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SECOND HANKEL DETERMINANT FOR A CERTAIN SUBCLASS OF

ANALYTIC AND BI-UNIVALENT FUNCTIONS
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Abstract. In the present paper, we consider a subclass of the function class Σ of bi-univalent

analytic functions in the open unit disk ∆ and we obtain the functional |a2a4 − a2
3| for the

function class. Also we give upper bounds for |a2a4 − a2
3|. Our result gives corresponding

|a2a4 − a2
3| for the subclasses of Σ defined in the literature.
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1. Introduction

Let A denotes the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1)

which are analytic in the open unit disc ∆ = {z : |z| < 1} and normalized by the conditions

f(0) = 0 and f ′(0) = 1. Further, let S denote the class of all functions in A which are univalent

in ∆. Some of the important and well-investigated subclasses of the univalent function class S
include (for example) the class S∗(α) of starlike functions of order α (0 ≤ α < 1) in ∆ and the

class K(α) of convex functions of order α (0 ≤ α < 1) in ∆. It is well known that every function

f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ ∆)

and f(f−1(w)) = w (|w| < r0(f); r0(f) ≥ 1/4)

where

f−1(w) = g(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆. Let

Σ denote the class of bi-univalent functions in ∆ given by (1). Earlier, Brannan and Taha [4]

introduced certain subclasses of bi-univalent function class Σ, namely bi-starlike functions of

order α denoted by S∗
Σ(α) and bi-convex function of order α denoted by KΣ(α) corresponding

to the function classes S∗(α) and K(α) respectively.

A function f ∈ A is in the class of strongly bi-starlike(and strongly bi-convex) functions

S∗
Σ[α]( and KΣ[α]) [4, 19] of order α (0 < α ≤ 1) if each of the following conditions is satisfied:∣∣∣∣arg(zf ′(z)

f(z)

)∣∣∣∣ < απ

2
and

∣∣∣∣arg(wg′(w)

g(w)

)∣∣∣∣ < απ

2
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and ∣∣∣∣arg(1 + zf ′′(z)

f ′(z)

)∣∣∣∣ < απ

2
and

∣∣∣∣arg(1 + wg′′(w)

g′(w)

)∣∣∣∣ < απ

2

where g is the extension of f−1 to ∆. For each of the function classes S∗
Σ[α]( and KΣ[α]) non-

sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| were found [4, 19].

But the coefficient problem for each of the following Taylor-Maclaurin coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · })

is still an open problem (see [3, 4, 13, 16, 19]).

An analytic function f is subordinate to an analytic function g, written f(z) ≺ g(z), provided

there is an analytic function w defined on ∆ with w(0) = 0 and |w(z)| < 1 satisfying f(z) =

g(w(z)). Ma and Minda [14] unified various subclasses of starlike and convex functions for which

either of the quantity z f ′(z)
f(z) or 1 + z f ′′(z)

f ′(z) is subordinate to a more general superordinate

function. For this purpose, they considered an analytic function ϕ with positive real part in the

unit disk ∆, ϕ(0) = 1, ϕ′(0) > 0 and ϕ maps ∆ onto a region starlike with respect to 1 and

symmetric with respect to the real axis. The class of Ma-Minda starlike functions consists of

functions f ∈ A satisfying the subordination z f ′(z)
f(z) ≺ ϕ(z). Similarly, the class of Ma-Minda

convex functions consists of functions f ∈ A satisfying the subordination 1 + z f ′′(z)
f ′(z) ≺ ϕ(z).

A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f−1

are respectively Ma-Minda starlike or convex. These classes are denoted respectively by S∗
Σ(ϕ)

and KΣ(ϕ) (see [1]). In the sequel, it is assumed that ϕ is an analytic function with positive real

part in the unit disk ∆, satisfying ϕ(0) = 1, ϕ′(0) > 0 and ϕ(∆) is symmetric with respect to

the real axis. Such a function has a series expansion of the form

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + · · · , (B1 > 0). (3)

We need the following lemma for our investigation.

Lemma 1.1. (see [7], p. 41) Let P be the class of all analytic functions p(z) of the form

p(z) = 1 +

∞∑
n=1

pnz
n (4)

satisfying ℜ(p(z)) > 0 (z ∈ ∆) and p(0) = 1. Then

|pn| ≤ 2 (n = 1, 2, 3, ...).

This inequality is sharp for each n. In particular, equality holds for all n for the function

p(z) =
1 + z

1− z
= 1 +

∞∑
n=1

2zn.

