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SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN INERTIAL

NAVIGATION SYSTEMS OF SMALL UAV

V.B. LARIN1, A.A. TUNIK2

Abstract. This review involves the scope of problems, which arise in the developing of simple

Strapdown Inertial Navigation Systems (SINS) designated for usage in small UAV and oper-

ating with low-cost inertial sensors. These problems include: elaboration of simple algorithms

for rotational and translational state maintenance, developing of gyro-free accelerometer-based

navigation systems (ASINS), correction of SINS errors on the basis of usage GPS, magnetome-

ters and altimeters, and usage of sensors redundancy for developing fault-tolerant SINS and

identification of the faulty sensor. Taking in account some peculiarities of small UAV flight

missions (small operation radius of such UAV, restricted time of the flight mission and limited

range of fight speeds), it was possible to develop algorithms for integration of differential equa-

tions for rotational and translational state maintenance, which allow producing of their solution

in quadratures. Kalman filtering problem for GPS/SINS fusion was solved on the basis of the

QR-factorization of covariance matrices. The algorithms are proposed for creation of ASINS and

problems of relations between accelerometers redundancy, complexity of the ASINS algorithms

and eventually the ASINS performance are considered.

Keywords: Strapdown Inertial Navigation System (SINS), accelerometer-based SINS, rate gyro,

altimeter, magnetometer, Kalman filter, quaternion, sensor redundancy, fault detection.
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1. Introduction

Nowadays the deployment and applications of small low-cost UAV as well as the increasing

of diversity of their flight missions are growing very intensively [8, 11, 18, 19]. These UAV

must be equipped with low-cost navigation and flight control systems. That is why the research

and development works in the area of small size and comparatively cheap inertial sensors for

UAV strap-down inertial navigation systems (SINS) are intensively undertaken [9, 10, 18, 19,

55, 56], as well as in the area of development of the software algorithms for low-cost SINS

[1, 18, 47]. If conditions of their application and peculiarities of their flight missions would

be taken in consideration, then it is possible to simplify the traditional SINS algorithms [1,

4, 14, 16, 25, 33, 35 – 37, 44, 47, 57]. These peculiarities are based on the small operation

radius of such UAV, restricted time of the flight mission and limited range of fight speeds. It

gives possibility to neglect the Earth sphericity, the Earth rotation rate, etc. Meanwhile some

other problems arise in the process of such systems design: the compensation of the sensors

systematic errors, development of the SINS systems on the basis of accelerometers only without

rate gyros, usage of the additional sources of information based on the readouts of magnetometers

and altimeters, and the identification of sensors, which have failed during the SINS operation.

It would be relevant to note that sometimes in such systems the problem of creating of the
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accelerometer-based SINS without usage of the rate gyros (RG) could be arisen especially in the

cases of application of SINS in the fast spinning UAV[12, 58]. Taking in account aforementioned

circumstances this review contains the algorithms of operation of simple SINS, which use RG

and accelerometers, as well as the algorithms for SINS, which use accelerometers only. The

problems of the external corrections of such systems using GPS [17, 26, 28, 29, 55], and other

additional sources of information (magnetometer and altimeter) are also considered as well as

the problems of the RG systematic errors compensation [47]. There are described the algorithms

of the SINS errors correction, when several vectors with known positions in some basic frame

are observed [45].

Figure 1. The fixed and body frames.

These algorithms also allow providing fault detection and the faulty sensor identification in a

case of the sensors redundancy [49]. The motion control problems [2], the problems of the SINS

sensors calibration [31, 32] as well as the initial alignment problems [60] are not considered in this

review. Several results were obtained in accordance with the treaty of collaboration between

the Institute of Mechanics named after S.P. Timoshenko of National Academy of Sciences of

Ukraine and National Aviation University.

2. Basic relations for the rigid body attitude determination

From the very beginning it is expedient to present all known relations describing attitude

determination and integrating of kinematics equations, which are the mathematical background

for all results obtained in this review.We describe some different methods of attitude determi-

nation [13, 52, 54, 62]. In this review we will use the classical Euler angles ψ, ϑ, φ (precession,

nutation and rotation) [1, 52], which determine the attitude of the rigid body, i.e. its transition

from initial position in the fixed frame Oxyz to the final position in the moving (body) frame

Ox′y′z′ (see fig. 1). The choice of these angles is determined by the following considerations.

