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Abstract. In this paper we study the concept of almost asymptotically lacunary statistical
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1. Introduction

In this paper we study the concept of almost asymptotically lacunary statistical χ2 over

probabilistic p− metric spaces defined by Musielak. Since the study of convergence in PP-

spaces is fundamental to probabilistic functional analysis, we feel that the concept of almost

asymptotically lacunary statistical χ2 over probabilistic p-metric spaces defined by Musielak in

a PP-space would provide a more general framework for the subject.

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued single se-

quences, respectively.

We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set of positive

integers. Then, w2 is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in [4]. Later it was investigated by

[3,7–10,12,13,20,22–29,31–43],

We procure the following sets of double sequences:

Mu (t) :=
{
(xmn) ∈ w2 : supm,n∈N |xmn|tmn < ∞

}
,

Cp (t) :=
{
(xmn) ∈ w2 : p− lim

m,n→∞
|xmn − l|tmn = 1for somel ∈ C

}
,

C0p (t) :=
{
(xmn) ∈ w2 : p− lim

m,n→∞
|xmn|tmn = 1

}
Lu (t) :=

{
(xmn) ∈ w2 :

∞∑
m=1

∞∑
n=1

|xmn|tmn < ∞
}
,

Cbp (t) := Cp (t)
∩

Mu (t) and C0bp (t) = C0p (t)
∩

Mu (t);
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where t = (tmn) be the sequence of strictly positive reals tmn for all m,n ∈ N and p −
limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for all m,n ∈
N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) reduce to the sets Mu, Cp, C0p,Lu, Cbp and

C0bp, respectively. Now, we may summarize the knowledge given in some document related to

the double sequence spaces. [6] have proved that Mu (t) and Cp (t) , Cbp (t) are complete para-

normed spaces of double sequences and obtained the α−, β−, γ− duals of the spaces Mu (t)

and Cbp (t) . Quite recently, [44] has essentially studied both the theory of topological double

sequence spaces and the theory of summability of double sequences. ( [14]- [19]) and ( [31]- [42])

have independently introduced the statistical convergence and Cauchy for double sequences and

established the relation between statistical convergent and strongly Cesàro summable double se-

quences. [1] defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of double sequences consisting

of all double series whose sequence of partial sums are in the spaces Mu,Mu (t) , Cp, Cbp, Cr and

Lu, respectively, and also examined some properties of those sequence spaces and determined the

α− duals of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp and CSr of double

series. [2] introduced the Banach space Lq of double sequences corresponding to the well-known

space ℓq of single sequences and examined some properties of the space Lq. Recently [30] have

studied the space χ2
M (p, q, u) of double sequences and proved some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus

was introduced by Maddox [11] as an extension of the definition of strongly Cesàro summa-

ble sequences. [5] further extended this definition to a definition of strong A− summability

with respect to a modulus where A = (an,k) is a nonnegative regular matrix and established

some connections between strong A− summability, strong A− summability with respect to a

modulus, and A− statistical convergence. In [21] the four dimensional matrix transformation

(Ax)k,ℓ =
∞∑

m=1

∞∑
n=1

amn
kℓ xmn was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For a, b ≥ 0 and 0 < p < 1, we

have

(a+ b)p ≤ ap + bp (1)

The double series
∞∑

m,n=1
xmn is called convergent if and only if the double sequence (smn) is

convergent, where smn =
m,n∑
i,j=1

xij(m,n ∈ N).

A sequence x = (xmn) is said to be double analytic if supmn |xmn|1/m+n < ∞. The vector

space of all double analytic sequences will be denoted by Λ2. A sequence x = (xmn) is called

double gai sequence if ((m+ n)! |xmn|)1/m+n → 0 as m,n → ∞. The double gai sequences will

be denoted by χ2. Let ϕ = {all finite sequences} .
Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence is defined by

x[m,n] =
∑

i,j=0m,n
xijℑij for all m,n ∈ N ; where ℑij denotes the double sequence whose only non

zero term is a 1
(i+j)! in the (i, j)th place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (ℑmn) is a Schauder basis

for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex

topology under which the coordinate mappings x = (xk) → (xmn)(m,n ∈ N) are also continuous.
Let M and Φ be mutually complementary modulus functions. Then, we have

(i) For all u, y ≥ 0, see [40]

uy ≤ M (u) + Φ (y) , (2)
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(ii) For all u ≥ 0,

uη (u) = M (u) + Φ (η (u)) . (3)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) . (4)

In [41] used the idea of Orlicz function to construct Orlicz sequence space

ℓM =

{
x ∈ w :

∞∑
k=1

M
(
|xk|
ρ

)
< ∞, for someρ > 0

}
,

The space ℓM with the norm

∥x∥ = inf

{
ρ > 0 :

∞∑
k=1

M
(
|xk|
ρ

)
≤ 1

}
,

becomes a Banach space which is called an Orlicz sequence space. For M (t) = tp (1 ≤ p < ∞) ,

the spaces ℓM coincide with the classical sequence space ℓp.