In 1976, Noonan and Thomas [17] defined the qth Hankel determinant of f for q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q
...

...
...

...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
Further, Fekete and Szegö [8] considered the Hankel determinant of f ∈ A for q = 2 and

n = 1, H2(1) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ . They made an early study for the estimates of |a3 − µa22| when
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a1 = 1 with µ real. The well known result due to them states that if f ∈ A, then

|a3 − µa22| ≤


4µ− 3 if µ ≥ 1,

1 + 2 exp(−2µ
1−µ) if 0 ≤ µ ≤ 1,

3− 4µ if µ ≤ 0.

Furthermore, Hummel [10, 11] obtained sharp estimates for |a3 − µa22| when f is convex

functions and also Keogh and Merkes [12] obtained sharp estimates for |a3 − µa22| when f is

close-to-convex, starlike and convex in ∆.

Here we consider the Hankel determinant of f ∈ A for q = 2 and n = 2,

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ .
To prove our main result, we need the following lemmas.

Lemma 1.2. If the function p(z) ∈ P is given by the series (4), then

2p2 = p21 + x(4− p21), (5)

4p3 = p31 + 2(4− p21)p1x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z, (6)

for some x, z with |x| ≤ 1, |z| ≤ 1 and p1 ∈ [0, 2].

Lemma 1.3. [9] The power series for p(z) given in (4) converges in ∆ to a function in P if

and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣
2 p1 p2 · · · pn

p−1 2 p1 · · · pn−1
...

...
...

...
...

p−n p−n+1 p−n+2 · · · 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, . . . (7)

and p−k = pk, are all nonnegative. They are strictly positive except for

p(z) =
m∑
k=1

ρkp0(e
itkz), ρk > 0, tk real

and tk ̸= tj for k ̸= j in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m.

Many researchers (see [1, 2, 5, 18, 20, 21]) have introduced and investigated several interesting

subclasses ( by generalization or in associated with certain linear operators see [15]) of the

bi-univalent function class Σ and they have found non-sharp estimates on the first two Taylor-

Maclaurin coefficients |a2| and |a3|. The object of the present paper is to determine the functional

|a2a4−a23| for a subclass of the function class Σ. Also we give upper bounds for |a2a4−a23|. Our

result gives corresponding |a2a4 − a23| for the subclasses of Σ defined in the literature.

2. coefficient bounds for the function class FΣ(ϕ, α)

For α ≥ 0 we let a function f ∈ Σ given by (1) is said to be in the class FΣ(ϕ, α), if the

following conditions are satisfied:

(1− α)

(
zf ′(z)

f(z)

)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z) (8)

and

(1− α)

(
wg′(w)

g(w)

)
+ α

(
1 +

wg′′(w)

g′(w)

)
≺ ϕ(w), (9)

where g is the inverse of f given by (2).
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Definition 2.1. Taking α = 0, we let FΣ(ϕ, α) ≡ S∗
Σ(ϕ) and if f ∈ S∗

Σ(ϕ), then

zf ′(z)

f(z)
≺ ϕ(z) (10)

and
wg′(w)

g(w)
≺ ϕ(w), (11)

where the function g is the inverse of f given by (2).

Definition 2.2. Taking α = 1, we let FΣ(ϕ, α) ≡ KΣ(ϕ) and if f ∈ KΣ(ϕ), then

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z) (12)

and

1 +
wg′′(w)

g′(w)
≺ ϕ(w), (13)

where the function g is the inverse of f given by (2).

Theorem 2.1. Let f given by (1) be in the class FΣ(ϕ, α). Then

|a2a4−a23| ≤



H(2), f(α,B1, B2, B3) ≥ 0, C(α,B1, B2, B3) ≥ 0

max
{

B2
1

4(1+2α)2
,H(2)

}
, f(α,B1, B2, B3) > 0, C(α,B1, B2, B3) < 0

B2
1

4(1+2α)2
, f(α,B1, B2, B3) ≤ 0, C(α,B1, B2, B3) ≤ 0

max {H(t0),H(2)} , f(α,B1, B2, B3) < 0, C(α,B1, B2, B3) > 0,

(14)

where

H(2) =
B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B1

4(1 + 2α)2 + 2B1|B2 −B1(1 + α)3(1 + 2α)2|
3(1 + α)3(1 + 2α)2(1 + 3α)

H
(
t0=

√
−2C(α,B1,B2,B3)
f(α,B1,B2,B3)

)
=

B2
1

4(1 + 2α)2
− [C(α,B1, B2, B3)]

