fp,0(γ, β) = Fp(γ, β) (0 ≤ β < p, γ ≥ 0, p ∈ N) (see Lee et al. [4] and Aouf and Darwish
[2]);
(2) F1,0(γ, β) = F (γ, β) (0 ≤ β < 1, γ ≥ 0) (see Bhoosnurmath and Swamy [3]);
(3) F1,θ(1, β) = A(θ, β) (0 ≤ β < cos θ, |θ| < π

2
) (see Sekine [7]).

2. Coefficient estimates

Unless otherwise mentioned, we assume throughout this paper that

eiθap+k ≥ 0, 0 ≤ β

p
< cos θ, |θ| < π

2
, γ ≥ 0 and p, k ∈ N.
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Theorem 2.1. Let the function f(z) be given by (1.1). Then f(z) ∈ Fp,θ(γ, β)
if and only if

∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k ≤ cos θ − β

p
. (3)

Proof. Assume that the condition (3) holds true, then it is sufficient to show that the value for

eiθ

(
(1− γ)

f(z)
zp

+ γ
f ′(z)
pzp−1

)
,

lie in a circle centered at a point eiθ whose radius is cos θ − β

p
. Indeed, we have

∣∣∣∣eiθ

(
(1− γ)

f(z)
zp

+ γ
f ′(z)
pzp−1

)
− eiθ

∣∣∣∣ =

=

∣∣∣∣∣e
iθ

∞∑

k=1

(
1 +

γk

p

)
ap+kz

k

∣∣∣∣∣ ≤

≤
∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k ≤

≤ cos θ − β

p
.

Conversely, assume that

Re

{
eiθ

(
(1− γ)

f(z)
zp

+ γ
f ′(z)
pzp−1

)}
>

β

p
,

which is equivalent to

Re

{ ∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+kz

k

}
< cos θ − β

p
.

Choose values of z on the real axis so that
∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+kz

k,

is real. Letting z → 1− along the real axis, we have
∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k ≤ cos θ − β

p
,

and hence the proof of Theorem 2.1 is completed. ¤

Corollary 2.1. Let the function f(z) defined by (1.1) be in the class Fp,θ(γ, β).
Then

|ap+k| ≤ p cos θ − β

p + kγ
. (4)

The result is sharp for the function

f(z) = zp − p cos θ − β

p + kγ
e−iθzp+k. (5)
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3. Distortion theorems

Theorem 3.1. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β), then for z ∈ U, we
have

|z|p − p cos θ − β

p + γ
|z|p+1 ≤ |f(z)| ≤ |z|p +

p cos θ − β

p + γ
|z|p+1 . (6)

Furthermore

p |z|p−1 − (p + 1)(p cos θ − β)
(p + γ)

|z|p ≤ ∣∣f ′(z)
∣∣ ≤ p |z|p−1 +

(p + 1)(p cos θ − β)
(p + γ)

|z|p . (7)

The result is sharp for the function f(z) given by

f(z) = zp − p cos θ − β

p + γ
e−iθzp+1(z = ± |z| eiθ). (8)

Proof. It is easy to see from Theorem 2.1 that

p + γ

p cos θ − β

∞∑

k=1

|ap+k| ≤
∞∑

k=1

p + kγ

p cos θ − β
|ap+k| ≤ 1.

Then
∞∑

k=1

|ap+k| ≤ p cos θ − β

p + γ
. (9)

Making use of (9), we have

|f(z)| ≥ |z|p − |z|p+1
∞∑

k=1

|ap+k| ≥ |z|p − p cos θ − β

p + γ
|z|p+1 , (10)

and

|f(z)| ≤ |z|p + |z|p+1
∞∑

k=1

|ap+k| ≤ |z|p +
p cos θ − β

p + γ
|z|p+1 , (11)

which proves the assertion (6).
From (9) and Theorem 2.1, it follows also that

∞∑

k=1

(p + k) |ap+k| ≤ (p + 1)(p cos θ − β)
(p + γ)