A sequence f = (fmn) of modulus function is called a Musielak-modulus function. A sequence

g = (gmn) defined by

gmn (v) = sup {|v|u− fmn (u) : u ≥ 0} ,m, n = 1, 2, · · ·
is called the complementary function of a Musielak-modulus function f . For a given Musielak

modulus function f, the Musielak-modulus sequence space tf is defined by

tf =
{
x ∈ w2 : If (|xmn|)1/m+n → 0asm, n → ∞

}
,

where If need not be convex modular defined by

If (x) =
∞∑

m=1

∞∑
n=1

fmn (|xmn|)(1/m)+n , x = (xmn) ∈ tf .

We consider tf equipped with the Luxemburg metric

d (x, y) = sup
mn

{
inf

( ∞∑
m=1

∞∑
n=1

fmn

(
|xmn|(1/m)+n

mn

))
≤ 1

}
.

The notion of difference sequence spaces (for single sequences) was introduced by [42] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z} ,
for Z = c, c0 and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N.
Here c, c0 and ℓ∞ denote the classes of convergent, null and bounded scalar valued single se-

quences respectively. The difference sequence space bvp of the classical space ℓp is introduced

and studied in the cases 1 ≤ p ≤ ∞ and 0 < p < 1 [1]. The spaces c (∆) , c0 (∆) , ℓ∞ (∆) and bvp
are Banach spaces normed by

∥x∥ = |x1|+ supk≥1 |∆xk| and ∥x∥bvp =

( ∞∑
k=1

|xk|p
)1/p

, (1 ≤ p < ∞) .

Later on the notion was further investigated by many others. We now introduce the following

difference double sequence spaces defined by

Z (∆) =
{
x = (xmn) ∈ w2 : (∆xmn) ∈ Z

}
,

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn − xmn+1 −
xm+1n + xm+1n+1 for all m,n ∈ N. The generalized difference double notion has the fol-

lowing representation: ∆mxmn = ∆m−1xmn − ∆m−1xmn+1 − ∆m−1xm+1n + ∆m−1xm+1n+1,

and also this generalized difference double notion has the following binomial representation:

∆mxmn =
m∑
i=0

m∑
j=0

(−1)i+j
(m
i
)(m

j

)
xm+i,n+j .
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2. Definition and preliminaries

Let n ∈ N and X be a real vector space of dimension w, where n ≤ w. A real valued function

dp(x1, . . . , xn) = ∥(d1(x1, 0), . . . , dn(xn, 0))∥p on X satisfying the following four conditions:

(i) ∥(d1(x1, 0), . . . , dn(xn, 0))∥p = 0 if and and only if d1(x1, 0), . . . , dn(xn, 0) are linearly depen-

dent,

(ii) ∥(d1(x1, 0), . . . , dn(xn, 0))∥p is invariant under permutation,

(iii) ∥(αd1(x1, 0), . . . , dn(xn, 0))∥p = |α| ∥(d1(x1, 0), . . . , dn(xn, 0))∥p, α ∈ R
(iv) dp ((x1, y1), (x2, y2) · · · (xn, yn)) = (dX(x1, x2, · · ·xn)p + dY (y1, y2, · · · yn)p)1/p for1 ≤ p <

∞; (or)

(v) d ((x1, y1), (x2, y2), · · · (xn, yn)) := sup {dX(x1, x2, · · ·xn), dY (y1, y2, · · · yn)} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y is called the p−product metric of the Cartesian product

of n−metric spaces is the p−norm of the n-vector of the norms of the n−sub spaces.

A trivial example of p− product metric of n− metric space is the p− norm space is X = R
equipped with the following Euclidean metric in the product space is the p− norm:

∥(d1(x1, 0), . . . , dn(xn, 0))∥E = sup (|det(dmn (xmn, 0))|) =

sup



∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 (x11, 0) d12 (x12, 0) ... d1n (x1n, 0)

d21 (x21, 0) d22 (x22, 0) ... d2n (x1n, 0)

.