2

48(1 + α)3(1 + 2α)2(1 + 3α)f(α,B1, B2, B3)
,

f(α,B1, B2, B3) = 4B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 + 4B1
4(1 + 2α)2

−3B1
3(1 + α)(1 + 2α)(1 + 3α)− 12B1

2(1 + α)2(1 + 2α)2

+3B1
2(1 + α)3(1 + 3α),

C(α,B1, B2, B3) = 3B1
3(1 + α)(1 + 2α)(1 + 3α) + 8B1|B2 −B1|(1 + α)3(1 + 2α)2

+12B1
2(1 + α)2(1 + 2α)2 − 6B1

2(1 + α)3(1 + 3α)
]
.

Proof. Let f ∈ FΣ(ϕ, α) and g = f−1. Then there are analytic functions u, v : ∆ → ∆, with

u(0) = v(0) = 0, satisfying

(1− α)

(
zf ′(z)

f(z)

)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
= ϕ(u(z)) (15)

and

(1− α)

(
wg′(w)

g(w)

)
+ α

(
1 +

wg′′(w)

g′(w)

)
= ϕ(v(w)). (16)
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Define the functions p(z) and q(z) by

p(z) :=
1 + u(z)

1− u(z)
= 1 + p1z + p2z

2 + p3z
3 + · · ·

and

q(z) :=
1 + v(z)

1− v(z)
= 1 + q1z + q2z

2 + q3z
3 + · · · .

It follows that,

u(z) :=
p(z)− 1

p(z) + 1
=

1

2

[
p1z +

(
p2 −

p21
2

)
z2 +

(
p3 − p1p2 +

p31
4

)
z3 + · · ·

]
(17)

and

v(z) :=
q(z)− 1

q(z) + 1
=

1

2

[
q1z +

(
q2 −

q21
2

)
z2 +

(
q3 − q1q2 +

q31
4

)
z3 + · · ·

]
. (18)

Then p(z) and q(z) are analytic in ∆ with p(0) = 1 = q(0). Using (17) and (18), it is clear that,

ϕ(u(z)) = 1 +
B1p1
2

z +

[
B1

2

(
p2 −

p21
2

)
+

1

4
B2p

2
1

]
z2 (19)

+

[
B1

2

(
p3 − p1p2 +

p31
4

)
+

B2p1
2

(
p2 −

p21
2

)
+

B3p
3
1

8

]
z3 + · · ·

and

ϕ(v(w)) = 1 +
B1q1
2

w +

[
B1

2

(
q2 −

q21
2

)
+

1

4
B2q

2
1

]
w2 (20)

+

[
B1

2

(
q3 − q1q2 +

q31
4

)
+

B2q1
2

(
q2 −

q21
2

)
+

B3q
3
1

8

]
w3 + · · · .

Equating the coefficients in (15) and (16), we get,

(1 + α)a2 =
B1p1
2

, (21)

2(1 + 2α)a3 − (1 + 3α)a22 =
B1

2

(
p2 −

p21
2

)
+

1

4
B2p

2
1, (22)

3(1 + 3α)a4 − 3(1 + 5α)a2a3 + (1 + 7α)a32

=
B1

2

(
p3 − p1p2 +

p31
4

)
+

B2p1
2

(
p2 −

p21
2

)
+

B3p
3
1

8
(23)

and

−(1 + α)a2 =
B1q1
2

, (24)

−2(1 + 2α)a3 + (3 + 5α)a22 =
B1

2

(
q2 −

q21
2

)
+

1

4
B2q

2
1, (25)

−3(1 + 3α)a4 + 6(2 + 5α)a2a3 − 2(5 + 11α)a32

=
B1

2

(
q3 − q1q2 +

q31
4

)
+

B2q1
2

(
q2 −

q21
2

)
+

B3q
3
1

8
. (26)

From (21) and (24) gives

a2 =
B1p1

2(1 + α)
= − B1q1

2(1 + α)
, (27)
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which implies

p1 = −q1. (28)

Now from (22), (25) and by using (27), we obtain

a3 =
B2

1p
2
1

4(1 + α)2
+

B1(p2 − q2)

8(1 + 2α)
. (29)

On the otherhand, subtracting (26) from (23) and by using (27), (29), we get

a4 =
5B3

1p
3
1

16(1 + α)3
+

5B2
1p1(p2 − q2)

32(1 + α)(1 + 2α)
+

B1(p3 − q3)

12(1 + 3α)

