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NUMERICAL INVESTIGATION OF CONSTRAINED OPTIMIZATION OF
TRANSIENT PROCESSES IN OIL PIPELINES
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Abstract. Optimal control problems are investigated to establishment the transient processes,

when raw material over pipelines are investigated in the work. We carry out qualitative analysis

concerning the dependence of the optimal transient period of the process on the dispersion

coefficient and on the length of a pipeline section, on the quantity of the interval of admissible

controls given on different classes of functions and for different values of initial and final steady-

state regimes.
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1. Introduction

Problems of optimal control of transient processes met with in transporting hydrocarbon
raw material over trunk pipelines when switching from one steady-state regime to another are
investigated in the work. The processes of this kind take place when changing transportation
regimes according to a plan and when a necessity of emergency shutdown of a pipeline [5, 1]
occurs. The mathematical statement is described as a parametrical problem of optimal control of
systems with distributed parameters. The time of a transient process is an optimized parameter.
The values of fluid consumption at the ends of a linear pipeline section serve as a control actions.
Constraints are formed taking into account technological characteristics of pumping stations
(pumps) and the conditions of pipeline strength. The proposed criterion of optimality reflects
the fact of the impossibility to achieve complete stabilization of the regime (precise conditions
of steady-state process) because of inaccurate operation of measuring devices. The considered
problem is closely linked with the problem of control of wave processes, studied by a number of
scientists (A.G.Butkovsky, V.A.Il’in, F.P.Vasil’ev, A.V.Borovsky, etc. [3, 4, 6, 7]). In contrast to
the investigations carried out heretofore, in this work, we numerically investigate time-optimal
problems with boundary control of the regimes of fluid (oil) transportation over pipelines under
constraints of technological character imposed on control actions and on the state of a controlled
object. We give a qualitative analysis of the dependence of the minimal time when the process
steadies on dispersion coefficient (determined by hydraulic resistance coefficient, viscosity, and
the diameter of a pipeline), on the length of a pipeline section, on the difference between the
values of initial and final steady-state regimes, on the range of admissible controls for different
values of initial and final steady-state regimes.
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2. Problem statement

Consider an isothermal process of the transportation of single-phase oil over linear section of
a horizontal pipeline of length l, diameter d, and hydraulic resistance coefficient λ. The regime
of fluid flow is assumed laminar; oil is assumed incompressible, having kinematic viscosity ν. At
both ends of the oil pipeline, there are pumping stations providing given transmission regime.

Unsteady-state flow of an incompressible fluid for case of subsonic flow velocities is described
by the following linearized system of differential equations [5]:

−∂p̃
∂ξ = ρ

(
∂ω̃
∂τ + 2aω̃

)
,

− ∂p̃
∂τ = c2ρ∂ω̃

∂ξ ,
ξ ∈ (0, l), τ > 0, (1)

where p̃ = p̃(ξ, τ) is fluid pressure, ω̃ = ω̃(ξ, τ) is fluid flow velocity at the point of pipeline
ξ ∈ (0, l) at time instance τ > 0; c is sound speed in the propagation medium; ρ = const is fluid
density, which is assumed constant for a dropping fluid; λ is hydraulic resistance coefficient;
2a = λω̃

2d = 64ν
ω̃d

ω̃
2d = 32ν

d2 is linearized friction coefficient. (Linearization is made taking into
account that the regime of fluid flow is laminar. Under turbulent regime it is assumed that 2a =
λω̃cp/2d, where ω̃A@ is average value of the velocity of raw material pipeline transportation).
In system (1), turn to dimensionless quantities [5], assuming that

p =
p̃

p̃0
, ω =

ω̃

ω̃0
, x =

ξ

l
, t =

cτ

l
, p̃0 = cρ0ω̃0, (2)

where ρ0 = const is fluid density; ω̃0 is any value of flow velocity typical for given problem; l is
any typical length, for example, the length of a pipeline section.

