TWMS J. Pure Appl. Math., V.5, N.2, 2014, pp.229-233

ON SOME NEW SEQUENCE SPACES OF NON-ABSOLUTE TYPE
SUZAN ZEREN!, CIGDEM A. BEKTAS!

ABSTRACT. In this paper, we define the new sequence spaces ¢j(u), ¢*(u) and £ (u), where
A = (M)l is a strictly increasing sequence of positive reals tending to oo, u = (u,) is a
sequence of complex numbers. A— transforms of these spaces are in the spaces co(u), c(u) and
loo(u), respectively. We also establish some inclusion relations between these spaces which are
BK-spaces.
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1. INTRODUCTION

By w, we denote the space of all real or complex valued sequences. Any vector subspace of w
is called a sequence space.

We shall write £, ¢ and ¢y for the sequence spaces of all bounded, convergent and null
sequences, respectively, which are BK-spaces with the same norm given by

]l = Sup |z |,

for all k € N.

A sequence space X with a linear topology is called a K-space provided each of the maps
pn + X — C defined by p,(x) = z, is continuous for all n € N where C denotes the complex
field and N = {0,1,2,...} . A K-space X is called an F' K-space provided X is a complete linear
metric space. An F K-space whose topology is normable is called a BK- space.

Let X and Y be sequence spaces and A = (a,x) be an infinite matrix of real or complex
numbers a,x, where n, k € N. Then, we say that A defines a matrix mapping from X into Y if
for every sequence x = (z1) € X the sequence Az = {4, (x)}, the A- transform of x, exists and
is in Y, where

An(z) = amexy  (n€N). (1)
k

By (X,Y), we denote the class of all infinite matrices that map X into Y. Thus, A € (X,Y)
if and only if the series on the right side of (1) converges for each n € N and every z € X, and
Az €Y forall z € X.

For a sequence space X, the matrix domain of an infinite matrix A in X is defined by

Xa={rcw: Axr e X} (2)

which is a sequence space.
Throughout this paper, let A = (Ax)p2, be a strictly increasing sequence of positive reals
tending to oo, that is
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0<XN <A <.. and)— ooask— . (3)
We shall use the convention that any term with a negative subscript is equal to zero, e.g.,
)\_1 =0 and r—1 = 0.
We define the infinite matrix A = (Ang)pp—o by

Ak —Ap—1 < <
h=4 a0 O=RED @
0, k>n

for all k& € N. Then, for any sequence x = (x;) € w, the A- transform of x is the sequence
A(z) = {An(x)}, where
n
Anle) = 5= 30w = M) (5)
k=0

for all n € N. It is obvious that by (4) that the matrix A = (\,;) is a triangle, i.e., App # 0 and
Ak =0 for all k >n (n € N).

The idea of constructing a new sequence by means of the matrix domain of a particular limi-
tation method has recently been studied by several authors, e.g., Altay and Basar [1], Mursaleen
et all [2], Mursaleen and Noman [7, 8], Malkowsky [5], Malkowsky and Savag [6].

2. MAIN RESULTS

In this section we introduce some new sequence spaces, as the sets of all sequences whose A—
transforms are in the spaces c(u), co(u) and lo(u), that is

n—oo

c)‘(u) = {x = (zg) €Ew: lim u, <)\1 Ak — )\kl)xk) exists} ,
0
- oo} |

where u = (u,,) is a sequence of complex numbers such that u,, # 0 for all n € N.

cp(u) = {x = (zg) €w: lim u,

S

T (k= M)

" k=0

03 ()

{x: (rg) € w:sup
n

Theorem 2.1. The spaces c)(u), ¢*(u) and €2, (u) are Banach spaces with the norm

]l = sup [unAn ()]
n

Theorem 2.2. The spaces cy(u), c*(u) and €2 (v) are BK— spaces with the norm

]| = sup [unAn ()|
Proof. The proof follows in [8]. O

3. SOME INCLUSION RELATIONS

In the present section, we give some inclusion relations concerning the spaces ¢} (u), ¢*(u) and
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Lemma 3.1. For any sequence x = (xy) € w, the equalities

Sp(z) =2 — Ap(z) (n€N) (6)
and
- )\nfl
B )\n - )\n—l
hold, where S(z) = {Sn(x)} is the sequence defined by

Sn() [An(2) = Ana(z)]  (n€N) (7)