. (12)

Consequently, we have

∣∣f ′(z)
∣∣ ≥ p |z|p−1 − |z|p

∞∑

k=1

(p + k) |ap+k| ≥ p |z|p−1 − (p + 1)(p cos θ − β)
(p + γ)

|z|p , (13)

and

∣∣f ′(z)
∣∣ ≤ p |z|p−1 + |z|p

∞∑

k=1

(p + k) |ap+k| ≤ p |z|p−1 +
(p + 1)(p cos θ − β)

(p + γ)
|z|p , (14)

which proves the assertion (7). Since each of equalities in (6) and (7) is satisfied by the function
f(z) given by (8), our proof of Theorem 3.1 is thus completed. ¤
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4. Closure theorems

Let the functions fj(z) be defined, for j = 1, 2, ...., m, by

fj(z) = zp −
∞∑

k=1

ap+k,jz
p+k (eiθap+k,j ≥ 0; |θ| < π

2
). (15)

Theorem 4.1. Let the functions fj(z) (j = 1, 2, ...., m) defined by (15) be in the class Fp,θ(γ, β).
Then the function h(z) defined by

h(z) = zp −
∞∑

k=1

bp+kz
p+k, (16)

also belongs to the class Fp,θ(γ, β), where

bp+k =
1
m

m∑

j=1

ap+k,j . (17)

Proof. Since fj(z) (j = 1, 2, ...., m) are in the class Fp,θ(γ, β), it follows from Theorem 2.1, that

∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k,j ≤ cos θ − β

p
,

for every j = 1, 2, ...., m. Hence

∞∑

k=1

eiθ

(
1 +

γk

p

)
bp+k =

∞∑

k=1

eiθ

(
1 +

γk

p

)
 1

m

m∑

j=1

ap+k,j


 =

=
1
m

m∑

j=1

( ∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k,j

)
≤ 1

m

m∑

j=1

(
cos θ − β

p

)
≤ cos θ − β

p
.

By Theorem 2.1, it follows that h(z) ∈ Fp,θ(γ, β). This completes the proof of Theorem 4.1. ¤

Theorem 4.2. Let the functions fj(z) (j = 1, 2, ...., m) defined by (15) be in the class Fp,θ(γ, βj).
Then the function h(z) defined by

h(z) = zp −
∞∑

k=1


 1

m

m∑

j=1

ap+k,j


 zp+k, (18)

is in the class Fp,θ(γ, β), where
β = min

1≤j≤m
{βj}. (19)

Proof. Since fj(z) (j = 1, 2, ...., m) are in the class Fp,θ(γ, βj), it follows from Theorem 2.1, that
∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k,j ≤ cos θ − βj

p
,

for every j = 1, 2, ...., m. Hence

∞∑

k=1

eiθ

(
1 +

γk

p

)
 1

m

m∑

j=1

ap+k,j


 =

1
m

m∑

j=1

( ∞∑

k=1

eiθ

(
1 +

γk

p

)
ap+k,j

)
≤

≤ 1
m

∑m
j=1

(
cos θ − βj

p

)
≤ 1

m

∑m
j=1

(
cos θ − β

p

)
≤ cos θ − β

p .
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By Theorem 2.1, it follows that h(z) ∈ Fp,θ(γ, β). This completes the proof of Theorem 4.2. ¤

Theorem 4.3. Let the functions fj(z) (j = 1, 2, ...., m) defined by (15) be in the class Fp,θ(γ, β).
Then the function h(z) defined by

h(z) =
m∑

j=1

cjfj(z), (20)

is also in the class Fp,θ(γ, β), where
m∑

j=1

cj = 1. (21)

Proof. Assume that

h(z) =
m∑

j=1

cjfj(z) = zp −
∞∑

k=1




m∑

j=1

cjap+k,j


 zp+k. (22)

Then it follows that
∞∑

k=1

(
1 +

γk

p

)
eiθ




m∑

j=1

cjap+k,j


 =

m∑

j=1

cj

( ∞∑

k=1

eiθ

[
1 +

γk

p

]
ap+k,j

)
≤

≤
(
cos θ − β

p

)∑m
j=1 cj ≤ cos θ − β

p .