.

.

dn1 (xn1, 0) dn2 (xn2, 0) ... dnn (xnn, 0)

∣∣∣∣∣∣∣∣∣∣∣∣∣


where xi = (xi1, · · ·xin) ∈ Rn for each i = 1, 2, · · ·n.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be complete with

respect to the p− metric. Any complete p− metric space is said to be p− Banach metric space.

Definition 2.1. Let A =
(
amn
k,ℓ

)
denote a four dimensional summability method that maps

the complex double sequences x into the double sequence Ax where the k, ℓ− th term of Ax is

as follows: (Ax)kℓ =
∞∑

m=1

∞∑
n=1

amn
kℓ xmn such transformation is said to be non-negative if amn

kℓ is

non-negative.

The notion of regularity for two dimensional matrix transformations was presented by Sil-

verman and Toeplitz. Following Silverman and Toeplitz, Robison and Hamilton presented the

following four dimensional analog of regularity for double sequences in which both added an adidi-

tional assumption of boundedness. This assumption was made since a double sequence which is

P− convergent is not necessarily bounded.

Let λ and µ be two sequence spaces and A =
(
amn
k,ℓ

)
be a four dimensional infinite matrix of

real numbers
(
amn
k,ℓ

)
, where m,n, k, ℓ ∈ N. Then, we say A defines a matrix mapping from λ

into µ and we denoe it by writing A : λ → µ if for every sequence x = (xmn) ∈ λ the sequence

Ax = {(Ax)kℓ} , the A− transform of x, is in µ.

By (λ : µ) , we denote the class of all matrices A such that A : λ → µ. Thus A ∈ (λ : µ) if

and only if the series converges for each k, ℓ ∈ N. A sequence x is said to be A− summable to α

if Ax converges to α which is called as the A− limit of x.

Lemma 2.1 (See [11]). Matrix A =
(
amn
k,ℓ

)
is regular if and only if the following three conditions

hold:

(1) There exists M > 0 such that for every k, ℓ = 1, 2, · · · the following inequality holds:
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∞∑
m=1

∞∑
n=1

|amn
kℓ | ≤ M ;

(2) lim
k,ℓ→∞

amn
kℓ = 0 for every k, ℓ = 1, 2, · · ·

(3) lim
k,ℓ→∞

∞∑
m=1

∞∑
n=1

amn
kℓ = 1.

Let (qmn) be a sequence of positive numbers and

Qkℓ =

k∑
m=0

ℓ∑
n=0

qmn (k, ℓ ∈ N) . (5)

Then, the matrix Rq = (rmn
kℓ )q of the Riesz mean is given by

(rmn
kℓ )q =

{
qmn

Qkℓ
if 0 ≤ m,n ≤ k, ℓ

0 if (m,n) > kℓ.
(6)

The fibonacci numbers are the sequence of numbers fmn
kℓ (k, ℓ,m, n ∈ N) defined by the linear

recurrence equations f00 = 1 and f11 = 1, fmn = fm−1n−1 + fm−2n−2;m,n ≥ 2. Fibonacci num-

bers have many interesting properties and applications in arts, sciences and architecture. Also,

some basic properties of Fibonacci numbers are the following.
m∑
k=1

n∑
ℓ=1

fmn = fm+2n+2 − 1;m,n ≥ 1,

m∑
k=1

n∑
ℓ=1

f2
mn = fmnfm+1n+1;m,n ≥ 1,

∞∑
k=1

∞∑
ℓ=1

1
fmn
kℓ

converges.

In this paper, we define the fibonacci matrix F = (fmn
kℓ )∞m,n=1 , which differs from existing Fi-

bonacci matrix by using Fibonacci numbers fkℓ and introduce some new sequence spaces χ2 and

Λ2. Now, we define the Fibonacci matrix F = (fmn
kℓ )∞m,n=1 , by

(fmn
kℓ ) =

{
fkℓ

f(k+2)(ℓ+2)−1 if 0 ≤ k ≤ m; 0 ≤ ℓ ≤ n

0 if (m,n) > kℓ

that is, 
1 0 0 0 0...
1
2

1
2 0 0 0...

1
4

1
4

2
4 0 0...

1
7

1
7

2
7

3
7 0...

