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1. Introduction and preliminaries

One of the very competent conception in many branches of Mathematics as well as in Com-

puter Science is the action of a semigroup or a monoid on a set. In 1922, Suschkewitsch in

his dissertation “The Theory of Action as Generalized Group Theory” introduced the notion of

semigroup action [12]. A representation of semigroup S by transformation of a set defines an

S-act just as representation of a ring R by endomorphisms of an Abelian group defines an R-

module. An automaton without outputs can be considered as S-act and S-acts can be considered

as automaton without outputs. Acts over semigroups appeared and were used in a variety of

applications like algebraic automata theory, mathematical linguistics etc. The principal notions

of monoid actions can be found in [6].

The theory of hyper structure was initiated by F. Marty in 1934 at the 8th congress of Scan-

dinavian mathematics. F. Marty later investigated the structure of hyper groups and then

applied them to study the structure of groups [8]. Different hyper structures are extensively

studied from the theoretical perspective such as in fuzzy set theory, rough set theory, optimiza-

tion theory, cryptography, codes, analysis of computer programs, automata, formal language

theory, combinatorics, artificial intelligence, probability, graphs and hyper graphs, geometry,

lattices and binary relations ( [2]-[14] and [15]). A contemporary book [1], contains an affluence

of applications. In 2011, Sen et al. introduced the notion of hyperaction of a semigroup on

a non-empty set and proved that a non-deterministic automaton without outputs can be con-

sidered as S-hyper set and vice versa [9]. Consequently, throughout this paper, we will speak

of non-deterministic automaton without outputs instead of S-hyper set. In 2017, Shabir et

al. generalized the concept of hyper S-acts by defining the hyperaction of hyper monoid on a

nonempty set and named it as GHS-acts and discussed their primeness [10]. In this paper, the

concept of primeness has been studied for hyper S-acts.
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The principal notions of non-deterministic automaton without outputs (hyper S-acts) can

be found in [9] and [11]. Now, we recall some basic definitions and results from the theory of

non-deterministic automata which will be required in the later section.

Definition 1.1. A non-deterministic automata or S-hyper set, X = (X,S, η), is a triplet where

X is a non-empty set, S is a monoid with identity element e and η is a function from X × S

into P ∗(X) defined by η (x, s) = x ∗ s for all x ∈ X and s ∈ S. Also, we shall assume the useful

properties: (i) (x ∗ s) ∗ t = x ∗ (st) and (ii) x = x ∗ e for all x ∈ X and s, t, e ∈ S.

Since the main interest is in the structure of the X and the input monoid, so outputs are not

considered here. An NDA X means a triple (X,S, η) and X does not mean an NDA. But the

attribute ‘NDA’ will be sometimes used for X.

Definition 1.2. Let X = (X,S, η) be an NDA. The Y = (Y, S, ηY) is a non-deterministic sub

automata of X if Y ⊆ X and y ∗ s ⊆ Y for all y ∈ Y and s ∈ S.

Definition 1.3. Let X = (X,S, η) be an NDA. An element θ ∈ X is called a fixed element

of (XS , ∗) if it satisfies θ ∗ s = θ for all s ∈ S.

Note that an NDA may have several fixed elements, unique fixed element or it may also have

no fixed element. Let D denote the set of all fixed elements of NDA X . Then X is called pure

centered if S is a monoid with two-sided zero element 0 and |D| = 1, where | · | denotes the

cardinality.

An equivalence relation σ on an NDA X = (X,S, η) is called a congruence if σ satisfies the

following compatibility property:

CP: xσy =⇒ x ∗ s
σ

=
y ∗ s
σ

for every x, y ∈ X and s ∈ S, that is,

for every x1 ∈ x ∗ s there exists y1 ∈ y ∗ s such that x1σy1 and for every

y2 ∈ y ∗ s there exists x2 ∈ x ∗ s such that x2σy2.