By Theorem 2.1, it follows that h(z) ∈ Fp,θ(γ, β). This completes the proof of Theorem 4.3. ¤

Theorem 4.4. Let fp(z) = zp and

fp+k(z) = zp − p cos θ − β

p + kγ
e−iθzp+k. (23)

Then f(z) is in the class Fp,θ(γ, β) if and only if can be expressed in the form

f(z) =
∞∑

k=0

µp+kfp+k(z), (24)

where µp+k ≥ 0 and
∞∑

k=0

µp+k = 1.

Proof. Assume that

f(z) =
∞∑

k=0

µp+kfp+k(z) = zp −
∞∑

k=1

p cos θ − β

p + kγ
e−iθµp+kz

p+k. (25)

Then it follows that
∞∑

k=1

eiθ

(
1 +

γk

p

)(
p cos θ − β

p + kγ

)
e−iθµp+k =

(
cos θ − β

p

) ∞∑

k=1

µp+k =

=
(

cos θ − β

p

)
(1− µp) ≤ cos θ − β

p
,

which implies that f(z) ∈ Fp,θ(γ, β).
Conversely, assume that the function f(z) defined by (1) be in the class
Fp,θ(γ, β). Then

ap+k ≤ (p cos θ − β)
(p + kγ)

e−iθ.
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Setting

µp+k =
(p + kγ)

(p cos θ − β)
eiθap+k,

where

µp = 1−
∞∑

k=1

µp+k ,

we can see that f(z) can be expressed in the form (24). This completes the proof of Theorem
4.4. ¤

Corollary 4.1. The extreme points of the class Fp,θ(γ, β) are the functions fp(z) = zp and

fp+k(z) = zp − p cos θ − β

p + kγ
e−iθzp+k. (26)

5. Radii of close-to-convexity, starlikeness and convexity

Theorem 5.1. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β).
Then f(z) is p-valent close-to-convex of order δ (0 ≤ δ < p) in |z| ≤ r1, where

r1 = inf
k≥1

{
(p + kγ)(p− δ)

(p cos θ − β)(k + p)

} 1
k

. (27)

The result is sharp and the extremal function is given by (5).

Proof. We must show that ∣∣∣∣
f ′(z)
zp−1

− p

∣∣∣∣ ≤ p− δ for |z| ≤ r1, (28)

where r1 is given by (27). Indeed we find from (1) that
∣∣∣∣
f ′(z)
zp−1

− p

∣∣∣∣ ≤
∞∑

k=1

(p + k) |ap+k| |z|k .

Thus ∣∣∣∣
f ′(z)
zp−1

− p

∣∣∣∣ ≤ p− δ,

if
∞∑

k=1

(
k + p

p− δ

)
|ap+k| |z|k ≤ 1. (29)

But by using Theorem 2.1, (29) will be true if
(

k + p

p− δ

)
|z|k ≤

(
p + kγ

p cos θ − β

)
.

Then

|z| ≤
{

(p + kγ)(p− δ)
(p cos θ − β)(k + p)

} 1
k

. (30)

The result follows easily from (30). ¤
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Theorem 5.2. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β).
Then f(z) is p-valent starlike of order δ (0 ≤ δ < p) in |z| ≤ r2, where

r2 = inf
k≥1

{
(p + kγ)(p− δ)

(p cos θ − β)(k + p− δ)

} 1
k

. (31)

The result is sharp and the extremal function is given by (5).