Then, after some simple transformations we obtain a system with dimensionless variables:

− ∂p
∂x = ∂ω

∂t + β ω,

−∂p
∂t = ∂ω

∂x ,
β =

2al

c
, 0 < x < 1, t > t0. (3)

Suppose that till the point of time t0 = 0 there was a steady-state regime in the pipeline defined
by the conditions

ω(x, t) = ω0 = const, x ∈ [0, 1], t ≤ 0, (4)

p(x, t) = p0(x), x ∈ [0, 1], t ≤ 0, (5)

where known function p0(x) at given fluid flow velocity ω0 is determined by geometrical dimen-
sions of the pipeline and by the properties of the fluid (oil) itself by the formula obtained from
(3) under the condition of steadiness:

p0(x) = p0(0)− β ω0 x, x ∈ [0, 1]. (6)

It is necessary to note that in practice, precise observance of the conditions of steadiness (4), (5)
is impossible, as there are always minute disturbances in pipelines caused by certain irregularities
in the operation of processing facilities resulting in comparatively small divergences from the
conditions of steadiness (4), (5):

|ω(x, t)− ω0| ≤ δω,

|p(x, t)− p0(x)| ≤ δp, x ∈ (0, 1), t ≤ 0,
(7)

where δω, δp are given small positive values determined by portions or percentages of the values
ω0 and p0(x) of some steady-state regime, respectively.

In this connection a regime of raw material transportation over a pipeline will be called
δ-steady-state regime if (7) is satisfied.
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Conditions (5) and (6) hold due to operation of pumping stations that maintain the regime

ω(0, t) = ω(1, t) = ω0, t ≤ 0.

The problem of optimal control of transient processes consists in the following: it is necessary
to switch the operation regime of the pipeline (4) and (5) to a new preset steady-state regime
(8) and (9) in a minimal possible time.

ω(x, t) = ωT = const, t ≥ T , x ∈ [0, 1] , (8)

p(x, t) = pT (x), t ≥ T, x ∈ [0, 1], (9)

where T is the time after which the new steady-state regime (8) and (9) proceeds.
Necessary change of the transit regimes in oil pipelines must be achieved by controlling the

operation regimes of pumping stations, namely, due to the change of volume flow rate (which is
equivalent to the change of raw material flow velocity) at the ends of a linear pipeline section

ω(0, t) = u1(t), ω(l, t) = u2(t), t ∈ [0, T ] , (10)

provided that some technological and technical constraints are fulfilled:

u1 ≤ u1(t) ≤ ū1, u2 ≤ u2(t) ≤ ū2, t ∈ [0, T ] , (11)

where u1(t) , u2(t) are piecewise constant functions.
When controlling real technological processes, including regimes of raw material pipeline

transportation, the implementation of control actions on a class of piecewise continuous functions
of time is often complicated or impossible. That is why, in practice, they consider control
problems on technically easily implementable classes of functions such as piecewise constant,
impulse, etc. [1]. In this connection in the work, we also consider a class of problems of
boundary control of process (3) when control actions are piecewise constant functions of time of
the form:

ui(t) = vij = const, t ∈ [τij−1, τij) , i = 1, 2, j = 1, L ,

τi0 = 0, τiL = T, τij = τij−1 + ∆τij , i = 1, 2, j = 1, L− 1.
(12)

In this case, the optimal control problem consists in determining L-dimensional vectors v1, v2 ∈
RL. In regard to points of time τij and, respectively, intervals of constancy of the controls ∆τij ,
they can be determined in a number of ways. If the number of switchings L of the control actions
is given, then switching times τij may be defined in different ways, for example, reasoning from
the condition of uniformity of the intervals: τij = j ∗ (T/L), i.e. ∆τij = ∆τ = const, j = 1, L;
one can also optimize the moments of switching times τij , i = 1, 2, j = 1, L− 1. In this
case, (4L− 2)-dimensional vector (v, τ) =(v11, ..., v1L, v21, ..., v2L, τ11, ..., τ1L−1, τ21, ..., τ2L−1)
is optimized in the control problem. We can also optimize the number of switchings L.