If Y = (Y, S, ηY) is a non-deterministic subautomata of X , then Y determines a congruence σ

on X as follows:

for x, y ∈ X, xσy if and only if either x = y or x, y ∈ Y.

We write X/Y and call it Rees factor GHS-act of X by Y.

2. Main results

Throughout this section, unless otherwise stated, S is a monoid with two sided zero 0 and all

right NDA’s are pure centered. We begin with the following proposition.

Proposition 2.1. If Y = (Y, S, ηY) is a non-deterministic subautomata of an NDA X =

(X,S, η), then the set {s ∈ S : X ∗ s ⊆ Y } is an ideal of S.

Proof. Obvious. �

The following corollary is an immediate consequence of Proposition 2.1.

Corollary 2.1. For an NDA X = (X,S, η), the set {s ∈ S : X ∗ s = (θ)} is an ideal of S.

Let X = (X,S, η) be an NDA. Then the ideal Hθ = H = {s ∈ S : X ∗ s = (θ)} is called the

annihilator of X in S. An NDA X = (X,S, η) is faithful if H = {0}.
If Y = (Y, S, ηY) is a non-deterministic subautomata of X = (X,S, η), then by Proposition

2.1 {s ∈ S : X ∗ s ⊆ Y } is an ideal of S, called the associated ideal. The associated ideal will be

denoted by HY .
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Definition 2.1. A non-deterministic subautomata Y = (Y, S, ηY) of X = (X,S, η) is called

prime if for any ν ∈ X and t ∈ S, the inclusion (ν ∗ S) ∗ t ⊆ Y implies either ν ∈ Y or

t ∈ HY . If for any ν ∈ X and t ∈ S, the inclusion (ν ∗ t) ∗ (S ◦ t) ⊆ Y implies ν ∗ t ⊆ Y , then

Y = (Y, S, ηY) is called a semiprime non-deterministic subautomata of X = (X,S, η).

An NDA X = (X,S, η) is itself called prime if {θ} is prime. Similarly, X = (X,S, η) is itself

called semiprime if {θ} is semiprime.

Proposition 2.2. If Y = (Y, S, ηY) is a prime non-deterministic subautomata of X = (X,S, η),

then Y is semiprime.

Proof. Suppose that Y is a prime. For x ∈ X, and t ∈ S, consider the inclusion (x ∗ t)∗(S ◦ t) ⊆
Y . Since Y is a prime non-deterministic subautomata of X , it follows that either x ∗ t ⊆ Y or

t ∈ HY . Suppose x ∗ t ̸⊆ Y . Then x ∗ t ⊆ X ∗ t and X ∗ t ̸⊆ Y . Hence t ̸∈ HY which contradicts

the assumption that Y is prime. So x ∗ t ⊆ Y and hence Y is semiprime. �

Proposition 2.3. Every nonzero non-deterministic subautomata Y = (Y, S, ηY) of a prime

non-deterministic automata X = (X,S, η) is a prime.

Proof. Suppose for t ∈ S and ν ∈ X, we have (ν ∗S) ∗ t = {θ}. If ν ̸= θ, then since X is a prime

( that is, {θ} is a prime non-deterministic subautomata of X ), it follows that

t ∈ Hθ = {s ∈ S : X ∗ s = {θ}} ⊆ {s ∈ S : Y ∗ s = {θ}} .

Hence Y is prime. �

The next result shows a close connection between prime ideal and prime non-deterministic

automata.

Theorem 2.1. Let Y = (Y, S, ηY) be a non-deterministic subautomata of X = (X,S, η). If Y
is prime, then the associated ideal HB of Y is a prime ideal of S.

Proof. Consider the inclusion tSt′ ⊆ HY for t, t′ ∈ S. Assume t /∈ HY . Then X ∗ t ̸⊆ B.