As it is mentioned in [47, 52] the choice of Euler angles is very ambiguous in the different books

and papers. So, in order to avoid this ambiguity, Euler angles, which are commonly used in the

classical analytical mechanics, were chosen. Aforementioned transition could be performed via

only one turn at the angle χwith respect to the axis, having direction, which is determined by
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the anglesα, β, γ. That is why the attitude of body can be described by four Rodriguez-Hamilton

parameters [52] λ0, λ1, λ2, λ3:

λ1 = cosα sin
χ

2
, λ2 = cosβ sin

χ

2
, λ3 = cos γ sin

χ

2
, λ0 = cos

χ

2
.

It is obvious that: λ20 + λ21 + λ22 + λ23 = 1. Rodriguez-Hamilton parameters can be expressed

via Euler angles as follows:

λ0 = cos
ϑ

2
cos

φ+ ψ

2
, λ1 = sin

ϑ

2
cos

φ− ψ

2
, λ2 = sin

ϑ

2
sin

ψ − φ

2
, λ3 = cos

ϑ

2
sin

φ+ ψ

2
. (1)

The rigid body attitude with respect to the fixed frame Oxyz can be determined by the direct

cosine matrix (DCM) A for coordinates transform. If m is some vector in the fixed frame and

components of vector k are the projection of this vector at the axes of the body frame Ox′y′z′,

then:

k = Am. (2)

This matrix can be expressed via Rodriguez-Hamilton parameters λ0, λ1, λ2, λ3:

A(λ) =

 λ20 + λ21 − λ22 − λ23 2(λ1λ2 + λ0λ3) 2(λ1λ3 − λ0λ2)

2(λ1λ2 − λ0λ3) λ20 − λ21 + λ22 − λ23 2(λ2λ3 + λ0λ1)

2(λ1λ3 + λ0λ2) 2(λ2λ3 − λ0λ1) λ20 − λ21 − λ22 + λ23

 (3)

The inverse relations have also take place. If, for instance, A = [aij ], ij = 1, 3 and 1 + a11 +

a22 + a33 > 0, then due to [54, 62]: λ0 =
1
2

√
1 + a11 + a22 + a33,

λ1 =
a23 − a32

2
√
1 + a11 + a22 + a33

, λ2 =
a31 − a13

2
√
1 + a11 + a22 + a33

, λ3 =
a12 − a21

2
√
1 + a11 + a22 + a33

(4)

It is expedient to present the expressions of the projections of the angular rate vector in the

body frame ω1, ω2, ω3 via the Euler angles:

ω1 = ψ̇ sinϑ sinφ+ ϑ̇ cosφ, ω2 = ψ̇ sinϑ cosφ− ϑ̇ sinφ, ω3 = ψ̇ cosϑ+ φ̇. (5)

If components of vector ω = [ω1 ω2 ω3]
T are measured and initial rigid body attitude is known,

the vector of the Rodriguez-Hamilton parameters (quaternion) λ = [λ0 λ1 λ2 λ3]
T is determined

as a result of the integration of the of kinematical equations (rotational state maintenance [1,

14, 41, 54]):

λ̇ =
1

2
· Ωλ, (6)

Ω =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 , ∥λ∥ 2 = λTλ = 1.

Hereafter ∥ · ∥ denotes the spectral matrix norm; upper index T stands for the matrix transpo-

sition.

If Euler angles are small and trihedrons Oxyz and Ox′y′z′ are very close to each other, then

it is possible to use approximate expression for DCM As based on relations (26) in [62] and (8.2)

in [41]:

As
∼=

 1 µ3 −µ2
−µ3 1 µ1
µ2 −µ1 1

 , (7)

where µ1, µ2, µ3 are small angles of turn of the trihedron Oxyz with respect to the axes x, y, z

respectively.
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3. Algorithms of the sins software

As it is known [25, 28, 55, 56] the algorithms of the SINS software consist of the algorithms

of the rotational and translational state maintenance. We begin from the rotational state main-

tenance.