+
p31(B1 − 2B2 +B3)

24(1 + 3α)
+

(B2 −B1)p1(p2 + q2)

12(1 + 3α)
− p31B

3
1(11 + 29α)

48(1 + α)3
. (30)

Thus we establish that

a2a4 − a23 =
2B1(B1 − 2B2 +B3)(1 + α)3 − 2(1 + α)B4

1

96(1 + α)4(1 + 3α)
p41 −

B2
1(p2 − q2)

2

64(1 + 2α)2

+
B3

1p
2
1(p2 − q2)

64(1 + α)2(1 + 2α)
+

B1(B2 −B1)p
2
1(p2 + q2)

24(1 + 3α)
+

B2
1p1(p3 − q3)

24(1 + α)(1 + 3α)
(31)

According to Lemma 1.2, we have

2p2 = p21 + x(4− p21) and 2q2 = q21 + y(4− q21), (32)

hence by (28), we have

p2 − q2 =
4− p21

2
(x− y) (33)

p2 + q2 = p21 +
4− p21

2
(x+ y) (34)

and further

4p3 = p31 + 2(4− p21)p1x− p1(4− p21)x
2 + 2(4− p21)(1− |x|2)z,

4q3 = q31 + 2(4− q21)q1y − q1(4− q21)y
2 + 2(4− q21)(1− |y|2)w,

for some x, y, z, w with |x| ≤ 1, |y| ≤ 1, |z| ≤ 1, |w| ≤ 1 and p1, q1 ∈ [0, 2].

Thus,

p3−q3 =
p31
2
+
p1(4− p21)

2
(x+y)− p1(4− p21)

4
(x2+y2)+

4− p21
2

[
(1− |x|2)z − (1− |y|2)w

]
. (35)

Using (33) - (35) in (31), we get,

a2a4 − a23 =

(
B1(2B1 − 2B2 +B3)(1 + α)2 −B4

1 + 2B1(B2 −B1)(1 + α)3

48(1 + α)3(1 + 3α)

)
p41

+
B3

1p
2
1(4− p21)(x− y)

128(1 + α)2(1 + 2α)
+

(
B1(B2 −B1)(1 + α) +B2

1

48(1 + α)(1 + 3α)

)
(4− p21)p

2
1(x+ y)

− B2
1(4− p21)p

2
1

96(1 + α)(1 + 3α)
(x2 + y2)− B2

1(4− p21)
2

256(1 + 2α)2
(x− y)2

+
B2

1p1(4− p21)

48(1 + α)(1 + 3α)
[(1− |x|2)z − (1− |y|2)w]. (36)

Since p(z) ∈ P, so |p1| ≤ 2. Thus, letting p1 = t and applying triangle inequality on (36), with

λ = |x| ≤ 1 and µ = |y| ≤ 1, we obtain

|a2a4 − a23| ≤ C1 + C2(λ+ µ) + C3(λ
2 + µ2) + C4(λ+ µ)2 = F (λ, µ), (37)
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where

C1 = C1(t) =
t

48(1 + α)3(1 + 3α)

{
B1|2B1 − 2B2 +B3|(1 + α)2 t3 +B1

4 t3

+2B1|B2 −B1|(1 + α)3 t3 + 2B2
1(1 + α)2(4− t2)

}
≥ 0,

C2 = C2(t) =
B1(4− t2)t2

384(1 + α)2(1 + 2α)(1 + 3α)

{
3B2

1(1 + 3α)

+8|B2 −B1|(1 + α)2(1 + 2α) +B1(1 + α)(1 + 2α)
}
≥ 0,

C3 = C3(t) =
B2

1(4− t2)t(t− 2)

96(1 + α)(1 + 3α)
≤ 0,

C4 = C4(t) =
B2

1(4− t2)2

256(1 + 2α)2
≥ 0.

Now, we need to maximize function F (λ, µ) in the closed square,

S = {(λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} . Since, coefficients of the function F (λ, µ) has dependent

variable t, we need to maximize F (λ, µ) in the cases t = 0, t = 2 and t ∈ (0, 2).

1. Firstly, let t = 0. Therefore, from (37), we write

F (λ, µ) =
B2

1

16(1 + 2α)2
(λ+ µ)2.