...
...

...
...

...
. . .

 .

It is obvious that the four dimensional infinite matrix F is triangular matrix. Also it follows

from lemma 2.2 that the method F is regular.

Definition 2.2. A function f : R×R → R◦
+×R◦

+ is called a distribution if it is non-decreasing

and left continuous with inft∈R×Rf (t) = 0 and sup
t∈R◦+×R◦+

f (t) = 1. We will denote the set of

all distribution functions by D.

Definition 2.3. A triangular metric, briefly t-over probabilisitic p− metric spaces, is a binary

operation on [0, 1] which continuous, commutative, associative, non-decreasing and has 1 as

neutral element, that is, it is the continous mapping ∗ : [0, 1] × [0, 1] → [0, 1] × [0, 1] such that

a, b, c ∈ [0, 1] :

(1) a ∗ 1 = 1,
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(2) a ∗ b = b ∗ a
(3) c ∗ d ≥ a ∗ b if c ≥ a and d ≥ b,

(4) (a ∗ b) ∗ c = a ∗ (b ∗ c) .

Definition 2.4. A triple (X,P, ∗) is called a probabilistic p− metric space or shortly PP− space

if X is a real vector space, P is a mapping from X ×X → D ×D (for x ∈ X, the distribution

function P (x) is denoted by Px and Px (t) is the value of Px at t ∈ R × R) and ∗ is a t − p−
metric satisfying the following conditions:

(i) Px (∥(d1(x1, 0), . . . , dn(xn, 0))∥p) = 0 if and and only if Px (d1(x1, 0), . . . , dn(xn, 0)) are lin-

early dependent,

(ii) Px (t∥(d1(x1, 0), . . . , dn(xn, 0))∥p) = 1 is invariant under permutation,

(iii) Px (∥(αd1(x1, 0), . . . , dn(xn, 0))∥p) = |α|Px (∥(d1(x1, 0), . . . , dn(xn, 0))∥p) , α ∈ R\ {0} .
(iv) Px (dp ((x1, y1), (x2, y2) · · · (xn, yn))) = Px

(
(dX(x1, x2, · · ·xn)p) + Px (dY (y1, y2, · · · yn)p)1/p

)
for1 ≤ p < ∞; (or)

(v) Px (d ((x1, y1), (x2, y2), · · · (xn, yn))) := sup {Px ({dX(x1, x2, · · ·xn)) , Px (dY (y1, y2, · · · yn)})} ,
for x1, x2, · · ·xn ∈ X, y1, y2, · · · yn ∈ Y.

Definition 2.5. A triple (X,P, ∗) be a PP− space. Then a sequence x = (xmn) is said to

convergent 0̄ ∈ X with respect to the probabilistic p− metric P if, for every ϵ > 0 and θ ∈ (0, 1) ,

there exists a positive integer m0n0 such that Pxmn−0̄ (ϵ) > 1 − θ whenever m,n ≥ m0n0. It is

denoted by P − limx = 0̄ or xmn
P→ 0̄ as m,n → ∞.

Definition 2.6. A triple (X,P, ∗) be a PP− space. Then a sequence x = (xmn) is called a

Cauchy sequence with respect to the probabilistic p− metric P− if, for every ϵ > 0 and θ ∈ (0, 1)

there exists a positive integer m0n0 such that Pxmn−xrs (ϵ) > 1 − θ for all m,n > m0n0 and

r, s > r0s0.

Definition 2.7. A triple (X,P, ∗) be a PP− space. Then a sequence x = (xmn) is said to

analytic in X, if there is a u ∈ R such that Pxmn (u) > 1 − θ, where θ ∈ (0, 1) . We denote by

Λ2P the space of all analytic sequences in PP− space.

Definition 2.8. Two non-negative sequences x = (xmn) and y = (ymn) are asymptotically

equivalent 0̄ if

lim
m,n

xmn

ymn
= 0̄

and it is denoted by x ≡ 0̄.

Definition 2.9. Let K be the subset of N, the set of natural numbers. Then the asymptotically

density of K, denoted by δ (K) , is defined as

δ (K) = lim
k,ℓ

1
kℓ |{m,n ≤ k, ℓ : m,n ∈ K}| ,

where the vertical bars denote the cardinality of the enclosed set.