Proof. We must show that
∣∣∣∣
zf ′(z)
f(z)

− p

∣∣∣∣ ≤ p− δ for |z| ≤ r2, (32)

where r2 is given by (31). Indeed we find from (1) that

∣∣∣∣
zf ′(z)
f(z)

− p

∣∣∣∣ ≤

∞∑
k=1

k |ap+k| |z|k

1−
∞∑

k=1

|ap+k| |z|k
.

Thus ∣∣∣∣
zf ′(z)
f(z)

− p

∣∣∣∣ ≤ p− δ,

if
∞∑

k=1

(
k + p− δ

p− δ

)
|ap+k| |z|k ≤ 1. (33)

But by using Theorem 2.1, (33) will be true if
(

k + p− δ

p− δ

)
|z|k ≤

(
p + kγ

p cos θ − β

)
.

Then

|z| ≤
{

(p + kγ)(p− δ)
(p cos θ − β)(k + p− δ)

} 1
k

. (34)

The result follows easily from (34). ¤

Corollary 5.1. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β).
Then f(z) is in p-valent convex of order δ (0 ≤ δ < p) in |z| ≤ r3, where

r3 = inf
k≥1

{
p(p + kγ)(p− δ)

(k + p)(p cos θ − β)(k + p− δ)

} 1
k

. (35)

The result is sharp and the extremal function is given by (5).

6. Modified Hadamard products

For the functions fj(z) (j = 1, 2) defined by (15) and belonging to the class Tp(θ), the modified
Hadamard product of f1(z) and f2(z) is defined by

(f1 ∗ f2)(z) = zp −
∞∑

k=1

ap+k,1ap+k,2z
p+k. (36)
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Theorem 6.1. Let the functions fj(z) (j = 1, 2) defined by (15) be in the class Fp,θ(γ, β). Then
(f1 ∗ f2)(z) ∈ Fp,2θ(γ, α) where

α = p cos 2θ − (p cos θ − β)2

(p + γ)
. (37)

The result is sharp for the functions fj(z) given by

fj(z) = zp −
(

p cos θ − β

p + γ

)
e−iθzp+1 (j = 1, 2). (38)

Proof. Employing the technique used ealier by Schild and Silverman [6]. We need only to find
the largest α such that

∞∑

k=1

e2iθ

(
p + kγ

p cos 2θ − α

)
ap+k,1ap+k,2 ≤ 1. (39)

Since fj(z) (j = 1, 2) are in the class Fp,θ(γ, β), it follows from Theorem 2.1, that
∞∑

k=1

eiθ

(
p + kγ

p cos θ − β

)
ap+k,j ≤ 1, (40)

for every j = 1, 2. By the Cauchy Schwarz inequality we have
∞∑

k=1

eiθ

(
p + kγ

p cos θ − β

)√
ap+k,1ap+k,2 ≤ 1. (41)

Therefore, (39) will be satisfied if

e2iθ

(
p + kγ

p cos 2θ − α

)
ap+k,1ap+k,2 ≤ eiθ

(
p + kγ

p cos θ − β

)√
ap+k,1ap+k,2.

Then
√

ap+k,1ap+k,2 ≤
(

p cos 2θ − α

p cos θ − β

)
e−iθ. (42)

Since (41) implies
√

ap+k,1ap+k,2 ≤
(

p cos θ − β

p + kγ

)
e−iθ. (43)

From ((42) and (43) we have

α ≤ p cos 2θ − (p cos θ − β)2

(p + kγ)
. (44)

Now defining the function G(k) by

G(k) = p cos 2θ − (p cos θ − β)2

(p + kγ)
, (45)

we see that G(k) is an increasing function of k (k ∈ N). Therefore, we conclude that