The procedure of the equation (6) numerical integration can be represented as follows. As far

as this procedure is discrete, small sampling period δt is used. The basic idea of this procedure

consists of its solution determination in quadratures instead of its solving in real time. In order

to achieve this result in [41] the quadratic spline approximation of the angular rate vector was

proposed. . The readouts of rate gyros in the discrete moments of time ti−2, ti−1, ti are known:

ω(ti−2), ω(ti−1),ω(ti). Using these values and quadratic spline approximation, it is possible to

determine quasi-coordinates (the components of the vector ∇θi =
∫ ti+δt
ti

ωdt) in the following

way:

∇θi =
∆t

12
(5ω(ti) + 8ω(ti−1)− ω(ti−2)) (8)

Then we can express solution of equation (6) δλ(ti) at the time period δt with initial condition[
1 0 0 0

]T
(calculating quaternion, which corresponds to the small turn of rigid body

during time δt) as function of ∇θi. After this the rigid body attitude determination is calculated

by consequent multiplication δλ(ti) (“elementary” quaternion) by the value of quaternion in the

previous moment of time λ(ti−1):

λ(ti) = λ(ti−1)δλ(ti). (9)

Matrix representation of this procedure looks like follows:

λ(ti) =


δλ0(ti) −δλ1(ti) −δλ2(ti) −δλ3(ti)
δλ1(ti) δλ0(ti) δλ3(ti) −δλ2(ti)
δλ2(ti) −δλ3(ti) δλ0(ti) δλ1(ti)

δλ3(ti) δλ2(ti) −δλ1(ti) δλ0(ti)



λ0(ti−1)

λ1(ti−1)

λ2(ti−1)

λ3(ti−1)

 (10)

δλ(ti) =
[
δλ0(ti) δλ1(ti) δλ2(ti) δλ3(ti)

]T
.

In [13] the expressions of quaternions δλ(ti) as functions of the quasi-coordinate vector ∇θi,
which guarantee this or those approximation accuracy of quaternion δλ(ti) depending on these

expressions complexity. As it was proved in [7, 43] this complexity could be diminished from

the point of view of the following circumstance. Let rigid body is slightly turned with respect

to the x-axis at the angle χ =
∫ δt
0 ω0dt. Let the estimated value of this small turn will be φ.

It was shown in [7, 43], that from the point of view of attitude determination accuracy it is

necessary to minimize error |φ− χ| instead of minimization of vector λ approximation error.

On the basis of this result in [43] the following expression of vector δλ2, which provides the

order of the approximation error O(χ2), was proposed

δλ2m =

[
1− 1/12 ∥∇θ∗i ∥

2

1/2∇θ∗i

]
.

In [42] the expression of vector δλ3 (order of the approximation error O(χ3)) was developed:

δλ3m =

[
1− 1/12 ∥∇θ∗i ∥

2

1/2∇θ∗i − 1/24
(
∇θ∗i ×∇θ∗i−1

) ]
. (11)

It must be noted about existing of the general relations, which allow to evaluate the accuracy

of the kinematics equations (6) integration. However these relations are very complicated.

Therefore it is necessary to mark that in [7] simple formulas were developed in the case of the
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finite motion for the estimation of the average rate of the drift, when this or those integration

algorithm is applied. Besides this, some notion about the accuracy of the equation (6) integration

for various algorithms of the δλ construction gives examples considered in [7].

It is necessary to note that in the cases, which are given below the expression (11) is applied.

Expressions (8) – (11) are the mathematical background of the rotational maintenance software.

Describing the integration of the translational motion kinematics equations it is necessary to

note that these equations are based on the Coriolis theorem [14, 41]:

dv

dt
= w − 2Ωz × v − Ωz × Ωz ×R (12)

where w stands for absolute acceleration, v is the relative UAV speed, Ωz is the Earth angular

rate, R is the radius-vector of UAV mass point in the geometric frame. Output signals of

accelerometers (wa) are determined with the following relation:

wa = w + g, (13)

where g is the gravity accelerations. Taking into account the simplifying assumptions mentioned

in the Introduction, which are valid for small UAV, it is possible to neglect the Coriolis acceler-

ation for these cases [14], i.e. to exclude term 2Ωz × v from the right part of (12). However, if

the more powerful on-board computers and the more precise sensors are available, then it would

be possible to include Coriolis acceleration in the equations of the UAV motion.