Definition 2.10. A number sequence x = (xmn) is said to be statistically convergent to the

number 0̄ if for each ϵ > 0, the set K (ϵ) =
{
m ≤ k, n ≤ ℓ : (m+ n)! |xmn − 0̄|1/m+n ≥ ϵ

}
has

asympototic density zero

lim
kℓ

1
kℓ

∣∣∣{m ≤ k, n ≤ ℓ : ((m+ n)! |xmn − 0̄|)1/m+n ≥ ϵ
}∣∣∣ = 0.

In this case we write St− limx = 0̄.

Definition 2.11. The two non-negative double sequences x = (xmn) and y = (ymn) are said to

be asymptotically double equivalent of multiple L provided that for every ϵ > 0,
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lim
k,ℓ

1
k,ℓ

∣∣∣{(m,n) : m ≤ k, n ≤ ℓ,
∣∣∣xmn
ymn

− L
∣∣∣ ≥ ϵ

}∣∣∣ = 0.

and simply asymptotically double statistical equivalent if L = 1. Furthermore, let SL
θrs

denote the

set of all sequences x = (xmn) and y = (ymn) such that xisequivalenttoy.

Definition 2.12. Let θrs = {(mr, ns)} be a double lacunary sequence; the two double sequences

x = (xmn) and y = (ymn) are said to be asymptotically double lacunary statistical equivalent of

multiple L provided that for every ϵ > 0,

lim
r,s

1
hr,s

∣∣∣{(m,n) ∈ Ir,s :
∣∣∣xmn
ymn

− L
∣∣∣ ≥ ϵ

}∣∣∣ = 0

and simply asymptotically double lacunary statistical equivalent if L = 1.Furthermore, let SL
θrs

denote the set of all sequences x = (xmn) and y = (ymn) such that xisequivalenttoy.

Definition 2.13. Let θrs = {(mr, ns)} be a double lacunary sequence; the two double sequences

x = (xmn) and y = (ymn) are said to be strong asymptotically double lacunary equivalent of

multiple L provided that

lim
r,s

1
hr,s

∑
(m,n)∈Ir,s

∣∣∣xmn
ymn

− L
∣∣∣ = 0,

that is x is equivalent to y and it is denoted by NL
θrs

and simply strong asymptotically double

lacunary equivalent if L = 1. In addition, let NL
θrs

denote the set of all sequences x = (xmn) and

y = (ymn) such that x is equivalent to y.

Definition 2.14. The double sequence θrs = {(mr, ns)} is called double lacunary sequence if

there exist two increasing of integers such that

m◦ = 0, hr = mr −mr−1 → ∞ as r → ∞ and n◦ = 0, h̄s = ns − ns−1 → ∞ as s → ∞.

Notations: mr,s = mrms, hr,s = hrh̄s and θrs is determined by

Irs = {(m,n) : mr−1 < m ≤ mr andns−1 < n ≤ ns} , qr = mr
mr−1

, q̄s =
ns

ns−1
and qrs = qr q̄s.

Definition 2.15. Let M̃ be an Musielak modulus function. The two non-negative double se-

quences x = (xmn) and y = (ymn) are said to be strong M̃− asymptotically double equivalent of

multiple 0̄ provided that
[
χ2F

M̃
, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p

]
= Fµ (x) = lim

k,ℓ→∞
1
kℓ

{
k∑

m=1

ℓ∑
n=1

[
M̃

(
fmn
kℓ

(
(m+ n)!

∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
= 0

}
= lim

k,ℓ→∞
1
kℓ{

1
f(k+2)(ℓ+2)−1

k∑
m=1

ℓ∑
n=1

[
M̃

(
fmn
kℓ

(
(m+ n)!

∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
= 0

}
,

(k, ℓ ∈ N) , and [
Λ2F

M̃
, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p

]
= Fη (x)

= sup
k,ℓ

1

kℓ

{
k∑

m=1

ℓ∑
n=1

[
M̃

(
fmn
kℓ

(∣∣∣∣xmn

ymn
− 0̄

∣∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
< ∞

}
= sup

k,ℓ

1
kℓ{
1

f(k+2)(ℓ+2)−1

k∑
m=1

ℓ∑
n=1

[
M̃

(
fmn
kℓ

(
(m+ n)!

∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
< ∞

}
,

(k, ℓ ∈ N) , it is denoted by
[
M̃
]0̄

and simply M̃− asymptotically double.