1 n
So(w) =0 and Sp(x) = 1= > Necilzp —zpm1)  (n>1).
" k=1

Lemma 3.2. For any sequence X\ = (\,)72, satisfying (3), we have
(a) ()"v:\)l‘ckﬂ)k:o ¢ U if and only if hkniiﬁfAi:l =1,
o . S
(b) ()"“_)\)I‘Ck—l)k:o € Uy if and only if hkn_l)ggf f\zl > 1.
It is obvious that Lemma 3.2 still holds if the sequence {Ag/ (Ax — Ax,—1)} is replaced by
{Me/ M1 — Ap) b

Theorem 3.1. (i) If |u,| < 1 for all n € N, then lo C €2 (u).
(i) If |un| > 1 for all n € N, then €5 (u) C e

Proof. Let © € {«. Then, there is a constant M > 0 such that |zg| < M for all k£ € N. Since
|up| <1 for all n € N, we have for every n € N that

n

Up, " M
uada@)] < S O - il < 30w o) = M
" k=0 " k=0

which shows that x € £, (u).
(ii) The proof is seen easily similiar to (i). O
Theorem 3.2. The inclusions cj(u) C cM(u) C 3, (u) strictly hold.

Proof. The proof is seen easily. O

Lemma 3.3. The inclusion {2, (u) C ls holds if and only if S(z) € ls for every sequence
x € 03 (u), where (ui) € loo.

n

Proof. Suppose that the inclusion £ (u) C fs holds and take any = = (z3) € ¢2 (u). Then
z € U5 by the hypothesis. Since z € 3 (u) we have ||A(z)||,, < oo. Then

1S(@) oo < 12lloo + M@)o < 00

So, we have S(z) € {.
Conversely, let © € ) (u). Then, we have by the hypothesis that S(z) € £u. It follows by (6)
that

2]l < 15(@)llo0 + [A(@)] o0 < 00
Hence, the inclusion £, (u) C £s holds and this completes the proof. |

Let (i) € V. Then we have the following theorems.

Theorem 3.3. The equality loo = ¢ (u) holds if and only if S(x) € Lo for every sequence
x € 0 (u).



232 TWMS J. PURE APPL. MATH., V.5, N.2, 2014

Proof. Suppose that the equality fo, = £2 (u) holds. Then, the inclusion £} (u) C fs holds
which leads us with Lemma 3.5 to the consequence that S(z) € £ for every x € £, (u).
Conversely, suppose that S(x) € £o, for every x € 2 (u). Then, we have by Lemma 3.1 that
the inclusion 2 (u) C £s holds. Combining this with the inclusion by Theorem 3.3 we get the
equality £oo = 2 (u). O

Theorem 3.4. The inclusion lo, C €3 (u) strictly holds if and only if liminf, oo A\yi1/An = 1.

Proof. Suppose that the inclusion fo, C £ (u) strict. Theorem 3.3 implies the existence of a
sequence z € 3 (u) such that S(z) = {S, ()} & oo Since x € £ (u), we have A(x) = {A,(z)} €
l and hence {A,(z) — Ap—1(z)} € ls. Combining this with the fact that {S,(z)} ¢ l, we
have {An—1/(An — An—1)} € loo from (7) and hence {\,/(An — A\—1)} ¢ loo. Hence we have by
Lemma 3.2 (a) that liminf, o Apt1/A, = 1 which shows the necessity of the theorem. O

Conversely, suppose that liminf, .o Apt+1/A, = 1. Then, we have by Lemma 3.2 (a) that
/O — A1)} ¢ £oo. Consider the sequence z = () defined by z = (—1)*A\r/ (A — A1)
for all £ € N. It is obvious that = (z) ¢ fs. On the other hand, we have for every n € N

(="
k=0

n

1
< — (/\k — )\k—l) = 1.

An(a)] <
k=0

_
-

Hence z € Eé‘o and since (i) € ly we have x € Eéo(u) Thus, by combining this with the

inclusion £, C 2, (u), we deduce that this inclusion is strict. This completes the proof.

Theorem 3.5. The equality ). (u) = loo holds if and only if lim inf \,11/\, > 1.

Proof. The necessity follows from Theorem 3.4. Because if the equality £2 (u) = £ holds, then
lim inf A,41/A\, # 1 and hence lim inf A,41/\, > 1.
Conversely, suppose that lim inf A, y1/\, > 1. Then, by Lemma 3.2 (b) we have the bounded

sequence {\,/(Ay — An—1)} and so {N—1/(An — A1)} € foo. Now, let @ € £ (u). Then,
A(z) = {An(x)} € s and hence {A,(z) — Ap—1(z)} € . Thus, by (7) we have {Sp(7)} € lw.
So, by Theorem 3.3r we have the equality 2, (u) = £s0. O
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