In this work, when solving the problem of control of transient processes, it is assumed that L is
given, and the values vij of piecewise constant controls on the intervals of constancy [τij−1, τij),
as well as the switching times τij , i = 1, 2, j = 1, L of the controls are optimized.

Reasoning from the conditions of pipeline strength, it is necessary to observe the following
technological constraints on the maximal value of pressure when the transportation process takes
place all over the pipeline and throughout the period of control of the transient process:

p ≤ p(x, t) ≤ p̄, x ∈ (0, 1), t ∈ [0, T ] , (13)

where p̄ is given maximum admissible value of pressure, which depends on the properties of the
material of pipelines; p is the pressure level below which undesirable cavitation (boil) process of
oil takes place.
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Constraints (13) can be transformed into constraints on maximum admissible values of linear
velocity ω̄, which can be obtained using Zhukovsky’s formula for hydraulic shock pressure [5]:
∆p = cρ∆ω, where ∆p is the shock increment of pressure in the fluid of density ρ when the
fluid flow velocity changes by ∆ω. Thus, using above mentioned formulas, we can obtain the
following constraints on the values of velocity:

ω ≤ ω(x, t) ≤ ω̄, x ∈ (0, 1), t ∈ [0, T ] . (14)

As the system of equations (3) is a hyperbolic type system, then when studying the transient
process in the pipeline we can find analogy with transient process in a distributed oscillating
system with dispersion that is to be switched to given stationary state for a minimally possible
period. As it is mentioned above, this problem has been considered by a lot of authors. For
example, F.P.Vasil’ev and his followers established the existence of boundary control for the
case when T ≥ 2l with the help of duality principle for a wave equation [7].

V.A.Il’in and his followers in a series of works ([6, etc.]) gave the analysis of the problem
of existence of boundary control, obtained criteria (conditions) of controllability, as well as
established its explicit analytical form. A.G.Butkovsky [4] solved the problem of fastest damping
of an oscillating system by means of method of finite control. A.V.Borovsky [3] derived a
formula of boundary control for an arbitrary heterogeneous string for cases of conditional and
unconditional controllability.

In the above mentioned works, they do not take into account constraints of technological
character imposed on control actions and on the state of the controlled object, without which
the control of real processes is impossible.

The objective of the work is to investigate the solution to an optimal control problem of
transient processes taking into account operating and technological constraints on the values of
physical parameters participating in the transient process.
We minimize a target functional that tracks mean-square deviation of the values of velocity
and pressure functions from the preset values during a definite period after the moment of
δ-steadiness of the process:

J(u, T ) = T +

T+DT∫

T

l∫

0

{
r1 [p(x, t)− pT (x)]2 + r2 [ω(x, t)− ωT ]2

}
dxdt+

+R1

T∫

0

∫ l

0
[max(0, ω(x, t)− ω)]2 dxdt+

+R2

T∫

0

l∫

0

[max(0,−ω(x, t) + ω)]2 dxdt → min . (15)

Here DT is the preset length of the time interval, during which we observe the process and
establish the presence of δ-steady-state regime; r1, r2 are given weighting coefficients, the values
of which are determined by δ; δ is the required precision of obtaining steadiness conditions;
R1, R2 are sufficiently large positive numbers defining the penalties for violating the constraints
on the phase variable (14). The problem stated can be considered as time-optimal problem
for a distributed system with given values of the functions of phase at the time of the process
completion T, which is considered as an optimized parameter, and with control parameters
in boundary conditions. To solve this problem, two approaches can be applied. According
to the first approach, we can consider T as a parameter and use two-level optimization: at
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the upper level to determine optimal time of the transient process T ∗, we apply any method
of one-dimensional optimization; at the lower level with given current values of T to determine
J∗T = J(u∗T , T ) = min

u
J(u, T ), we solve a problem of optimal control of a distributed system with

fixed time. According to the second approach, T is considered as a component of the control,
and to find its optimal value, we apply a procedure of simultaneous combined optimization of
T and u (t).