We can see easily the maximum of function F (λ, µ) occurs at λ = µ = 1 and

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} =
B2

1

4(1 + 2α)2
(38)

2. Secondly, let t = 2. In this case, F (λ, µ) is a constant function as follows

F (λ, µ) =
|2B1 − 2B2 +B3|B1(1 + α)2 +B1

4 + 2B1|B2 −B1|
3(1 + α)3(1 + 3α)

. (39)

3. Thirdly, let t ∈ (0, 2). In this case, if we change λ+ µ = ξ and λ.µ = η, then

F (λ, µ) = C1(t) + C2(t)ξ + [C3(t) + C4(t)]ξ
2 − 2C3(t)η = G(ξ, η), 0 ≤ ξ ≤ 2, 0 ≤ η ≤ 1. (40)

Now, we investigate maximum of G(ξ, η) in D = {(ξ, η) : 0 ≤ ξ ≤ 2, 0 ≤ η ≤ 1}.
From definition of function G(ξ, η), we have

G′
ξ(ξ, η) = C2(t) + 2[C3(t) + C4(t)]ξ = 0,

G′
η(ξ, η) = −2C3(t) = 0.

From this, it is clear that, the function has no critical point in D. Thus, F (λ, µ) has no critical

point in square S. Then, the function can not take maximum value in square S.

Now, we investigate maximum of F (λ, µ) on the boundary of the square S.

3.1. Firstly, let λ = 0, 0 ≤ µ ≤ 1 (similarly, µ = 0, 0 ≤ λ ≤ 1). In this case, we write

F (0, µ) = C1(t) + C2(t)µ+ [C3(t) + C4(t)]µ
2 = φ1(µ).

Then,

φ′
1(µ) = C2(t) + 2[C3(t) + C4(t)]µ.

Case (i) If C3(t) + C4(t) ≥ 0, then φ′
1(µ) > 0 and the function is increasing and the maximum

occurs at µ = 1.

Case (ii) Let C3(t) + C4(t) < 0. Since C2(t) + 2[C3(t) + C4(t)] > 0, we have,

C2(t) + 2[C3(t) + C4(t)]µ ≥ C2(t) + 2[C3(t) + C4(t)]
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is true for all µ ∈ [0, 1]. So, φ′
1(µ) > 0. Therefore, φ1(µ) is an increasing function. Thus,

maximum occurs at µ = 1,

max{F (0, µ) : 0 ≤ µ ≤ 1} = C1(t) + C2(t) + C3(t) + C4(t). (41)

3.2. Secondly, let λ = 1, 0 ≤ µ ≤ 1 (similarly, µ = 1, 0 ≤ λ ≤ 1). Then

F (1, µ) = C1(t) + C2(t) + C3(t) + C4(t) + [C2(t) + 2C4(t)]µ+ [C3(t) + C4(t)]µ
2 = φ2(µ).

We can show that φ2(µ) is an increasing function as similar to previous case.

Therefore,

max{F (1, µ) : 0 ≤ µ ≤ 1} = C1(t) + 2[C2(t) + C3(t)] + 4C4(t). (42)

Also, for every t ∈ (0, 2), we can see easily that

C1(t) + 2[C2(t) + C3(t)] + 4C4(t) > C1(t) + C2(t) + C3(t) + C4(t).

Therefore we obtain,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} = C1(t) + 2[C2(t) + C3(t)] + 4C4(t).

Since φ1(1) ≤ φ2(1) for t ∈ [0, 2],maxF (λ, µ) = F (1, 1) on the boundary of the square S. Thus

the maximum of F occurs at λ = 1 and µ = 1 in the closed square S.

Let us define H : (0, 2) → R as

H(t) = maxF (λ, µ) = F (1, 1) = C1(t) + 2[C2(t) + C3(t)] + 4C4(t). (43)

On substituting the value of C1(t), C2(t), C3(t) and C4(t) in the above function, we obtain

H(t) =
B2

1

4(1 + 2α)2
+

f(α,B1, B2, B3) t
4 + 2 C(α,B1, B2, B3) t

2

192(1 + α)3(1 + 2α)2(1 + 3α)
,

where

f(α,B1, B2, B3) = 4B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2

+4B4
1(1 + 2α)2 − 3B3

1(1 + α)(1 + 2α)(1 + 3α)

−12B2
1(1 + α)2(1 + 2α)2 + 3B2

1(1 + α)3(1 + 3α),

C(α,B1, B2, B3) = 3B3
1(1 + α)(1 + 2α)(1 + 3α) + 8B1|B2 −B1|(1 + α)3(1 + 2α)2

+12B2
1(1 + α)2(1 + 2α)2 − 6B2

1(1 + α)3(1 + 3α).

Now, we investigate the maximum value of H(t) in the interval (0, 2).

