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CONVENIENT PRETOPOLOGIES ON Z2

J. ŠLAPAL1

Abstract. We deal with pretopologies on the digital plane Z2 convenient for studying and
processing digital pictures. We introduce a certain natural graph on the vertex set Z2 whose
cycles are eligible for Jordan curves in the digital plane and discuss the pretopologies on Z2

with respect to which these cycles are Jordan curves.
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1. Introduction

To be able to study and process digital images, we need to provide the digital plane Z2 with
a convenient structure. Here, the convenience means that such a structure satisfies analogues
of some basic geometric properties of the Euclidean plane R2. First of all, it is required that an
analogue of the Jordan curve theorem is valid (recall that the classical Jordan curve theorem
states that every simple closed curve in the Euclidean plane divides the plane into exactly two
connected components). In the classical approach (see [9], [10]), graph theoretic tools are used
for structuring Z2, namely the well-known binary relations of 4-adjacency and 8-adjacency. Un-
fortunately, neither 4-adjacency nor 8-adjacency itself allows an analogue of the Jordan curve
theorem, so that a combination of the two adjacencies has to be used. To eliminate this incon-
venience, a new, purely topological approach to the problem was proposed in [4] which utilizes
the so-called Khalimsky topology for structuring the digital plane. This approach was then de-
veloped by many authors, cf. [5] - [8]. In [11], it was shown that it may be advantageous to use
closure operators (more general than topologies) for structuring the digital plane. In the present
note, we study a special type of such operators on Z2, namely the pretopologies. We introduce
a certain natural graph on the vertex set Z2 whose cycles are eligible for Jordan curves in Z2

and we solve the problem of finding pretopologies on Z2 with respect to which these cycles are
Jordan curves. We focus on the minimal of these pretopologies and show that the well-known
Khalimsky and Marcus-Wyse topologies and two more convenient pretopologies on Z2 may be
obtained as their quotients.

2. Preliminaries

Throughout the note, topologies are considered to be given by closure operators. Thus, a
topology on a set X is nothing but a so-called Kuratowski closure operator on X, i.e., a map p:
exp X → exp X (where exp X denotes the power set of X) fulfilling the following four axioms:

(i) p∅ = ∅,
(ii) A ⊆ pA for all A ⊆ X,
(iii) p(A ∪B) = pA ∪ pB for all A,B ⊆ X,
(iv) ppA = pA for all A ⊆ X.
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The pair (X, p) is then called a topological space. If p satisfies the axioms (i)-(iii) but not
necessarily (iv), then it is called a pretopology on X (and the pair (X, p) is called a pretopological
space). Pretopological spaces were studied by E. Cech in [2] and, therefore, they are called Cech
closure spaces by some authors.

Basic topological concepts (see e.g. [3]) may naturally be extended from topological spaces
to closure ones. Let us recall definitions of some (extended) topological concepts that will
particularly be important in this note. If (X, p) is a pretopological space, then a subset A ⊆ X
is said to be closed if pA = A and it is called open if its complementX−A is closed. A pretopology
p on a set X is called an Alexandroff pretopology if pA =

∪
x∈A p{x} for every A ⊆ X and it

is called a T0-pretopology (T 1
2
-pretopology) if x ∈ p{y} and y ∈ p{x} imply x = y whenever

x, y ∈ X (if each singleton is closed or open). A pretopological space (X, p) is connected if ∅
and X are the only subsets of X which are both closed and open. A subset A ⊆ X is said to be
connected if it is connected as the subspace of (X, p) (i.e., the pretopological space (A, q) where
qB = pB ∩ A whenever B ⊆ A) and it is said to be a component if it is a maximal connected
subset of X. A map f : (X, p) → (Y, q) between pretopological spaces (X, p) and (Y, q) is said
to be continuous if f(pA) ⊆ q(f(A)) whenever A ⊆ X. If q, r are pretopologies on a set X, we
write q ≤ r and say that q is finer than r (and r is coarser than q) if qA ⊆ rA for every A ⊆ X.
Of course, ≤ is a partial order on the set of all pretopologies on X. Given a pretopological space
(X, p) and a surjection e : X → Y , a pretopology q on Y is called the quotient pretopology of p
generated by e if q is the finest pretopology on Y with e : (X, p) → (Y, q) continuous.