Below we give formulas for the components of the gradient of the functional on the optimized
parameters: operation regimes of pumping stations (u(t), (v, τ)) and the process completion
time T . The obtained formulas allow using efficient numerical first-order optimization methods
to solve the problem.

3. Formulas for numerical solution to the problem

Using the method of variation of the optimized functions [8] and the parameter T , we can
obtain necessary optimality conditions in optimal control problem (3)-(5), (10)-(15), containing
the following formulas for the components of the gradient of the functional on the control
parameters and on the time of the process completion:

gradu1 J(u, T ) = cψ2(0, t), 0 ≤ t ≤ T + DT,

gradu2 J(u, T ) = cψ2(l, t), 0 ≤ t ≤ T + DT, (16)

gradT J(u, T ) = 1 +

l∫

0

r1(ω(x, T + DT ) + ω(x, T )− 2ωT )(ω(x, T + DT )− ω(x, T ))dx+

+

l∫

0

r2(p(x, T + DT ) + p(x, T )− 2pT (x))(p(x, T + DT )− p(x, T ))dx+

+

l∫

0

{R1 [max(0, ω(x, T )− ω)]2 + R2 [max(0,−ω(x, T ) + ω)]2}dx . (17)

Here ψ1(x, t),ψ2(x, t) are the solutions to the following adjoint boundary problem:

∂ψ1

∂t
=





−c∂ψ2

∂x + βψ1 − 2r1(ω(x, t)− ωT ), T ≤ t ≤ T + DT,

−c∂ψ2

∂x + βψ1 − 2R1 [max(0, ω(x, t)− ω)]+
+2R2 [max(0,−ω(x, t) + ω)]), 0 ≤ t < T,

∂ψ2

∂t
=

{
−1

c
∂ψ1

∂x − 2r2(p(x, t)− pT (x)), T ≤ t ≤ T + DT,

−1
c

∂ψ1

∂x , 0 ≤ t < T,
(18)

ψ1(0, t) = ψ1(1, t) = 0, 0 ≤ t < T + DT,

ψ1(x, T + DT ) = 0, ψ2(x, T + DT ) = 0 , 0 ≤ x ≤ 1. (19)

In the case of piecewise constant control actions (12) the gradient of the functional in the space
of control parameters vij is determined by the formulas:

dJ

dv1j
= c

τ1j∫

τ1j−1

ψ2(0, t)dt,
dJ

dv2j
= c

τ2j∫

τ2j−1

ψ2(1, t)dt, i = 1, 2, j = 1, L. (20)
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When we need to optimize the intervals of constancy, i.e. the switching moments of the control
τij , i = 1, 2, j = 1, L− 1, then the gradient of the functional on the switching moments is
determined by the formulas:

dJ

dτ1j
= cψ2(0, τ1j)(v1j − v1j+1),

dJ

dτ2j
= cψ2(1, τ2j)(v2j − v2j+1), j = 1, L− 1. (21)

These formulas allow to use efficient numerical first order optimization methods for the solution
to optimal control problem (3)-(5), (10)-(15), particularly, the methods of penalty function, of
gradient projection, of conjugate gradient, and their combination can be applied [8]. As it is
evident from (15), to take into account the constraints on the phase state (14), we use exterior
penalty method [8].

4. The results of numerical experiments

Numerous computational experiments have been carried out with the purpose of revealing
regularities of qualitative character of the dependence of the minimal time of the transient
process of the length of a pipeline section, of dispersion coefficient a, and of the quantity of
the difference between the values of the parameters of initial and of final steady-state regimes.
The investigation of the problem of control of transient processes has been carried out under
constraints on the control actions and on functions of phase (11), (14).

In all the numerical experiments, the control is implemented at the left end (the beginning
of the section); boundary condition corresponding to a new required steady-state regime is
established at the other end.