By simple calculation, we obtain

H ′(t) =
[f(α,B1, B2, B3)t

3 + C(α,B1, B2, B3)]t

48(1 + α)3(1 + 2α)2(1 + 3α)
.

Let us examine the different cases of f(α,B1, B2, B3) and C(α,B1, B2, B3) as follows:

Case 1: Let f(α,B1, B2, B3) ≥ 0 and C(α,B1, B2, B3) ≥ 0, then H ′(t) ≥ 0, so the function is

increasing. Thus, maximum point must be on the boundary of t ∈ [0, 2], that is, t = 2.

Thus,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} = H(2)

=
B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4

1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)
.

(44)
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Case 2: If f(α,B1, B2, B3) > 0 and C(α,B1, B2, B3) < 0, t0 =
√

−2C(α,B1,B2,B3)
f(α,B1,B2,B3)

is critical point

of H(t). Since H ′′(t0) < 0, the maximum value of function H(t) occurs at t = t0 and

H(t0) =
B2

1

4(1 + 2α)2
− [C(α,B1, B2, B3)]

2

48(1 + α)3(1 + 2α)2(1 + 3α)f(α,B1, B2, B3)
. (45)

In this case,

H(t0) <
B2

1

4(1 + 2α)2
.

Therefore,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} =

max

{
B2

1

4(1 + 2α)2
,

B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4
1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)

}
.

(46)

Case 3: If f(α,B1, B2, B3) ≤ 0 and C(α,B1, B2, B3) ≤ 0,H(t) is a decreasing function on the

interval (0, 2). Thus,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} =
B2

1

4(1 + 2α)2
. (47)

Case 4: If f(α,B1, B2, B3) < 0 and C(α,B1, B2, B3) > 0, t0 is a critical point of H(t). Since

H ′′(t0) < 0, the maximum value of H(t) occurs at t = t0. In this case,

B2
1

4(1 + 2α)2
< H(t0).

Therefore,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} = max {H(t0) ,

B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4
1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)

}
.

(48)

Thus, from (44),(46),(47) and (48), the proof is completed. �

Corollary 2.1. Let f given by (1) be in the class FΣ(ϕ, α) and B1 < 1, B1 = 2|B2|. Then

|a2a4 − a23| ≤
B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4

1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)
. (49)

In particular, if B1 = 1/2, B2 = 1/4 and B3 = 1, then

|a2a4 − a23| ≤ 1

4(1 + α)(1 + 3α)
+

1

48(1 + α)3(1 + 3α)
+

1

12(1 + 3α)
. (50)
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Corollary 2.2. Let f given by (1) be in the class FΣ(ϕ, α) and B1 < 1, B1 ̸= 2|B2|. Then

|a2a4 − a23| ≤ max

{
B2

1

4(1 + 2α)2
,

B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4
1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)

}
.

(51)

In particular, if B1 = 1/2, B2 = 1/2 and B3 = 2, then

|a2a4 − a23| ≤
1

3(1 + α)(1 + 3α)
+

1

48(1 + α)3(1 + 3α)
.

Corollary 2.3. Let f given by (1) be in the class FΣ(ϕ, α) and B1 ≥ 1. Then

|a2a4 − a23| ≤
B2

1

4(1 + 2α)2
.

In particular, if B1 = 1, then

|a2a4 − a23| ≤
1

4(1 + 2α)2
.

Corollary 2.4. Let f given by (1) be in the class FΣ(ϕ, α) and B1 ≥ 1, B1 = 2|B2|. Then

|a2a4 − a23| ≤ max
{
H(t0),

B1|2B1 − 2B2 +B3|(1 + α)2(1 + 2α)2 +B4
1(1 + 2α)2 + 2B1|B2 −B1|(1 + α)3(1 + 2α)2

3(1 + α)3(1 + 2α)2(1 + 3α)

}
.

(52)

In particular, if B1 = 1, B2 = 1/2 and B3 = 4, then

|a2a4 − a23| ≤
5

3(1 + α)(1 + 3α)
+

1

3(1 + α)3(1 + 3α)
+

1

3(1 + 3α)
. (53)

The following theorems are results of Theorem 2.1.

Theorem 2.2. Let f given by (1) be in the class S∗
Σ(ϕ).

1. If B1, B2 and B3 satisfy the conditions

4B3
1 − 3B2

1 −B1 + 4|2B1 − 4B2 +B3| − 8|B2| ≥ 0, 3B2
1 − 2B1 + 8|B2| ≥ 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤
B1(B

3
1 + |2B1 − 4B2 +B3|)

3
.