In order to map acceleration vector in the navigation frame, corresponding to equation (12) it

is necessary to integrate equation (10) using given initial conditions, defined by initial alignment

procedure [60], and expression (11) as elementary quaternion δλ. After obtaining current value

of quaternion λ(ti) as a result of this integration, we can determine DCM A using expression

(3). It gives possibility to map acceleration vector, which is defined by accelerometers readouts,

from body frame to navigation frame in accordance with (2), thus determining w̃ in the right

part of the equation (12). Having the values w̃ in the sampling moments ti−2, ti−1, ti, we can

write expressions for v( ti), r( ti), which are similar to the expression (8):

v( ti) = (5w̃(ti) + 8w̃(ti−1)− w̃(ti−2)) ·
∆t

12
+ v(ti−1), (14)

r( ti) = (3w̃(ti) + 10w̃(ti−1)− w̃(ti−2)) ·
∆t2

24
+ v(ti−1) ·∆t+ r(ti−1). (15)

Summarizing aforementioned, it is possible to say, that the expressions (2), (3), (8) – (15)

determine the algorithm of the SINS operation, i.e. they allow to produce the estimation of the

navigation parameters in the sampling moments ti on the basis of the RG and the accelerom-

eters readouts in the moments of time ti. Proposed algorithm of the SINS operation doesn’t

contain the integration of the kinematics equations and uses of final results of this integration in

quadratures. This, in turn, allows using traditional algorithms of the GPS and the SINS fusion

for correction of the considered SINS.

4. Model of sins without usage of rate Gyros

As it was noted in the introduction this kind of SINS are very useful in a case of its application

in the fast spinning UAV, when, as it was underlined in [9, 12], the RG application might

be very problematic. Similar to [46] we consider two problems of determination of the rigid

body kinematics parameters on the basis of the accelerometers’ measurements only. In the

first problem the angular rate vector and velocity of point, which is assumed as the origin of the

moving body frame, are determined on the basis of measurement of three body points’ velocities.

In the second problem the angular and the linear accelerations of the moving frame are calculated



V.B. LARIN, A.A. TUNIK: SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN ... 151

on the basis of observations of three body points’ accelerations and known angular rate of rigid

body. Then on the basis of the achieved results the model of the accelerometer-based SINS

(ASINS) without RG usage is investigated.

4.1 Determination of velocities The problem of determination of the rigid body angular

rate vector and velocity vector of one of its point on the basis of observation of its three points

velocities was considered by several authors (see [22, 50], where further references were cited).

The problem is formulated in the following way (see Fig.2).

Figure 1. Allocation of the velocity sensors.

Three vectors r1, r2, r3 define points, where linear velocity is measured. Using results of these

measurements it is necessary to determine the vector of the body’s angular rate (ω = [ω1 ω2 ω3]
T )

and the linear velocity vector (v0 = [v1 v2 v3]
T ) of the body frame origin 1. Taking into account

known expression (see, for instance, (2.7.8) [52], and (2) [58]), which defines the rigid body’s

velocity depending on vector r:

v = v0 + ω × r, (16)

it is possible to write the following linear expressions (equations (6) [50], (4) [22]) uniting the

searched components of the ω, v vectors and the results of the three points’ velocities observa-

tions:

V = ΩP + v0h
T , (17)

where: Ω = ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

, P = [r1 r2 r3], h =
[
1 1 1

]T
, and V is the matrix,

the columns of which are the vectors of three points velocities, defined by vectors r1, r2, r3.

Let β1, β2, β3 and γ1, γ2, γ3 are the columns of the P T and V T matrices:

P T = [β1, β2, β3] , V
T = [γ1, γ2, γ3] .

In this case, expression (17) can be written as the system of linear equations with respect to

ω, v0:

Avx = B, (18)

x =

[
ω

v0

]
, Av =

 o β3 β2 h o o

−β3 o β1 o h o

β2 −β1 o o o h

 , B =

 γ1
γ2
γ3

 ,
where o is the (3× 1) zero matrix.
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Taking into account that velocity measurements are corrupted with noises, we rewrite (18) in

the following form:

Avx = B0 + nv, (19)

where nv is the measurement errors vector and vector B0 is formed from true values of velocities

of considered points.