In the presence of technological constraints on the state distribution function and on control,
we investigate the dependence of the minimal time when the transient process steadies from the
number of intervals of admissible controls for different values of initial and final steady-state
regimes.

When carrying out numerical computations, we assume that control actions belong to a class
of piecewise constant and piecewise continuous functions.
The results of numerical experiments on the investigation of transient processes given below
have been obtained under the following values of technological and technical parameters of oil
transportation pipeline section: the internal diameter of the pipeline d = 350mm, oil density
ρ = 920kg/m3, kinematic viscosity coefficient v = 1.5× 10−4m2/s, sound speed in oil
c = 1200m/s (Note that these data correspond to actual oil pipeline data).

The description of the parameters (in dimensional units) of initial and final steady-state
regimes of oil flow for the results of the solution to the problem of control of transient processes
given below are shown in the table 1 (here q0 is the value of fluid consumption under the initial
steady-state regime; qT is the value of fluid consumption under the final steady-state regime;
p̃(0, 0) is the pressure at the left end of the section under initial steady-state regime; p̃(0, T ) is
the pressure at the left end of the section under final steady-state regime; l is the length of the
linear pipeline section).

We have an evident link between the phase variable ω(x, t)- the linear flow velocity – used in
the description of transient processes and oil flow rate:

q(x, t) = ω̃(x, t) · S, q0 = ω̃0 · S, S = πd2/
4,

where ω̃0 is the feed flow velocity and q0 the feed flow rate.
In order to switch to dimensionless variables in system (2) according to formulas (3), in prob-

lems I-VII , we scale ω̃(ξ, τ) by taking the linear flow velocity ω̃0 as a characteristic quantity,
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corresponding to the flow rate q0 under the initial steady-state regime, and in problems VIII,
IX , we scale ω̃(ξ, τ) by taking the linear flow velocity ω̃T as a characteristic quantity, cor-
responding to the flow rate qT under the final steady-state regime. We also make p̃(ξ, τ)
dimensionless according to formulas (3). We take the values

p̃0 = 6.182 ∗ 105 Pascal ≈ 6.1 atm; p̃0 = 4.637 ∗ 105 Pascal ≈ 4.6 atm

as a scale of the pressure p̃0 = cρ0ω̃0 for problems I-V and VI, respectively (for the other
problems the values of p̃0 are also determined by the respective values of ω̃0). In this case,
transient processes in the problems considered are determined by the initial and final regimes
(in dimensionless units) of the steady-state oil flow given in the table 1.

When taking into account the technological constraints on the control actions and on the
system state, in contrast to the problem without constraints, we reveal the dependence of the
optimal time of the transient process from the dispersion coefficient a. This dependence makes
itself felt more when the interval of admissible values of the controls [u, u] is narrowed. Demon-
strate this fact by the example of the investigation of the problems III and IV, which differs
only in the values of the dispersion coefficient (in the problem III a=0.0096, in the problem IV
a=0.0144).

Compare the results of the solution to the problems III and IV, given in fig.1, under the same
intervals of admissible values of the control actions (the results of the solution to the problems
are given in dimensionless units on all the given figures). As it is evident from the figures, when
we increase a the transient period decreases. Here we used the following notations: T dml

opt is the
optimal time of the transient process in dimensionless units; T dm

opt the real optimal value of the
transition time translated into seconds.

When investigating the dependence of the minimal transient period from the length of the
section under technological constraints, we revealed that in contrast to the problem without
constraints this dependence is not directly proportional. Show this fact using the results of the
investigation of the problems I and II, in which all of the values of technological parameters
are the same, except for the length of the section, which is in problem II twice as large as
that in problem I. As it is evident from the data given in the table 2, when we narrow the
interval of admissible values of the control the optimal transient period of the transient process
T dm

opt increases much slower than the directly proportional dependence with the increase of the
length of the section, and becomes directly proportional under significant increase of the range
of admissible values of the controls.