α ≤ G(1) = p cos 2θ − (p cos θ − β)2

(p + γ)
, (46)

which evidently completes the proof of Theorem 6.1. ¤

Using arguments similiar to those in the proof of Theorem 6.1, we obtain the following theo-
rem.
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Theorem 6.2. Let the function f1(z) defined by (15) be in the class Fp,θ(γ, β). Suppose also
that the function f2(z) defined by (15) be in the class Fp,θ(γ, φ). Then (f1 ∗ f2)(z) ∈ Fp,2θ(γ, ζ),
where

ζ = p cos 2θ − (p cos θ − β)(p cos θ − φ)
(p + γ)

. (47)

The result is sharp for the functions fj(z) (j = 1, 2) given by

f1(z) = zp −
(

p cos θ − β

p + γ

)
e−iθzp+1, (48)

and

f2(z) = zp −
(

p cos θ − φ

p + γ

)
e−iθzp+1. (49)

Theorem 6.3. . Let the functions fj(z) (j = 1, 2) defined by (15) be in the class Fp,θ(γ, β). Then
the function

h(z) = zp −
∞∑

k=1

(a2
p+k,1 + a2

p+k,2)z
p+k, (50)

also belongs to the class Fp,2θ(γ, η), where

η(p; β, γ; θ) = p cos 2θ − 2(p cos θ − β)2

(p + γ)
. (51)

The result is sharp for the functions given by (38).

Proof. By using Theorem 2.1, we have
∞∑

k=1

[
eiθ p + kγ

p cos θ − β

]2

a2
p+k,1 ≤

[ ∞∑

k=1

eiθ p + kγ

p cos θ − β
ap+k,1

]2

≤ 1, (52)

and
∞∑

k=1

[
eiθ p + kγ

p cos θ − β

]2

a2
p+k,2 ≤

[ ∞∑

k=1

eiθ p + kγ

p cos θ − β
ap+k,2

]2

≤ 1. (53)

It follow from (52) and (53) that
∞∑

k=1

1
2

[
eiθ p + kγ

p cos θ − β

]2

(a2
p+k,1 + a2

p+k,2) ≤ 1. (54)

Therefore, we need to find the largest η such that

e2iθ p + kγ

p cos 2θ − η
≤ 1

2

[
eiθ p + kγ

p cos θ − β

]2

, (55)

that is

η ≤ p cos 2θ − 2(p cos θ − β)2

(p + kγ)
.

Since

D(k) = p cos 2θ − 2(p cos θ − β)2

(p + kγ)
,

is an increasing function of k(k ∈ N), we obtain

η ≤ D(1) = p cos 2θ − 2(p cos θ − β)2

(p + γ)
,

and hence the proof of Theorem 6.3 is completed. ¤
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Remark 6.1. (1) Putting θ = 0 in our results, we obtain the results obtained by Lee et al. [4];
(2) Putting γ = p = 1 in our results, we obtain the results obtained by Sekine [7].

7. Definitions and applications of fractional calculus

Many essentially equivalent definitions of fractional calculus (that is, fractional derivatives and
fractional integrals) have been given in the literature (cf., e.g. [1], [9] and [10]. We find it to be
convenient to recall here the following definitions which were used recently by Owa [5] and by
Srivastava and Owa [8] ).

Definition 7.1. The fractional integral of order µ is defined, for a function f(z), by

D−µ
z f(z) =

1
Γ(µ)

∫ z

0

f(t)
(z − t)1−µ

dt (µ > 0), (56)

where f(z) is an analytic function in a simply-connected region of the complex z−plane contain-
ing the origin and the multiplicity of (z− t)µ−1 is removed by requiring log(z− t) to be real when
z − t > 0.

Definition 7.2. The fractional derivative of order µ is defined, for a function f(z), by

Dµ
z f(z) =

1
Γ(1− µ)

d

dz

∫ z

0

f(t)
(z − t)µ

dt (0 ≤ µ < 1), (57)

where f(z) is an analytic function in a simply-connected region of the complex z−plane contain-
ing the origin and the multiplicity of (z− t)−µ is removed by requiring log(z− t) to be real when
z − t > 0.