We will use some basic graph-theoretical concepts-we refer for them to [1]. By a graph on a
set V we always mean an undirected simple graph without loops whose vertex set is V , i.e., a
pair (V,E) where E = {{x, y};x, y ∈ A, x ̸= y} is the set of edges. For each vertex x ∈ V , we
denote by E(x) the set of all vertices adjacent to x, i.e., E(x) = {y ∈ X; {x, y} ∈ E}.

The connectedness graph of a pretopology p on a set X is the graph on X in which a pair of
vertices x, y is adjacent if and only if x ̸= y and {x, y} is a connected subset of (X, p). If p is
an Alexandroff pretopology on a set X, then a subset A ⊆ X is connected in (X, p) if and only
if each pair of points of A may be joined by a path in the connectedness graph of p contained
in A. Every Alexandroff pretopology is given by its connectedness graph provided that every
edge of the graph is incident with a point which is known to be closed or to a point which is
known to be open (in which case p is T0). Indeed, the closure of a closed point consists of just
this point, the closure of an open point consists of this point and all points adjacent to it and
the closure of a mixed point (i.e., a point that is neither closed nor open) consists of this point
and all closed points adjacent to it.

In the sequel, only connected Alexandroff pretopologies on Z2 will be dealt with. In connect-
edness graphs of these pretopologies, the closed points will be ringed and the mixed ones boxed
(so that the points neither ringed nor boxed will be open-note that no of the points of Z2 may
be both closed and open).

In digital image processing, the well-known 4-adjacency and 8-adjacency graphs are used, i.e.,
the graphs (Z2, A4) and (Z2, A8) where, for every (x, y) ∈ Z2, A4(x, y) = {(x+ i, y + j); i, j ∈
{−1, 0, 1}, ij = 0, i+ j ̸= 0} and A8(x, y) = A4(x, y)∪ {(x+ i, y + j); i, j ∈ {−1, 1}}. Sections
of the 4-adjacency graph and the 8-adjacency one are demonstrated in Figure 1.

Figure 1. Sections of 4-adjacency graph (on left) and 8-adjacency graph (on right).
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For natural reasons related to possible applications of our results in digital image processing,
only such pretopologies on Z2 will be dealt with whose connectedness graphs are subgraphs of
the 8-adjacency graph. (It is well known that there are exactly two topologies on Z2 whose
connectedness graphs lie between the 4-adjacency and 8-adjacency graphs. These topologies are
the Khalimsky and Marcus-Wyse ones).

The Khalimsky topology on Z2 is the Alexandroff topology s given as follows:
For any z = (x, y) ∈ Z2,

s{z} =


{z} ∪A8(z) if x, y are even,
{(x+ i, y); i ∈ {−1, 0, 1}} if x is even and y is odd,
{(x, y + j); j ∈ {−1, 0, 1}} if x is odd and y is even,
{z} otherwise.

The Khalimsky topology is connected and T0; a section of its connectedness graph is shown
in Figure 2.

Figure 2. A section of the connectedness graph of the Khalimsky topology.

The Marcus-Wyse topology is the Alexandroff topology t on Z2 given as follows:
For any z = (x, y) ∈ Z2,

t{z} =

{
{z} ∪A4(z) if x+ y is odd,
{z} otherwise.

The Marcus-Wyse topology is connected and T 1
2
. A section of its connectedness graph is

shown in Figure 3.

Figure 3. A section of the connectedness graph of the Marcus-Wyse topology.