Hence there exists x ∈ X such that x ∗ t ̸⊆ B. Since tSt′ ⊆ HY ; X ∗ (tSt′) ⊆ Y which implies

((x ∗ t) ∗ S) ∗ t′ ⊆ Y . Since Y is a prime non-deterministic subautomata of X and x ∗ t ̸⊆ Y , we

get t′ ∈ HY , that is, HY is a prime ideal. �

Proposition 2.4. Let X = (X,S, η) be an NDA. Then for any non-deterministic subautomata

Y = (Y, S, ηY) of X and the corresponding associated ideal HY , the following assertions are

equivalent:

(i) Y is a prime,

(ii) for all non-deterministic subautomata Z = (Z, S, ηZ) of X and right ideal I of S, Z ∗I ⊆
Y implies either Z ⊆ Y or I ⊆ HY .

Proof. (i)=⇒(ii) Consider Z ∗ I ⊆ Y for non-deterministic subautomata Z = (Z, S, ηZ) of X
and ideal I of S. This implies z ∗ t ⊆ Y for z ∈ Z and t ∈ I. So

z ∗ t = z ∗ (et) = (z ∗ e) ∗ t
⊆ (z ∗ S) ∗ t ⊆ Z ∗ I ⊆ Y .

Since Y is prime, (z ∗ S)∗ t ⊆ Y implies either z ∈ Y or t ∈ HY , that is,either Z ⊆ Y or I ⊆ HY .

(ii)=⇒(i) Consider the inclusion (x ∗ S)∗t ⊆ Y for x ∈ X\Y and t ∈ S. Now ((x ∗ S) ∗ t)∗S ⊆
Y ∗ S ⊆ Y implies (x ∗ S) ∗ (tS) ⊆ Y . Set Z = x ∗ S and I = tS. Since Z ∗ I ⊆ Y and Z ̸⊆ Y ,

from (ii) we have, t ∈ I ⊆ HY , that is, Y is prime. �
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Proposition 2.5. Let Z = (Z, S, ηZ) be a non-deterministic subautomata of X = (X,S, η).

Then Z is prime if and only if associated ideal HZ of Z in Y is same as associated ideal H′
Z of

Z in X for all non-deterministic subautomata Y = (Y, S, ηY) with Z ⊆ Y ⊆ X .

Proof. If Z is prime and Y = (Y, S, ηY) be any non-deterministic subautomata of X with Z ⊆
Y ⊆ X , then H′

Z ⊆ HZ . Let s ∈ S such that Y ∗ s ⊆ Z. For some x ∈ Y \Z, we have

x ∗ s = x ∗ (es) = (x ∗ e) ∗ s ⊆ (x ∗ S) ∗ s
=⇒ (x ∗ S) ∗ s ⊆ (Y ∗ S) ∗ s ⊆ Y ∗ s ⊆ Z.

Since Z is prime with x ∈ Y \Z, (x ∗ S) ∗ s ⊆ Z implies s ∈ HZ , that is, HZ ⊆ H′
Z .

Conversely, suppose that the associated ideal of Z in Y is same as associated ideal of Z in X for

any non-deterministic subautomata Y with Z ⊆ Y ⊆ X . Consider the inclusion (x ∗ S) ∗ t ⊆ Z

for x ∈ X\Z and t ∈ S. Therefore,

x ∗ t = (x ∗ e) ∗ t ⊆ (x ∗ S) ∗ t ⊆ Z.

Set Y = Z ∪ {x}. Then, clearly Y = (Y, S, ηY) is a non-deterministic subautomata of X and

Y ∗ t = (Z ∪ {x}) ∗ t ⊆ Z

which implies t ∈ HZ . Therefore, by assumption t ∈ H′
Z , that is, Z is prime. �

The following corollary is an immediate consequence of above proposition.

Corollary 2.2. An NDA is prime if and only if every nonzero subautomata has the same

associated ideal.

Corollary 2.3. A NDA X = (X,S, η) is prime if and only if for every subautomata Y =

(Y, S, ηY) of X the annihilators of X and X in S are identical.