Definition 7.3. Under the hypotheses of definition 2, the fractional derivative of order n+µ is
defined by

Dn+µ
z f(z) =

dn

dzn
Dµ

z f(z) (0 ≤ µ < 1; n ∈ N0 = N ∪ {0}). (58)

Theorem 7.1. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β). Then we have
∣∣D−µ

z f(z)
∣∣ ≥ Γ(p + 1)

Γ(p + µ + 1)
|z|p+µ

{
1− (p + 1)(p cos θ − β)

(p + γ)(p + µ + 1)
|z|

}
, (59)

and

∣∣D−µ
z f(z)

∣∣ ≤ Γ(p + 1)
Γ(p + µ + 1)

|z|p+µ

{
1 +

(p + 1)(p cos θ − β)
(p + γ)(p + µ + 1)

|z|
}

, (60)

for µ > 0 and z ∈ U. The result is sharp.

Proof. Let

F (z) =
Γ(p + µ + 1)

Γ(p + 1)
z−µD−µ

z f(z)

= zp −
∞∑

k=1

Γ(p + k + 1)Γ(p + µ + 1)
Γ(p + 1)Γ(p + k + µ + 1)

ap+kz
p+k.

Then

F (z) = zp −
∞∑

k=1

Ψ(k)ap+kz
p+k, (61)

where

Ψ(k) =
Γ(p + k + 1)Γ(p + µ + 1)
Γ(p + 1)Γ(p + k + µ + 1)

(µ > 0).
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Since Ψ(k) is an decreasing function of k (k ∈ N), then

0 < Ψ(k) ≤ Ψ(1) =
(p + 1)

(p + µ + 1)
. (62)

From (61) and (62), we have

|F (z)| ≥ |z|p −Ψ(1) |z|p+1
∞∑

k=1

|ap+k| . (63)

In view of (9) and (63), we have

|F (z)| =
∣∣∣∣
Γ(p + µ + 1)

Γ(p + 1)
z−µD−µ

z f(z)
∣∣∣∣ ≥ |z|p − (p + 1)(p cos θ − β)

(p + γ)(p + µ + 1)
|z|p+1 ,

and

|F (z)| =
∣∣∣∣
Γ(p + µ + 1)

Γ(p + 1)
z−µD−µ

z f(z)
∣∣∣∣ ≤ |z|p +

(p + 1)(p cos θ − β)
(p + γ)(p + µ + 1)

|z|p+1 .

which proves the inequalities of Theorem 7.1. Further equalities are attained for the function

D−µ
z f(z) =

Γ(p + 1)
Γ(p + µ + 1)

zp+µ

{
1− (p + 1)(p cos θ − β)

(p + γ)(p + µ + 1)
z

}
, (64)

or

f(z) = zp − p cos θ − β

p + γ
e−iθzp+1(z = ± |z| eiθ). (65)

¤

Using arguments similiar to those in the proof of Theorem 7.1, we obtain the following theorem.

Theorem 7.2. Let the function f(z) defined by (1) be in the class Fp,θ(γ, β). Then we have

|Dµ
z f(z)| ≥ Γ(p + 1)

Γ(p− µ + 1)
|z|p−µ

{
1− (p + 1)(p cos θ − β)

(p + γ)(p− µ + 1)
|z|

}
, (66)

and

|Dµ
z f(z)| ≤ Γ(p + 1)

Γ(p− µ + 1)
|z|p−µ

{
1 +

(p + 1)(p cos θ − β)
(p + γ)(p− µ + 1)

|z|
}

, (67)

for 0 ≤ µ < 1 and z ∈ U. The result is sharp for the function f(z) given by (65).

Remark 7.1. (1) Putting θ = 0 in our results, we obtain the results obtained by Aouf and
Darwish [2];
(2)Putting θ = 0 and p = 1 in our results, we obtain the results obtained by Bhoosnurmath and
Swamy [3].
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