2. If B1, B2 and B3 satisfy the conditions

4B3
1 − 3B2

1 −B1 + 4|2B1 − 4B2 +B3| − 8|B2| > 0, 3B2
1 − 2B1 + 8|B2| < 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤ max

{
B2

1

4
,
B1(B

3
1 + |2B1 − 4B2 +B3|)

3

}
.

3. If B1, B2 and B3 satisfy the conditions

4B3
1 − 3B2

1 −B1 + 4|2B1 − 4B2 +B3| − 8|B2| ≤ 0, 3B2
1 − 2B1 + 8|B2| ≤ 0,
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then the second Hankel determinant satisfies

|a2a4 − a23| ≤
B2

1

4
.

4. If B1, B2 and B3 satisfy the conditions

4B3
1 − 3B2

1 −B1 + 4|2B1 − 4B2 +B3| − 8|B2| < 0, 3B2
1 − 2B1 + 8|B2| > 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤ max

{
B1(B

3
1 + |2B1 − 4B2 +B3|)

3
,

B2
1

4
− B1(3B

2
1 − 2B1 + 8|B2|)2

48[4B3
1 − 3B2

1 −B1 + 4|2B1 − 4B2 +B3| − 8|B2|]

}
.

Theorem 2.3. Let f given by (1) be in the class KΣ(ϕ).

1. If B1, B2 and B3 satisfy the conditions

3B3
1 − 6B2

1 − 4B1 + 12|2B1 − 4B2 +B3| − 24|B2| ≥ 0, 3B2
1 − 2B1 + 12|B2| ≥ 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤
B1(B

3
1 + 4|2B1 − 4B2 +B3|)

96
.

2. If B1, B2 and B3 satisfy the conditions

3B3
1 − 6B2

1 − 4B1 + 12|2B1 − 4B2 +B3| − 24|B2| > 0, 3B2
1 − 2B1 + 12|B2| < 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤ max

{
B2

1

36
,
B1(B

3
1 + 4|2B1 − 4B2 +B3|)

96

}
.

3. If B1, B2 and B3 satisfy the conditions

3B3
1 − 6B2

1 − 4B1 + 12|2B1 − 4B2 +B3| − 24|B2| ≤ 0, 3B2
1 − 2B1 + 12|B2| ≤ 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤
B2

1

36
.

4. If B1, B2 and B3 satisfy the conditions

3B3
1 − 6B2

1 − 4B1 + 12|2B1 − 4B2 +B3| − 24|B2| < 0, 3B2
1 − 2B1 + 12|B2| > 0,

then the second Hankel determinant satisfies

|a2a4 − a23| ≤ max

{
B1(B

3
1 + 4|2B1 − 4B2 +B3|)

96
,

B2
1

36
− B1(3B

2
1 − 2B1 + 12|B2|)2

288[3B3
1 − 6B2

1 − 4B1 + 12|2B1 − 4B2 +B3| − 24|B2|]

}
.
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Corollary 2.5. By choosing ϕ(z) of the form (??), we state the following results for functions

f ∈ FΣ(ϕ, α),

|a2a4 − a23| ≤


16(1−β)4+4(1+α)2(1−β)2

3(1+α)3(1+3α)
, β ∈ [0, 1− β0 ]

max
{
H(t0),

16(1−β)4+4(1+α)2(1−β)2

3(1+α)3(1+3α)

}
, β ∈ (1− β0, 1) ,

(54)

where

β0 = 1− 3(1+α)(1+2α)(1+3α)−
√

9(1+α)2(1+2α)2(1+3α)2−16(1+2α)2[3(1+α)3(1+3α)−8(1+α)2(1+2α)2]

16(1+2α)2
,

H (t0) =
(1− β)2

(1 + 2α)2
− [C(α, β)]2

48(1 + α)3(1 + 2α)2(1 + 3α)f(α, β)
,

f(α, β) = 4(1− β)2
{
16(1 + 2α)2(1− β)2 − 6(1 + α)(1 + 2α)(1 + 3α)(1− β)

+3(1 + α)3(1 + 3α)− 8(1 + α)2(1 + 2α)2
}
,

C(α, β) = 24(1− β)2 {(1 + α)(1 + 2α)(1 + 3α)(1− β)

+2(1 + α)2(1 + 2α)2 − (1 + α)3(1 + 3α)]
}
.