Proof. Let Y = (Y, S, ηY) be a proper subautomata of X and Hθ , H′
θ be the annihilators

of X and Y, respectively. Then Hθ ⊆ H′
θ. Now, take s ∈ S such that Y ∗ s = {θ} . As

(Y ∗ S) ∗ s ⊆ Y ∗ s = {θ} and X is prime GHS-act, so s ∈ Hθ, that is , H′
θ ⊆ Hθ.

Converse is obvious. �

The next theorem gives the condition for the existence of a faithful prime non-deterministic

automata.

Theorem 2.2. A monoid S is prime if and only if there exists a faithful prime NDA.

Proof. If S is a prime monoid, then H0 = {0} is prime as subautomata of (S, S, ·). Therefore, S
is a faithful prime non-deterministic automata.

Conversely, let X = (X,S, η) be a faithful prime non-deterministic automata. We show that

monoid S is prime, that is, {0} is prime ideal. Suppose that tSt′ = {0} for t, t′ ∈ S. If t ̸= 0,

then X ∗(t◦S) ̸= {θ}. For if X ∗(tS) = {θ}, then tS ⊆ {s ∈ S : X ∗ s = {θ}} = {0}. Thus t = 0,

a contradiction to the assumption. So there exists x ∈ X such that x ∗ (tS) = (x ∗ t) ∗ S ̸= {θ}
which implies x ∗ t ̸= θ. But tSt′ = (0). Hence x ∗ (t ◦ S ◦ t′) = {θ}. Since X is prime and

((x ∗ t) ∗ S) ∗ t′ = {θ} with x ∗ t ̸= θ which implies that t′ ∈ Hθ = {s ∈ S : X ∗ s = {θ}} = {0}.
Hence {0} is a prime ideal of S. �

The next theorem gives the condition under which an NDA is prime.

Theorem 2.3. Let X = (X,S, η) be an NDA. Then any non-deterministic subautomata Y of

X is prime if and only if X/Yis a prime.
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Proof. Let Y = (Y, S, ηY) be a prime subautomata of X . Suppose that
(
x
Y ∗X/Y S

)
∗X/Y t ={

θX/Y

}
= {Y } with x

Y ̸= Y , that is, x
Y = {x} ̸⊆ Y . Hence, (x∗S)∗t

Y = Y implies (x ∗ S) ∗ t ⊆ Y

with x ̸∈ Y and the fact that Y is prime subautomata of X implies X ∗ t ⊆ Y . Therefore,

X/Y = (X/Y, S, ∗X/Y ) is a prime.

Conversely, if (x ∗ S) ∗ t ⊆ Y and x ̸∈ Y then x
Y = {x} and (x∗S)∗t

Y = Y . Since X/Y is prime,

we have x
Y = Y (contrast to the assumption) or X/Y ∗X/Y t = Y . Therefore, X ∗ t ⊆ Y which

implies Y is prime. �

Proposition 2.6. For any ideal I of a monoid S, the following assertions are equivalent:

(i) I is prime ideal,

(ii) there exists a prime NDA X = (X,S, η) with I = Hθ = {s ∈ S : X ∗ s = {θ}} .

Proof. Suppose I is a prime ideal of S. Then the Rees factor monoid S/I is a prime and

thus by Proposition 2.2, there exists a faithful prime nondeterministic automata such that{
s
I ∈ S/I : X ∗ s

I = θ
I

}
. From this it follows that I = Hθ = {s ∈ S : X ∗ s = (θX)}.

Conversely, suppose X = (X,S, η) is a prime non-deterministic automata with I = Hθ. Thus

X is prime over the Rees factor monoid S/I which is faithful. Hence by Proposition 2.2, S/I is

prime monoid and therefore, I is a prime ideal of S. �

Proposition 2.7. Let X = (X,S, η) be a finitely generated right NDA over a monoid S. Then

every proper non-deterministic subautomata of X is contained in a maximal non-deterministic

subautomata X .