4.2. Determination of accelerations

Likewise to the previous problem it is possible to consider the problem of determination of the

body’s angular acceleration vector and the linear acceleration of one of its points based on the

results of the body’s three points’ accelerations observation. Let three vectors ρ1, ρ2, ρ3 define

three points of the rigid body. In each of these points three accelerometers are located, which

allow to record acceleration vector components in the given points. Using the results of these

measurements and the angular rate vector value (ω = [ω1 ω2 ω3]
T ) it is necessary to determine

the angular acceleration vector
(
ε = [ε1 ε2 ε3]

T = dω
dt

)
and the linear acceleration vector (w0 =

[w1w2w3]
T ) of the body frame origin. Concerning considered problem, the expression (16) might

be considered as an analog of the expression ((2.17.9) [52]), which calculates the acceleration

(w) of the rigid body’s point determined by vector ρ:

w = w0 + ε× ρ+ ω × (ω × ρ). (20)

Denoting U = [W1W2W3], where Wi are acceleration vectors of the points, which are deter-

mined by ρi (i = 1, 2, 3), it is possible on the basis of (20) to write the analog of the expression

(17):

U = Ω2Pw + EPw + w0h
T . (21)

Here: Pw = [ρ1 ρ2 ρ3], E = ε× =

 0 −ε3 ε2
ε3 0 −ε1
−ε2 ε1 0

, and matrices Ω, h are similar to the

matrices in the expression (17).

Likewise to (17) it is possible to represent expression (21) as the system of linear equa-

tions with respect to ε, w0. Let α1, α2, α3; δ1, δ2, δ3; σ1, σ2, σ3 are the columns of the matrices

UT , P T
w , (Ω

2Pw)
T , i.e.

UT = [α1 α2 α3] , P
T
w = [δ1 δ2 δ3] , (Ω

2Pw)
T = [σ1 σ2 σ3] .

Then it is possible to write expression (21) in the form, which is similar to (18), namely

Awx = Bω +Bw, (22)

x =

[
ε

w0

]
, Aw =

 o δ3 δ2 h o o

−δ3 o δ1 o h o

δ2 −δ1 o o o h

 , Bω =

 σ1
σ2
σ3

 , Bw =

 α1

α2

α3

 ,
where o is the 3× 1-size zero matrix likewise to (18).

As well as in the case of the expression (10), we suggest that accelerometers outputs are

corrupted with noises. Then (22) could be rewritten in the following form:

Awx = Bω +Bwo + nw, (23)

where nw are acceleration errors and components of vector Bwo are formed by true values of

accelerations.

4.3 Accelerometer-based SINS

Taking into account that w0 = dv0
dt , ε = dω

dt , system (23) could be considered as system of

nonlinear differential equations with respect to ω. In other words, considering accelerometers
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signals (Bw) as known external influences, it is possible to find ω(t) and v0(t) by integration the

system (23) with known initial conditions. So considered approach allows acquiring information

about vehicle’s angular rate without usage of the rate gyros. However in this case it is necessary

to take into account the following circumstances, when such SINS would be designed.

Vector x appearing in (23) is given in the moving frame. So far as we are interesting in

the position of vehicle in the inertial frame, it is expedient to map the second component of

the vector x (vector w0) in the inertial frame and to perform further integration in it, which

would allow to determine in the moving frame velocity and the coordinates of the vehicle’s

point, which is accepted as the moving frame’s origin. Meanwhile the first part of the vector x

(vector ω) might be used for the determination of the current body’s orientation, which could

be determined by Rodriguez-Hamilton parameters (1), as well as by direct cosine matrix (2)

(relation between them is determined by expressions (3), (4)). In our case it is convenient to

determine Rodriguez-Hamilton parameters by integration of equation (6), in which vector ω

components can be found in process of the equation (23) integration. Then it is possible to

define in accordance with (3) numerical values of the matrix A entries, which are used for the

mapping of w0 into the inertial frame. This matrix allows mapping vector w0 in the inertial

frame and, as it was noticed before, to determine the current values of the velocity and vehicle’s

coordinates by integration. So the implementation of such kind of inertial system includes:

- finding ω by integration of 3 differential equations (the first three equations in (23));

- finding quaternionλ, which determines in accordance with (3) DCM A (which will allow to

map

acceleration vector w0 in inertial frame) by integration of system (6) (4 equations);

- determination of the vehicle’s velocity and coordinates by integration of 6 equations.

In other words it is necessary to integrate the 13-th order system of the differential equations.