By a (digital) simple closed curve in a pretopological space (Z2, p) we mean a nonempty,
finite and connected subset C ⊆ Z2 such that, for each point x ∈ C, there are exactly two
points of C adjacent to x in the connectedness graph of p. A simple closed curve C in (Z2, p) is
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said to be a (digital) Jordan curve if it separates (Z2, p) into precisely two components (i.e., if
the subspace Z2 − C of (Z2, p) consists of precisely two components). Neither 4-adjacency nor
8-adjacency itself allows for an analogue of the Jordan curve theorem so that a combination of
the two adjacencies has to be used. This deficiency is eliminated when using the Khalimsky
topology on Z2 because the known Jordan curve theorem for the Khalimsky space proved in [5]
says that every simple closed curve with at least four points in the Khalimsky topological space
is a Jordan curve. But a Jordan curve in the Khalimsky space cannot turn, at any of its points,
to form the acute angle π

4 . It would therefore be useful to replace the Khalimsky topology with
certain pretopologies that allow Jordan curves to turn, at some points, to form the acute angle
π
4 .

3. Convenient pretopologies on Z2

Definition 3.1. The square-diagonal graph is the graph on Z2 in which two points z1 =
(x1, y1), z2 = (x2, y2) ∈ Z2 are adjacent if and only if one of the following four conditions is
fulfilled:

(1) |y1 − y2| = 1 and x1 = x2 = 4k for some k ∈ Z,
(2) |x1 − x2| = 1 and y1 = y2 = 4l for some l ∈ Z;
(3) x1 − x2 = y1 − y2 = ±1 and x1 − 4k = y1 for some k ∈ Z,
(4) x1 − x2 = y2 − y1 = ±1 and x1 = 4l − y1 for some l ∈ Z.

A section of the square-diagonal graph is shown in Figure 4.

Figure 4. A section of the square-diagonal graph.

When studying digital images, it may be advantageous to equip Z2 with a pretopology with
respect to which all cycles in the square-diagonal graph are Jordan curves.

Definition 3.2. A pretopology p on Z2 is said to be an sd-pretopology if every cycle in the
square-diagonal graph is a Jordan curve in (Z2, p).

Clearly, neither the Khalimsky topology nor the Marcus-Wyse one is an sd-pretopology (a
cycle in the square-diagonal graph is a Jordan curve in the Marcus-Wyse topological space if and
only if it does not employ diagonal edges and a cycle in the square-diagonal graph is a Jordan
curve in the Khalimsky topological space if and only if it does not turn, at any of its points, at
the acute angle π

4 ).
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Example 3.1. In [12], the Alexandroff T 1
2
-topology w on Z2 was introduced as follows: For any

point z = (x, y) ∈ Z2,

w{z} =



{z} ∪A8(z) if x = 4k, y = 4l, k, l ∈ Z,
{z} ∪ (A8(z)−A4(z)) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z,
{z} ∪ (A8(z)− ({(x+ i, y + 1); i ∈ {−1, 0, 1}} ∪ {(x, y − 1)})) if x = 2 + 4k,

y = 1 + 4l, k, l ∈ Z,
{z} ∪ (A8(z)− ({(x+ i, y − 1); i ∈ {−1, 0, 1}} ∪ {(x, y + 1)})) if x = 2 + 4k,

y = 3 + 4l, k, l ∈ Z,
{z} ∪ (A8(z)− ({(x+ 1, y + j); j ∈ {−1, 0, 1}} ∪ {(x− 1, y)})) if x = 1 + 4k,

y = 2 + 4l, k, l ∈ Z,
{z} ∪ (A8(z)− ({(x− 1, y + j); j ∈ {−1, 0, 1}} ∪ {(x+ 1, y)})) if x = 3 + 4k,

y = 2 + 4l, k, l ∈ Z,
{(x+ i, y); i ∈ {−1, 0, 1}} if x = 2 + 4k, y = 4l, k, l ∈ Z,
{(x, y + j); j ∈ {−1, 0, 1}} if x = 4k, y = 2 + 4l, k, l ∈ Z,
{z} otherwise.

A section of the connectedness graphs of w is demonstrated in Figure 5.

Figure 5. A section of the connectedness graph of w.

It is proved in [12] as the main result that w is an sd-pretopology.