Proof. Let Y = (Y, S, ηY) be a proper non-deterministic subautomata of finitely generated NDA

X . Then there is finite set {x1, x2, · · · , xn} of elements of X such that

X = Y ∪ (x1 ∗ S) ∪ (x2 ∗ S) ∪ · · · ∪ (xn ∗ S) ,

where each xi ∗ S (i = 1, 2, 3, ..., n) is a non-deterministic subautomata of X . There may exists

such subsets from which we choose one of minimal order. Assume that {x1, x2, · · · , xn} has

minimal order. Consider the non-deterministic subautomata

Z = Y ∪ (x2 ∗ S) ∪ (x3 ∗ S) ∪ · · · ∪ (xn ∗ S) ,

of X containing Y . Clearly, Z = (Z, S, ηZ) is a proper non-deterministic subautomata of X .

Otherwise, the set {x2, x3, · · · , xn} would act for {x1, x2, · · · , xn}. Let P be the collection of all

non-deterministic subautomata of X containing Z. Clearly, P is a non-empty partially ordered

subset of the lattice of non-deterministic subautomata of X that contain Z. An non-deterministic

subautomata Z ′ that contains Z is inP if and only if x1∗S ̸⊆ Z ′. Suppose h is a non-empty chain

in P. Then ∪
Z1∈h

Z1 is an non-deterministic subautomata of X not containing x1. Therefore,

by Zorn’s lemma, P contains a maximal element, say W. Since W is maximal in P, so any

strictly larger non-deterministic subautomata of X is not in P and so contains x1 ∗S. Then any

such non-deterministic subautomata must contain W ∪ (x1 ∗ S) ⊇ Z ′ ∪ (x1 ∗ S) = X because

WS ⊇′ Z ′
S . Thus W is maximal (proper) non-deterministic subautomata of X containing Y . �

Proposition 2.8. Every maximal non-deterministic subautomata of an NDA is prime.

Proof. Let Y = (Y, S, ηY) be a maximal non-deterministic subautomata of NDA X = (X,S, η).

For x ∈ X and t ∈ S, consider the inclusion (x ∗ S) ∗ t ⊆ Y with x ̸∈ Y . Since Y is maximal

non-deterministic subautomata of X and x ̸∈ Y which implies Y ∪ (x ∗ S) = X. Let y be an
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arbitrary element of X. Then y ∈ Y or y ∈ x ∗ S. Thus y = y′ for some y′ ∈ YS or y ∈ x ∗ t′ for
some t′ ∈ S. Then

y ∗ t = y′ ∗ t ⊆ Y or

y ∗ t ⊆
(
x ∗ t′

)
∗ t = x ∗

(
t′ ◦ t

)
⊆ x ∗ (S ◦ t) ⊆ Y.

Hence, y ∗ t ⊆ Y for all y ∈ X which implies t ∈ HY . Therefore, Y is a prime non-deterministic

subautomata. �

Combining Propositions 2.7 and 2.8, we obtain the following result.

Theorem 2.4. Every proper non-deterministic subautomata of a finitely generated NDA is

contained in a prime NDA.

A non-deterministic subautomata Y = (Y, S, ηY) of an NDA X = (X,S, η) is irreducible if

it cannot be written as the intersection of two non-deterministic subautomatas of X in which it

is properly contained. In other words, for any two non-deterministic subautomatas Z and W of

X ,

Y = Z ∩W implies that either Y = Z or Y = W.

Proposition 2.9. Every proper non-deterministic subautomata Y = (Y, S, ηY) of an NDA X =

(X,S, η) is the intersection of all the irreducible NDAs containing Y .

Proof. For x ∈ X\Y , let Zx be any non-deterministic subautomata of X maximal with respect to

Y ⊆ Zx but x /∈ Zx. Suppose Zx = W∩W ′ for GHS-subacts W and W ′ of X with W ≠ Zx and

W ′ ̸= Zx. The maximality of Zx implies that x ∈ W and x ∈ W ′. But then x ∈ W ∩W ′ = Zx

which is a contradiction. Thus Zx is irreducible and Y = ∩{Zx : x ∈ X\Y }. �

A semiprime non-deterministic subautomata need not to be a prime. Next proposition gives

the criteria under which a semiprime non-deterministic subautomata is prime.