When carrying out numerical experiments on the investigation of transient processes under
constraints on the values of the functions of phase and on control actions, we revealed that the
transient period of the optimal transient process depends on the interval of admissible values of
controls [u, u] for given values of the initial ω0 and final ωT of the steady-state regimes. We also
revealed the regularity stating that under the transient process at which the values of the final
steady-state regime are greater than those of the initial (for example, as in the problems I, II,
V, and VI) the transient period of the process depends only on the quantity of upper maximum
admissible values u for the values of admissible control actions.

The analysis of the results of the computational experiments carried out for the problem V
(see table 2 and figures metricconverterProductID2, a2, a, 2, b, 2, c) shows that when upper
admissible values u <2.7, the transient period exceeds the minimal; at that the values of the op-
timal control actions under which the transient process is implemented are uniquely determined
for every particular u. Under the values of upper admissible limit u ≥2.7, the optimal time of
the transient process does not change anymore remaining minimal ( T dml

opt ≈2). However, when
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u increases, the behaviour of the optimal control itself may significantly deteriorate from the
point of view of practical implementation as there appear significant oscillations of the control
(figures 2,d, 2,e, metricconverterProductID2,f2,f).

Similar results have been obtained when investigating the problems VI (table 2) and VII
(table 3).

Consider transient processes in which the switch from larger values of fluid flow rate of steady-
state regimes to smaller ones is implemented. Investigate them by the example of the problems
VIII and IX (figure 3). When carrying out numerous computational experiments, we established
that under the transient process in which the values of the final steady-state regime is less than
those of the initial one the transient period of the process depends only of the lower limits of
admissible control actions u.

By the example of the problem V, move on to the investigation of transient processes under
the assumption that the control is given on a class of piecewise constant functions; at that
we optimize not only the values of the controls vj , j = 1, L, but the intervals of constancy
∆τj , j = 1, L− 1, or the switchings moments of the control τj as well (see table 4). Suppose
that L ( the number of intervals of constancy of the control) is given (particularly, L = 10 in
all the computations presented). In case if the intervals of constancy ∆τj = τj+1 − τj , or the
difference between the adjacent values of the controls are small quantities, i.e. ∆τj < ∆τmin, or
|vj − vj+1| < ε, where ∆τmin, ε are sufficiently small (particularly, in this problem ∆τmin=0.001
and ε=0.01), then we can “stick together” some intervals of constancy of the control function
and, therefore, reduce the total number of these intervals (i.e. reduce L).

First, we give the optimal control obtained when investigating the problem V on a class
of piecewise constant control functions without any constraints on the functions of phase and
of control (figure 4, b). As it is evident from comparison with the respective graph obtained
for piecewise continuous control under the same conditions (figure metricconverterProductID4,
a4, a), here we do not observe such strong oscillation of the function, although the transient
period slightly increases (on figure metricconverterProductID4, a4, a, T dml

opt ≈2; on figure 4, b,
T dml

opt ≈3.4).
As it is evident from the graphs (figure 5), under the values u <2.7 there is significant reduction

of the number of intervals of constancy mainly due to the switchings moments of the controls
being optimized (when u =1.8 the control takes place at two intervals, when u =2 – at three
intervals, and when u =2.2 – at five intervals of constancy).

When u ≥2.7 (figures 5, e, metricconverterProductID5, f5, f) the picture significantly changes:
the number of the intervals increases, the transient period becomes equal to the minimal
( T dml

opt ≈3.4) and does not change anymore with the increase of the range of upper permissi-
ble level of u and in this case the transient period coincides with the transient period for the
problem without constraints on the functions of phase and of control (figure 4, b).

5. Conclusive remarks

Some of the existing quantitative results obtained when carrying out numerical experiments
are given in the tables and graphs. On the basis of the obtained results, we give a qualitative
analysis with respect to the solution to the problem of control of transient processes in oil
pipelines.