Definition 3.3. A graph (Z2, A) is said to be basic if it has the property that, for every point
z = (x, y) ∈ Z2,

A(z) =


A8(z) if x = 4k, y = 4l, k, l ∈ Z,
(A8(z)−A4(z)) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z,
{(x− 1, y), (x+ 1, y)} if x = 2 + 4k, y = 1 + 2l, k, l ∈ Z,
{(x, y − 1), (x, y + 1)} if x = 1 + 2k, y = 2 + 4l, k, l ∈ Z,

A(z) is a singleton subset of {(m,n − 1), (m,n), (m,n + 1)} ∪ V2(m,n) if z ∈ {(m −
1, n), (m+ 1, n)} where m = 4k, n = 4l + 2, k, l ∈ Z, and
A(z) is a singleton subset of {(m − 1, n), (m,n), (m + 1, n)} ∪H2(m,n) if z ∈ {(m,n −
1), (m,n+ 1)} where m = 4k, n = 4l + 2, k, l ∈ Z.

A pretopology on Z2 is called basic if its connectedness graph is basic.

Basic graphs are demonstrated in Figure 6. A section of a basic graph is obtained by just
choosing, for every vertex demonstrated by a bold dot, exactly one of the three edges denoted
by the dashed line segments that are incident with this vertex.
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Figure 6. A section of the basic graphs.

Theorem 3.1. The basic pretopologies are precisely the minimal sd- pretopologies.

Proof. Let p be a basic pretopology. Clearly, any cycle in the square-diagonal graph is a simple
closed curve in (Z2, p). Let z = (x, y) ∈ Z2 be a point such that x = 4k + m and y = 4l + n
for some k, l,m, n ∈ Z with mn = ±2. Then we define the fundamental triangle T(z) to be the
nine-point subset of Z2 given as follows:

T (z) =



{(r, s) ∈ Z2; y − 1 ≤ s ≤ y + 1− |r − x|} if x = 4k + 2 and
y = 4l + 1 for some k, l ∈ Z,

{(r, s) ∈ Z2; y − 1 + |r − x| ≤ s ≤ y + 1} if x = 4k + 2 and
y = 4l − 1 for some k, l ∈ Z,

{(r, s) ∈ Z2; x− 1 ≤ r ≤ x+ 1− |s− y|} if x = 4k + 1 and
y = 4l + 2 for some k, l ∈ Z,

{(r, s) ∈ Z2; x− 1 + |s− y| ≤ r ≤ x+ 1} if x = 4k − 1 and
y = 4l + 2 for some k, l ∈ Z.

Graphically, the fundamental triangle T (z) consists of the point z and the eight points lying
on the triangle surrounding z - the four types of fundamental triangles are represented in Figure
7.

Figure 7. The curve Fundamental triangles.

Given a fundamental triangle, we speak about its sides - it is clear from the above picture
what sets are understood to be the sides (note that each side consists of five or three points and
that two different fundamental triangles may have at most one common side).

Now, one can easily see that:

(1) Every fundamental triangle is connected (so that the union of two fundamental triangles
having a common side is connected) in (Z2, p).

(2) If we subtract from a fundamental triangle some of its sides, then the resulting set is
still connected in (Z2, p).
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(3) If S1, S2 are fundamental triangles having a common side D, then the set (S1 ∪S2)−M
is connected in (Z2, p) whenever M is the union of some sides of S1 or S2 different from
D.

(4) Every connected subset of (Z2, p) having at most two points is a subset of a fundamental
triangle.

We will now show that the following is also true:

(5) For every cycle C in the square-diagonal graph, there are sequences SF ,SI of fundamental
triangles, SF finite and SI infinite, such that, whenever S ∈ {SF ,SI}, the following two
conditions are satisfied:

(a) Each member of S, excluding the first one, has a common side with at least one
of its predecessors.

(b) C is the union of those sides of fundamental triangles from S that are not shared
by two different fundamental triangles from S.