Proof. Let f ∈ FΣ(ϕ, α), with ϕ(z) of the form (??). We need to maximize function F (λ, µ),

definition by the formula (37), in the closed square S = {(λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1}. This
proof will be completed as proof of Theorem 2.1.

1. For t = 0,

F (λ, µ) =
(1− β)2

4(1 + 2α)2
(λ+ µ)2.

This function has no critical point in square S, so it has no maximum point. Then

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} = F (1, 1) =
(1− β)2

(1 + 2α)2
. (55)

2. If t = 2, F (λ, µ) is a constant function: F (λ, µ) = C1(2).

According to this,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} =
16(1− β)4 + 4(1 + α)2(1− β)2

3(1 + α)3(1 + 3α)
. (56)

3. Now let t ∈ (0, 2). In this case, F (λ, µ) will take a maximum value depend on t :

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} = H(t),

whereH(t) is given in (43). If we writeB1 = B2 = B3 = 2(1−β) in value of C1(t), C2(t), C3(t), C4(t)

and we consider these in H(t), we obtain

H(t) =
(1− β)2

(1 + 2α)2
+

f(α, β) t4 + 4 C(α, β) t2

192(1 + α)3(1 + 2α)2(1 + 3α)
,

where

f(α, β) = 4(1− β)2
{
16(1 + 2α)2(1− β)2 − 6(1 + α)(1 + 2α)(1 + 3α)(1− β)

+3(1 + α)3(1 + 3α)− 8(1 + α)2(1 + 2α)2
}
,

C(α, β) = 24(1− β)2 {(1 + α)(1 + 2α)(1 + 3α)(1− β)

+2(1 + α)2(1 + 2α)2 − (1 + α)3(1 + 3α)]
}
.
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Now, we investigate maximum of H(t) in the open interval (0, 2).

The derivative of H(t) is as follows:

H ′(t) =
[f(α, β)t2 + 2C(α, β)]t

48(1 + α)3(1 + 2α)2(1 + 3α)
.

For all values of α ∈ [0, 1] and β ∈ [0, 1), C(α, β) > 0. Moreover, for all α ∈ [0, 1] and

β ∈ [0, 1− β0], f(α, β) ≥ 0. In here,

β0 = 1− 3(1+α)(1+2α)(1+3α)−
√

9(1+α)2(1+2α)2(1+3α)2−16(1+2α)2[3(1+α)3(1+3α)−8(1+α)2(1+2α)2]

16(1+2α)2
, In this

case, H ′(t) > 0, so H(t) is an increasing function in (0, 2). However, this function doesn’t take

maximum value in (0, 2).

Thus, for β ∈ [0, 1− β0],

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1} =
16(1− β)4 + 4(1 + α)2(1− β)2

3(1 + α)3(1 + 3α)
. (57)

If β ∈ (1− β0, 1], f(α, β) < 0. In this case,

t0 =

√
−2C(α, β)

f(α, β)

is a critical point of H(t). We observe that t0 < 2, that is, t0 is interior point of the interval

(0, 2). Since H ′′(t0) < 0, the maximum value of H(t) occurs at t = t0 and

max{H(t) : 0 < t < 2} = H(t0) =
(1− β)2

(1 + 2α)2
− [C(α, β)]2

48(1 + α)3(1 + 2α)2(1 + 3α)f(α, β)
.

In this case,

(1− β)2

(1 + 2α)2
< H(t0).

Therefore,

max{F (λ, µ) : 0 ≤ λ ≤ 1, 0 ≤ µ ≤ 1}

= max

{
(1− β)2

(1 + 2α)2
− [C(α, β)]2

48(1 + α)3(1 + 2α)2(1 + 3α)f(α, β)
,

16(1− β)4 + 4(1 + α)2(1− β)2

3(1 + α)3(1 + 3α)

}
. (58)

Thus, from (57) and (58), the proof is completed.

Corollary 2.6. Taking α = 0 and α = 1 in the Corollary 2.5, we obtain the results for the

classes S∗
Σ(ϕ) and KΣ(ϕ), which leads to the results obtained in Theorem 2.1 and 2.3 of [6],

respectively.

Corollary 2.7. Putting β = 0 in the Corollary 2.6, we get the boundary estimates for the second

Hankel determinant in the classes of bi-starlike and bi-convex functions as |a2a4 − a23| ≤ 20/3

and |a2a4 − a23| ≤ 1/3.

The boundary estimates for the second Hankel determinant obtained in the Corollary 2.7

verifies to the Corollary 2.2 and 2.4 of [6], respectively.
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