The class of control actions and constraints imposed on the controls has a significant influence
on the transient period. The main conclusions which are obtained on the basis of the analysis
of the results of numerical experiments are as follows:
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(1) As it is well known from theoretical investigations (this is confirmed by the results
of the numerical experiments carried out) the minimal period of the transient process
under piecewise continuous control actions without any constraints on the control process
does not depend on the diameter of the pipeline, coefficient of resistance, viscosity, oil
density, and the values of initial and final steady-state regimes. The minimal period
of the transient process does depend on the length of the pipeline. But the optimal
regimes of the pumping stations obtained here are practically unimplementable (by the
example of the problem V, due to the obtained negative values of the velocity and its
large oscillation (see figure metricconverterProductID4, a4, a)).

(2) Under technological constraints on the range (boundary) of the control actions from the
class of piecewise continuous functions, there take place the following facts.
(a) The dispersion coefficient influences the period of the transient process. Namely,

when the dispersion coefficient increases, the transient period decreases. Here, when
the range of the set of admissible controls increases, the influence of the dispersion
coefficient decreases.

(b) The difference between the values of the parameters of initial and final steady-
state regimes has an influence on the transient process. Namely, the period of
the transient process gets larger when we need to increase the consumption. The
influence of this difference on the transient period decreases when the range of the
set of admissible values of the control actions gets larger.

(c) With the increase of the length of the pipeline section, the period of the transient
process increases significantly slower when the interval of admissible values of the
control is narrowed; this change becomes directly proportional to the increase of
the length of the section when the range of admissible values of the control actions
gets larger.

(d) The minimal period of the transient process is the same when we need to switch from
smaller value of the regime to a larger one, and vice versa. Here, the optimal tran-
sition regimes themselves are symmetrical (see figures metricconverterProductID2,
a2, a, and 3, b).

(3) When controlling the transient process on a class of piecewise constant functions under
technological constraints on the regimes of the control all the qualitative characteristics
2.1-2.4, which are intrinsic to piecewise continuous regimes, are observed on this class
too.
(a) In comparison to piecewise continuous controls, in case of using piecewise constant

actions we need a larger period for the transient process under the same initial
values of the technological parameters and of constraints.

(b) The increase of the intervals of constancy and of the range of admissible values of
the control results in the decrease of the period of the transient process.

(c) In case of optimizing the switching moments of the controls, with narrowing the
range of admissible values of the control there takes place significant reduction of
the number of the intervals of constancy of the controls.

(d) The numerical experiments carried out for the problems I-IX show that when con-
trolling the process of steadiness at the section of the oil pipeline at the expense of
pumping stations set at both its ends, regardless of the class of control actions and of
the range of admissible controls the transient period decreases twice in comparison
with controlling the pumping station at one end.
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Figure 1.Graphs of optimal piecewise continuous controls for the problem III (left) and for the problem IV

(right) with u=0.5 and u = 1.6, a = 0.0096 (a); u = 1.6, a = 0.0144 (b); u = 1, 7, a = 0.0096 (c);

u = 1, 7, a = 0.0144 (d).

Figure 2.Graphs of optimal piecewise continuous controls for the problem V with u = 1.8 (a), u = 2.2 (b),

u = 2.4 (c), u = 2.7 (d), u = 3 (e), u = 4 (f).

(e) It seems impossible to convert the mentioned above qualitative analysis to some
quantitative estimations on the basis of computer-based experiments for arbitrary
general case. But for each specific case of linear section of the oil pipeline and oil
characteristics, we can obtain quantitative characteristics of transient processes and
recommendations on how to control them in the form of graphs, tables, and more
specific technological recommendations at the expense of carrying out numerous
experiments.
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Figure 3.Graphs of optimal piecewise continuous controls for the problem V IIIwith u=0.9 (a), u=0.7 (b),

u=0.5 (c), u=0.2 (d).

Figure 4.Graphs of control of the transient process for the problem V without constraints with piecewise

continuous (a) and piecewise constant (b) controls.

Figure 5.Graphs of piecewise constant optimal control for the problem V with u=1.8 (a), u=2 (b), u=2.2 (c),

u=2.6 (d), u=3.5 (e), u=4.5 (f).
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Table 1. Parameters of the considered problems of control of transient processes.