Put C1 = C and let S1
1 be an arbitrary fundamental triangle with S1

1∩C1 ̸= ∅. For every k ∈ Z,
1 ≤ k, if S1

1 , S
1
2 , ..., S

1
k are defined, let S1

k+1 be a fundamental triangle with the following proper-

ties: S1
k+1∩C1 ̸= ∅, S1

k+1 has a side in common with S1
k which is not a subset of C1 and S1

k+1 ̸= S1
i

for all i, 1 ≤ i ≤ k. Clearly, there will always be a (smallest) number k ≥ 1 for which no such
a fundamental triangle S1

k+1 exists. We denote by k1 this number so that we have defined a se-

quence (S1
1 , S

1
2 , ..., S

1
k1
) of fundamental triangles. Let C2 be the union of those sides of fundamen-

tal triangles from (S1
1 , S

1
2 , ..., S

1
k1
) that are disjoint from C1 and are not shared by two different

fundamental triangles from (S1
1 , S

1
2 , ..., S

1
k1
). If C2 ̸= ∅, we construct a sequence (S2

1 , S
2
2 , ..., S

2
k2
)

of fundamental triangles in an analogous way to (S1
1 , S

1
2 , ..., S

1
k1
) by taking C2 instead of C1 (and

obtaining k2 analogously to k1). Repeating this construction, we get sequences (S3
1 , S

3
2 , ..., S

3
k3
),

(S4
1 , S

4
2 , ..., S

1
k4
), etc. We put S = (S1

1 , S
1
2 , ..., S

1
k1
, S2

1 , S
2
2 , ..., S

2
k2
, S3

1 , S
3
2 , ..., S

3
k3
, ...) if Ci ̸= ∅ for

all i ≥ 1 and S = (S1
1 , S

1
2 , ..., S

1
k1
, S2

1 , S
2
2 , ..., S

2
k2
, ..., Sl

1, S
l
2, ..., S

l
kl
) if Ci ̸= ∅ for all i with 1 ≤ i ≤ l

and Ci = ∅ for i = l + 1.
Further, let S′

1 = T (z) be a fundamental triangle such that z /∈ S whenever S is a member
of S. Having defined S′

1, let S ′ = (S′
1, S

′
2, ...) be a sequence of fundamental triangles defined

analogously to S (by taking S′
1 in the role of S1

1). Then one of the sequences S, S ′ is finite and
the other is infinite. (Indeed, S is finite or infinite, respectively, if and only if its first member
equals such a fundamental triangle T (z) for which z = (k, l) ∈ Z2 has the property that (1) k is
even, l is odd and the cardinality of the set {(x, l) ∈ Z2; x > k}∩C is odd or even, respectively
or (2) k is odd, l is even and the cardinality of the set {(k, y) ∈ Z2; y > l} ∩ C is odd or even,
respectively. The same is true for S ′.) If we put {SF ,SI} = {S,S ′} where SF is finite and SI is
infinite, then the conditions (a) and (b) are clearly satisfied.

Given a cycle C in the square-diagonal graph, let SF and SI denote the union of all members
of SF and SI , respectively. Then SF ∪SI = Z2 and SF ∩SI = C. Let S∗

F and S∗
I be the sequences

obtained from SF and SI by subtracting C from each member of SF and SI , respectively. Let
S∗
F and S∗

I denote the union of all members of S∗
F and S∗

I , respectively. Then S∗
F and S∗

I are
connected by (1), (2) and (3) and it is clear that S∗

F = SF −C and S∗
I = SI −C. So, S∗

F and S∗
I

are the two components of Z2 −C by (4) (SF −C is the so-called inside component and SI −C
is the so-called outside component). We have shown that p is an sd-pretopology.