Initial conditions for this system would be the values in the initial moment of time of the

following variables: vehicle’s coordinates (r0 = [x0 y0 z0]
T ), initial attitude (quaternion λ̄) or

corresponding DCM A(λ̄), vehicle’s velocity vector (v̄0 = [vx0 vy0 vz0]
T ), vehicle’s angular rate

vector (ω0 = [ωx0 ωy0 ωz0]).

Note that it is possible to determine v̄0, ω0 by results of measurements with GPS the velocities

of the three body’s points using algorithm described in p. 3.1. For this purpose it is necessary

to use GPS having possibility of attitude determination [30].

Figure 1. The scheme of allocation of accelerometers in the rigid body.

So far as the size of matrix Aw in (23) is equal 9 × 6, then it is possible to eliminate from

consideration in system (23) three rows (to exclude the readouts of three accelerometers). In
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other words, it is possible to create the inertial navigation system using only 6 accelerometers

(see [46, 48, 58]). For illustration of this statement let us consider the scheme of allocation of ac-

celerometers depicted in the Figure 3. Here X1, Y1, Z1 are points of the axes OX,OY,OZ, where

couples of accelerometers are installed. The orientation of their sensitivity axes is represented

at this Figure. For example, ayx denotes, that this accelerometer measures the acceleration of

the point Y1 in the direction of the axis OX. Using this scheme of allocation of accelerometers,

it is possible in the system (15) of 9 equations to remain 6 equations, deleting the 1st, 5th and

the 9th rows. Thus, if the angular velocity vector Bω is known, then it is sufficient to install

6 accelerometers in order to determine vectors ε and w0. Note that in [55] another scheme of

the accelerometers allocation is given, which allows determining directly the angular accelera-

tion vector ε as a linear combination of the accelerometers readouts. It is useful to note that

such inertial system using comparatively simple sensors might not provide acceptable accuracy

of navigation parameters determination especially during significant operation time. In this

situation it is expedient to augment this system by GPS [28, 30, 47, 55].

It is obvious, that the accuracy of the determining of the current value of the angular rate

vector as a result of integration of the angular acceleration will significantly depend on the

accuracy of definition of the initial value of the angular rate vector in the initial moment of

time. For decreasing this dependence it is expedient to increase the amount of accelerometers

and to use obtained redundant information for increasing the accuracy of estimation of the

current value ω.

4.4. Discrete version of ASINS.

It was noted in previous item 3.3 that the ASINS operation is based on solving of system of

differential equations having 13th order. From the point of view of its computer implementa-

tion it is expedient to consider the discrete version of ASINS, i.e. to consider the case, when

sensors’ readouts can be acquired in the sampling times with sampling period ∆t with sampling

frequency f = 1/∆t. Therefore the sought-for navigation parameters (DCM A(λ), velocity v,and

coordinates’ radius-vector r) will be calculated after sampling period. It was shown using certain

example in [7], that it possible to use simple approximation (Euler’s method) for calculation of

quaternion δλ (ti) and quasi-coordinate ∇θi:

δλ (ti) =

[
1

1/2∆θi

]
,∇θi =

ω (ti) + ω (ti−1)

2
∆t, (24)

ω (ti) = ω (ti−1) + ε (ti)∆t,

where ε (ti) stands for the angular acceleration vector, which are determined with expression (22)

on the basis of the accelerometers’ readouts in the sampling moment ti , taking in account that

in (21) the components of the vector ω (ti−1) are used as the entries of the matrix Ω. Having the

estimation (24) of the quaternion δλ (ti), we can find quaternion λ (ti) using (9), (10), and then

in accordance with (3) to find matrix A (λ (ti)). Using matrix A (λ (ti)) determined by expression

(22) for mapping vector w0 (ti) into the fixed frame and taking into account expressions (12),

(13), it is possible to find estimates of velocity (v (ti)) and coordinates (r (ti)) of UAV.

v (ti) = v (ti−1) + w̃ (ti)∆t,

r (ti) = r (ti−1) +
v (ti) + v (ti−1)

2
∆t.

These expressions are the analogs of expressions (14), (15).

So relations given above allow finding the estimates of the navigation parameters in the

sampling moments ti using the accelerometers’ readouts in these moments. That is why this



V.B. LARIN, A.A. TUNIK: SOFTWARE ALGORITHMS FOR LOW-COST STRAPDOWN ... 155

SINS can be the subsystem of the integrated GPS/INS navigation system for comparatively

simple objects likewise to those, which were considered, for example, in [46], [48].