Prob-
lem
No.

In dimensional units In dimensionless units

2a

(1/c)
q0(
m3

/h
) qT

(
m3

/h
)
p̃(0, 0)
(atm.)

p̃(0, T )
(atm.)

l

(km)
β ω0 ωT p0(0) pT (0)

I 0.0192 400 600 30 43 132 2.112 1 1.5 4.8 7
II 0.0192 400 600 30 43 264 4.224 1 1.5 4.8 7
III 0.0192 400 600 23 33 132 2.112 1 1.5 3.7 5.3
IV 0.0288 400 600 23 33 132 3.168 1 1.5 3.7 5.3
V 0.0192 400 600 18 24 132 2.112 1 1.5 2.9 3.8
V I 0.0192 300 600 14 24 132 2.112 1 2 2.8 4.9
V II 0.0192 200 800 10 29 132 2.112 1 4 3.2 9.4
V III 0.0192 600 400 24 18 132 2.112 1.5 1 3.8 2.9
IX 0.0192 600 300 24 14 132 2.112 2 1 4.9 2.8

Table 2. Results of the solution to the problems with u=0.5 and with different values of u

under piecewise continuous control actions.

u Problem I Problem II Problem V Problem V I

T dml
opt T dm

opt T dml
opt T dm

opt T dml
opt T dm

opt T dml
opt T dm

opt

1.6 17.9 1969 13.2 2904 12.7 1397
1.7 9.6 1056 6.9 1518 6.9 759
1.8 6.9 759 5.1 1122 4.8 528
1.9 5.5 605 4.3 946 4.1 451
2 4.6 495 3.7 814 3.4 374
2.1 4.1 451 3.4 748 2.9 319
2.2 3.7 407 3.3 726 2.7 297 7.3 803
2.3 3 374 3.1 682 2.6 286 5 550
2.4 3 330 3 660 2.5 275 4.2 462
2.5 2.8 308 2.9 638 2.4 264 3.8 418
2.6 2.7 297 2.7 594 2.3 253 3.1 341
2.7 2.6 286 2.7 594 2.1 231 2.7 297
2.8 2.5 275 2.6 572 2.1 231 2.6 286
3 2.4 264 2.5 550 2.1 231 2.4 264
3.2 2.4 264 2.4 528 2.1 231 2.2 242
3.4 2.3 253 2.3 506 2.1 231 2.1 231
3.6 2.2 242 2.2 484 2.1 231 2.1 231
3.7 2.1 231 2.1 462 2.1 231 2.1 231
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Table 3. Dependence of the transient-process time from u in the problem V II with u=0.5

for piecewise continuous controls.

u T dml
opt T dm

opt u T dml
opt T dm

opt

4.2 16.6 1826 5.4 3.5 385
4.3 11.8 1430 5.6 3.1 341
4.4 9 990 5.8 2.7 297
4.5 7.5 825 6 2.6 286
4.6 6.5 715 6.3 2.5 275
4.7 5.8 638 6.6 2.4 264
4.8 4.9 539 7 2.3 253
4.9 4.6 506 7.4 2.2 242
5 4.3 473 7.6 2.1 231
5.2 4.1 451

Table 4. Dependence of the transient-process time from u in the problem V with u=0.5 for

piecewise constant controls (τL−1 is the time of the last switching of the control, L the number

of intervals of constancy of the control).

u (τL−1) T dml
opt T dm

opt L

1.7 5.57 8.2 902 2
1.8 3.81 6.9 759 2
1.9 3.79 6.6 726 3
2 2.9 5.6 616 3
2.1 2.7 4.4 484 4
2.2 2.53 4.3 473 5
2.3 2.31 4.3 473 7
2.4 2.29 4.2 462 7
2.5 2.21 3.6 396 8
2.6 2.14 3.6 396 8
2.7 2 3.4 374 9 (10)
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