To prove p is a minimal sd-pretopology, let q be an sd-pretopology such that q ≤ p. Suppose
that there are points z1, z2 ∈ Z2 such that z2 ∈ p{z1} − q{z1}. Then the edge {z1, z2} belongs
to the connectedness graph of p but does not belong to the connectedness graph of q. Since the
connectedness graph of q is a supergraph of the square-diagonal graph, there is a fundamental
triangle T (z) with z ∈ {z1, z2}. Thus, {z1, z2} is one of the three edges incident with z and the
point z′ ∈ {z1, z2}−{z} lies on a side D of T (z). Let S be the fundamental triangle different from
T (z) such that one of the sides of S is D. Then the union C of all sides of T (z) and S different
from D is a cycle in the square diagonal graph but it is not a Jordan curve in (Z2, q) because the



J. ŠLAPAL: CONVENIENT PRETOPOLOGIES ON Z2 47

inside part of C, i.e., the set (T (z)∪ S)−C, is evidently not connected in the subgraph Z2 −C
of the connectedness graph of q. Thus, the subgraph Z2 − C of the connectedness graph of q
has more than two components. This is a contradiction. Therefore, p = q and the minimality
of (Z2, p) is proved.

Example 3.2. Let r be the Alexandroff T0-pretopology on Z2 given as follows:
For any point z = (x, y) ∈ Z2,

r{z} =



{z} ∪A8(z) if x = 4k, y = 4l, k, l ∈ Z,
{z} ∪ (A8(z)−A4(z)) if x = 2 + 4k, y = 2 + 4l, k, l ∈ Z,
{z} ∪ {(x− 1, y), (x+ 1, y)} if x = 2 + 4k, y = 1 + 2l, k, l ∈ Z,
{z} ∪ {(x, y − 1), (x, y + 1)} if x = 1 + 2k, and y = 2 + 4l),
{z} ∪A4(z) if either x = 4k and y = 2 + 4l or x = 2 + 4k and

y = 4l, k, l ∈ Z,
{z} otherwise.

A section of the connectedness graphs of r is demonstrated in Figure 8.

Figure 8. The curve α(s).

It was proved in [14] that r is an sd-pretopology and it is evident that r is even basic.

4. Quotients of the basic pretopologies

We have shown that basic pretopologies possess a rich enough variety of Jordan curves and
may therefore be used for structuring the digital plane. We will show that certain convenient
pretopologies on Z2 may be obtained as quotients of the basic pretopologies. First of all, both
the Khalimsky and Marcus-Wyse topologies may be obtained in such a way.

The following two theorems may be proved similarly to Theorems 10 and 11 from [13] that
state that Khalimsky and Marcus-Wyse topologies are quotients of the topology w (see Example
3.3).

Theorem 4.1. The Khalimsky topology is the quotient pretopology of any of the basic pretopolo-
gies generated by the surjection f : Z2 → Z2 given as follows:

f(x, y) =


(2k, 2l) if (x, y) = (4k, 4l), k, l ∈ Z,
(2k, 2l + 1) if (x, y) ∈ A4(4k, 4l + 2), k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ A4(4k + 2, 4l), k, l ∈ Z,
(2k + 1, 2l + 1) if (x, y) ∈ {(4k + 2, 4l + 2)}∪

(A8(4k + 2, 4l + 2)−A4(4k + 2, 4l + 2)), k, l ∈ Z.

The decomposition of the basic pretopological space (Z2, r) given by f is demonstrated in
Figure 9 by the dashed lines. Every class of the decomposition is mapped by f to its center
point expressed by the bold coordinates.
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Figure 9. The decomposition of (Z2, r) given by f .

Theorem 4.2. The Marcus-Wyse topology is the quotient pretopology of any of the basic pre-
topologies generated by the surjection d : Z2 → Z2 given as follows:

d(x, y) =


(k + l, l − k) if (x, y) ∈ {(4k, 4l)} ∪A8(4k, 4l), k, l ∈ Z,
(k + l + 1, l − k) if (x, y) = (4k + 2, 4l + 2) for some k, l ∈ Z

with k + l odd or (x, y) ∈ {(p, q) ∈ Z2; both x = 4k + 2
and |y − 4l − 2| ≤ 3 or both |x− 4k − 2| ≤ 3 and
y = 4l + 2} for some k, l ∈ Z with k + l even.

The decomposition of the pretopological space (Z2, r) given by d is demonstrated in Figure
10 by the dashed lines. Every class of the decomposition is mapped by d to its center point
expressed by the coordinates with respect to the diagonal axes (where the first coordinate relates
to the axis with only the non-negative part displayed).