Proposition 2.10. For an irreducible non-deterministic subautomata Y = (Y, S, ηY) of an NDA

X = (X,S, η) the following assertions are equivalent:

(i) Y is prime.

(ii) Y is semiprime.

Proof. (i)=⇒(ii): It follows from the Proposition 2.2.

(ii)=⇒(i): Assume that Y is a semiprime non-deterministic subautomata of X which is not

prime. Then there exists x ∈ X and t ∈ S such that x ∗ (S ◦ t) ⊆ Y with x ̸∈ Y and t ̸∈ HY .

Since t ̸∈ HY , that is, X ∗ t ̸⊆ Y . Hence, there exists x′ ∈ X such that x′ ∗ t ̸⊆ Y . Let

z ∈ x′ ∗ t ⊆ X and ((x ∗ S) ∪ Y ) ∩ ((z ∗ S) ∪ Y ) ̸⊆ Y . For if ((ν ∗ S) ∪ Y ) ∩ ((z ∗ S) ∪ Y ) ⊆ Y ,

then since Y is irreducible, so either (x ∗ S) ∪ Y = Y or (z ∗ S) ∪ Y = Y . This implies either

x ∗S ⊆ Y or z ∗S ⊆ Y . Hence, either x ∈ x ∗S ⊆ Y or z ∈ z ∗S ⊆ Y , a contradiction. So there

exists s ∈ S such that z ∗ s ⊆ x ∗ S but z ∗ s ̸⊆ Y. Now

((z ∗ s) ∗ S) ∗ (t ◦ s) ⊆ (((x ∗ t) ∗ s) ∗ S) ∗ (t ◦ s) ⊆ ((x ∗ S) ∗ t) ∗ s ⊆ Y ∗ s ⊆ Y

but (
x′ ∗ t

)
∗ s = x′ ∗ (t ◦ s) ̸⊆ Y.

This implies that Y is not semiprime, a contradiction to our assumption. Hence Y is prime. �
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Theorem 2.5. Let X = (X,S, η) be an NDA over a monoid S. Then the following conditions

are equivalent:

(i) Every proper non-deterministic subautomata of X is semiprime.

(ii) Every proper non-deterministic subautomata of X is the intersection of prime NDSAs

of X .

Proof. (i)⇒(ii) Let Y = (Y, S, ηY) be a proper non-deterministic subautomata of X . Then

by Proposition 2.9, Y = ∩Zx, where each Zx is proper non-deterministic subautomata of X .

Therefore, by assumption and Proposition 2.10, each Zx is prime.

(ii)⇒(i) Suppose Y = ∩
i
Zi is an intersection of prime non-deterministic subautomatas of X .

Consider the inclusion (x ∗ t) ∗ (S ◦ t) ⊆ Y for x ∈ X and t ∈ S. Then (x ∗ t) ∗ (S ◦ t) ⊆ Zi

for each i. By Proposition 2.9, each Zi is semiprime. Hence, for each i, x ∗ t ⊆ Zi, that is,

x ∗ t ⊆ ∩
i∈I

Zi. Therefore, Y is semiprime. �

Example 1. Consider the non-deterministic automata X = (X,S, η) with transition diagram

and input semigroup S with the following multiplication table:

Table 1.

∗ 0 e s t q

0 0 0 0 0 0

e 0 e s t q

s 0 s s s s

t 0 t t t t

q 0 q q q q

The non-deterministic subautomata of X are {θ} , {θ, x} , {θ, y} , {θ, x, y} , {θ, x, z} and X.

{θ, x} is a subautomata of X which is semiprime but not prime. Indeed, Indeed, (y ∗ S) ∗ t ⊆
{θ, x} but neither y ∈ {θ, x} nor t ∈ H{θ,x} = {0}. Note that {θ, x} is not an irreducible

subautomata of X . All other subautomatas of X are prime, semiprime and irreducible.
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