Definition 2.16. Let M̃ be an Musielak modulus function and θrs = {(mr, ns)} be a double

lacunary sequence; the two double sequences x = (xmn) and y = (ymn) are said to be strong M̃−
asymptotically double lacunary of multiple 0̄
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χ2F

M̃
, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p

]
= Fµ (x)

= lim
r,s→∞

1
hr,s{ ∑

m∈Ir,s

∑
n∈Ir,s

[
M̃

(
fmn
kℓ

(
(m+ n)!

∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
= 0

}
.

= lim
r,s→∞

1
hr,s{

1
f(k+2)(ℓ+2)−1

∑
m∈Ir,s

∑
n∈Ir,s

[
M̃

(
fmn
kℓ

(∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
= 0

}
,

(k, ℓ ∈ N) , and

[
Λ2F

M̃
, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p

]
= Fη (x)

= sup
r,s

1
hr,s{ ∑

m∈Ir,s

∑
n∈Ir,s

[
M̃

(
fmn
kℓ

(∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
< ∞

}
= sup

r,s

1
hr,s{

1
f(k+2)(ℓ+2)−1

∑
m∈Ir,s

∑
n∈Ir,s

[
M̃

(
fmn
kℓ

(∣∣∣xmn
ymn

− 0̄
∣∣∣)(1/m)+n

,
∥∥∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0)∥p

))]
< ∞

}
,

(k, ℓ ∈ N) , provided that is denoted by N
[M̃]

0̄

θr,s
and simply strong M̃− asymptotically double lacu-

nary.

Consider the metric space[
Λ2F
M̃

, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p
]
with the metric

d (x, y) = sup
kℓ

{
M̃ (Fη (x)− Fη (y)) : m,n = 1, 2, 3, · · ·

}
. (7)

Consider the metric space[
χ2F
M̃

, ∥(d (x1, 0) , d (x2, 0) , · · · , d (xn−1, 0))∥p
]
with the metric

d (x, y) = sup
kℓ

{
M̃ (Fµ (x)− Fµ (y)) : m,n = 1, 2, 3, · · ·

}
. (8)

3. Almost asymptotically lacunary convergence of PP− spaces

The idea of statistical convergence was first introduced by Steinhaus in 1951 and then studied

by various authors. In this paper has studied the concept of statistical convergence in proba-

bilistic p− metric spaces.

Definition 3.1. A triple (X,P, ∗) be a PP− space. Then a sequence x = (xmn) is said to

statistically convergent to 0̄ with respect to the probabilistic p− metric P− provided that for

every ϵ > 0 and γ ∈ (0, 1)

δ
({

m,n ∈ N : P
((m+n)!|xmn|)1/m+n (ϵ) ≤ 1− γ

})
= 0

or equivalently

lim
kℓ

1
kℓ

∣∣∣{m ≤ k, n ≤ ℓ : P
((m+n)!|xmn|)1/m+n (ϵ) ≤ 1− γ

}∣∣∣ = 0

In this case we write StP − limx = 0̄.

Definition 3.2. A triple (X,P, ∗) be a PP− space. The two non-negative sequences x = (xmn)

and y = (ymn) are said to be almost asymptotically statistical equivalent of multiple 0̄ in PP−
space X if for every ϵ > 0 and γ ∈ (0, 1) .
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δ

({
m,n ∈ N : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

})
= 0

or equivalently

lim
kℓ

1
kℓ

∣∣∣∣∣
{
m ≤ k, n ≤ ℓ : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

}∣∣∣∣∣ = 0.

In this case we write x
Ŝ(PP )
≡ y.

Definition 3.3. A triple (X,P, ∗) be a PP− space and θ = (mrns) be a lacunary sequence.

The two non-negative sequences x = (xmn) and y = (ymn) are said to be a almost asymptotically

lacunary statistical equivalent of multiple 0̄ in PP− space X if for every ϵ > 0 and γ ∈ (0, 1)

δθ

({
m,n ∈ Ir,s : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

})
= 0 (9)

or equivalently

lim
rs

1
hrs

∣∣∣∣∣
{
m,n ∈ Irs : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

}∣∣∣∣∣ = 0.

In this case we write x
Ŝθ(PP )
≡ y.

Lemma 3.1. A triple (X,P, ∗) be a PP− space. Then for every ϵ > 0 and γ ∈ (0, 1) , the

following statements are equivalent:

(1) lim
rs

1
hrs

∣∣∣∣∣
{
m,n ∈ Irs : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

}∣∣∣∣∣ = 0,

(2) δθ

({
m,n ∈ Ir,s : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

})
= 0,

(3) δθ

({
m,n ∈ Ir,s : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

})
= 1,

(4) lim
rs

1
hrs

∣∣∣∣∣
{
m,n ∈ Irs : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

}∣∣∣∣∣ = 1.