Figure 10. The decomposition of (Z2, w) given by g.

We will show now that there are two more convenient Alexandroff pretopologies on Z2 that
may be obtained as quotients of the basic pretopologies.

Let u be the Alexandroff pretopology on Z2 given as follows:
For any z = (x, y) ∈ Z2,

u{z} =


{(x+ i, y); i ∈ {−1, 0, 1}} if x is odd and y is even,
{(x, y + j); j ∈ {−1, 0, 1}} if x is even and y is odd,
{z} ∪ (A8(z)−A4(z)) if x, y are odd,
{z} if x, y are even.
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Evidently, u is a connected and T 1
2
-topology. A portion of its connectedness graph is shown

in Figure 11.

Figure 11. A section of the connectedness graph u.

The following Jordan curve theorem for u is proved in [15] (Proposition 2):

Theorem 4.3. Let D be a simple closed curve in (Z2, u) having more than four points and such
that every pair of different points z1, z2 ∈ D with both coordinates even satisfies A4(z1)∩A4(z2) ⊆
D. Then D is a Jordan curve in (Z2, u).

The proof of the following theorem is analogous to that of Theorem 12 of [13]:

Theorem 4.4. u is the quotient pretopology of any of the basic pretopologies generated by the
surjection h : Z2 → Z2 given as follows:

h(x, y) =



(2k, 2l) if (x, y) ∈ {(4k, 4l)} ∪A8(4k, 4l), k, l ∈ Z,
(2k, 2l + 1) if (x, y) ∈ {(4k + i, 4l + 2)}; i ∈ {−1, 0, 1}},

k, l ∈ Z,
(2k + 1, 2l) if (x, y) ∈ {(4k + 2, 4l + j)}; j ∈ {−1, 0, 1}},

k, l ∈ Z,
(2k + 1, 2l + 1) if (x, y) = (4k + 2, 4l + 2), k, l ∈ Z.

The decomposition of the pretopological space (Z2, r) given by h is demonstrated in the Figure
12 by the dashed lines. All points of a class of the decomposition are mapped by h to the center
point of the class given by the bold coordinates.

Figure 12. The decomposition of (Z2, r) given by h.

Let v be the Alexandroff pretopology on Z2 given as follows:
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For any z = (x, y) ∈ Z2,

v{z} =

 {z} ∪A4(z) if both x and y are odd or (x, y) = (4k + 2l, 2l + 2), k, l ∈ Z,
{z} ∪A8(z) if (x, y) = (4k + 2l, 2l), k, l ∈ Z,
{z} otherwise.

Evidently, v is connected and T0. A section of its connectedness graph are shown in Figure
13.

Figure 13. A section of the connectedness graph v.

The following Jordan curve theorem for v immediately follows from [13] (Theorem 8):

Theorem 4.5. Let D be a simple closed curve in (Z2, v) such that, for every point z ∈ D with
both coordinates odd, A4(z) ∩D = ∅. Then D is a Jordan curve in (Z2, v).

The proof of the following theorem is analogous to that of Theorem 14 from [13]:

Theorem 4.6. v is the quotient pretopology of any of the basic pretopologies generated by the
surjection d : Z2 → Z2 given as follows:

d(x, y) =


(2k + 2l + 1, 2l − 2k + 1) if (x, y) ∈ A4(4k, 4l + 2), k, l ∈ Z,
(2k + 2l + 1, 2l − 2k − 1) if (x, y) ∈ A4(4k + 2, 4l), k, l ∈ Z,
(x+y

2 , y−x
2 ) if x, y are odd or (x, y) = (4k + 2l, 2l), k, l ∈ Z.

The decomposition of the pretopological space (Z2, r) given by d is demonstrated in Figure
14 by the dashed lines. Every class of the decomposition is mapped by d to its center point
expressed by the coordinates with respect to the diagonal axes (where the first coordinate relates
to the axis with only the non-negative part displayed).

Figure 14. The decomposition of (Z2, r) given by d.
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