4. Main results

Theorem 4.1. A triple (X,P, ∗) be a PP− space. If two sequences x = (xmn) and y = (ymn) are

almost asympototically lacunary statistical equivalent of multiple 0̄ with respect to the probabilistic

p− metric P, then 0̄ is unique sequence.

Proof. Assume that x
Ŝ0̄
θ (PP )
≡ y. For a given λ > 0 choose γ ∈ (0, 1) such that (1− γ) > 1 − λ.

Then, for any ϵ > 0, define the following set:

K =

{
m,n ∈ Ir,s : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) ≤ 1− γ

}
.

Then, clearly

lim
rs

K
∩

0̄
hrs

= 1,
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so K is non-empty set,since x
Ŝ0̄
θ (PP )
≡ y, δθ (K) = 0 for all ϵ > 0, which implies δtheta (N−K) = 1.

If m,n ∈ N−K, then we have

P0̄ (ϵ) = P(
(m+n)!

∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > (1− γ) ≥ 1− λ

since λ is arbitrary, we get P0̄ (ϵ) = 1.

This completes the proof. �

Theorem 4.2. A triple (X,P, ∗) be a PP− space. For any lacunary sequence θ = (mrns) , Ŝθ (PP ) ⊂
Ŝ (PP ) if lim sup

rs
qrs < ∞.

Proof. If lim sup
rs

qrs < ∞. then there exists a B > 0 such that qrs < B for all r, s ≥ 1. Let

x
Ŝθ(PP )
≡ y and ϵ > 0. Now we have to prove Ŝ (PP ) . Set

Krs =

∣∣∣∣∣
{
m,n ∈ Ir,s : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ .
Then by definition, for given ϵ > 0, there exists r0s0 ∈ N such that

Krs
hrs

< ϵ
2B for all r > r0 and s > s0.

Let M = max {Krs : 1 ≤ r ≤ r0, 1 ≤ s ≤ s0} and let uv be any positive integer with mr−1 <

u ≤ mr and ns−1 < v ≤ ns. Then

1
uv

∣∣∣∣∣
{
m ≤ u, n ≤ v : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ ≤
1

mr−1ns−1

∣∣∣∣∣
{
m ≤ mr, n ≤ ns : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ = 1
mr−1ns−1

{K11 + · · ·Krs}

≤ M
mr−1ns−1

r0s0 +
ϵ
2B qrs ≤ M

mr−1ns−1
r0s0 +

ϵ
2 .

This completes the proof. �

Theorem 4.3. A triple (X,P, ∗) be a PP− space. For any lacunary sequence θ = (mrns) , Ŝ (PP ) ⊂
Ŝθ (PP ) if lim inf

rs
qrs > 1.

Proof. If lim inf
rs

qrs > 1, then there exists a β > 0 such that qrs > 1+ β for sufficiently large rs,

which implies

hrs
Krs

≥ β
1+β .

Let x
Ŝ0̄(pp)
≡ y, then for every ϵ > 0 and for sufficiently large r, s, we have

1
mrns

∣∣∣∣∣
{
m ≤ mr, n ≤ ns : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ ≥
1

mrns

∣∣∣∣∣
{
m,n ∈ Irs : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ ≥
β

1+β
1

hrs

∣∣∣∣∣
{
m,n ∈ Irs : P(

(m+n)!
∣∣∣xmn
ymn

∣∣∣)1/m+n
−0̄

(ϵ) > 1− γ

}∣∣∣∣∣ .
Therefore x

Ŝ0̄θ (pp)
≡ y.
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This completes the proof. �

Corollary 4.1. A triple (X,P, ∗) be a PP− space. For any lacunary sequence θ = (mrns) ,

with 1 < lim inf
rs

qrs ≤ lim sup
rs

qrs < ∞, then Ŝ (PP ) = Ŝθ (PP ) .

Proof. The result clearly follows from Theorem 4.2 and Theorem 4.3. �
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6. Conclusion

This paper contains generalized results for the concept of almost asymptotically lacunary

statistical χ2 over probabilistic p− metric spaces with some general topological properties. Re-

searchers can extend the results for more general cases.
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