4.5. Increasing of the accuracy of the angular rate vector estimation.

Here it is demonstrated that degree of redundancy of the accelerometers can be used for

increasing of the accuracy of the angular rate vector estimation [48]. In the previous item

3.3 the case of 6 accelerometers usage was considered. Now we will consider the case of 9

accelerometers usage.

Let system depicted at the Figure 3 will be augmented with 3 accelerometers located in the

point O. Their sensitivity axes are directed along the axes OX,OY,OZ respectively, so these

accelerometers are measuring the components of acceleration vector of origin. The readouts of

these accelerometers are denoted as a0x, a
0
y, a

0
z. Consider that the distance from the origin of

each point X1, Y1, Z1 is equal L. Denote also: nxy = axy − a0y, n
y
x = ayx − a0x, n

x
z = axz − a0z,

nyz = ayz −a0y, nzx = azx−a0x, nzy = azy−a0y. If this scheme of the accelerometers allocation is used,

it is possible to derive from (20) or (21) the following equations:

2Lε1 = nyz − nzy, 2Lε2 = nzx − nxz , 2Lε3 = nxy − nyx; (25)

2Lω2ω3 = nyz + nzy, 2Lω1ω3 = nzx + nxz , 2Lω1ω2 = nxy + nyx. (26)

Note, that equations (25) coincide with equations (3.390) in [5]. So in a case of 9 accelerometers

equations (25) determine additional 3 variables: ω1ω2, ω1ω3, ω2ω3. It is expedient to use this

information for correction of the results of angular acceleration ε integration. Note also, that if

2 from 3 components of vector ω are equal to zero (the rotation takes place with respect to only

one fixed axis), the relations (25) can’t be used for correction the results of integration. From

this point of view it is expedient to augment the 9-accelerometer measuring system, which is

described above, with additional three accelerometers.

Now we will consider the case of 12 accelerometers usage. Additional 3 accelerometers are

located in the following way: in the point X1 the acceleration along axis OX is now measured,

as well as in the points Y1 and Z1 the accelerations along axes OY and OZ respectively are

measured also (see Figure 3). Note that scheme of allocation of accelerometers coincides with

the scheme, shown at the Figure 3.7 in [5]. Let the readouts of these accelerometers are equal

to axx, a
y
y, azz. Denote: nxx = axx − a0x, n

y
y = ayy − a0y, n

z
z = azz − a0z. For this 12-accelerometer

measuring system relations (25), (26) must be augmented as follows:

2Lω2
1 = nxx − nyy − nzz, 2Lω

2
2 = −nxx + nyy − nzz, 2Lω

2
3 = −nxx − nyy + nzz. (27)

So in the considered case of 12 accelerometers the relations (26), (27) could be used for correction

of results of integration.

Consider briefly the problem of the relations (26) usage for increasing the accuracy of the

vector ω estimation in cases of 9 and 12 accelerometers usage. In the last case besides aforemen-

tioned relations (26) additional relations (27) can be used. Therefore consider 9-accelerometer

case, which readouts determine the angular acceleration vector ε from expressions (25), as well

as vector Ωn = [ω2ω3 ω1ω3 ω2ω1]
T from expressions (26). Let current value ω be determined by

expression (24), which can be rewritten as follows:

ω(t1) = ω(ti−1) + ∆ωi,∆ωi =
ε(ti) + ε(ti−1)

2
∆t.

So the estimation of the vector ω(ti−1) increment, obtained as a result of calculation of the

angular acceleration vector ε, is determined by relation ∆ω̄i =
ε(ti)+ε(ti−1)

2 ∆t. From the other
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hand, considering ∆ω̄i as a small value, it is possible to write the following relations:

Ωn = H∆ωi +Ωn0,H =

 0 ω3 ω2

ω3 0 ω1

ω2 ω1 0

 ,Ωn0 = [ω2ω3 ω1ω3 ω1ω2]
T . (28)

Components of vector Ωn in (28) are determined by (26), and the components of vector ω, which

determine H and Ωn0, correspond to the values of vector ω(ti−1) components. In other words, as

a result of previously made assumption about small value of ∆ωi, we have the standard problem

of the parameter estimation by weighted least square method [15]. In accordance with (28) the

following vector z is observed:

z = Ωn − Ωn0 = H∆ω + ν, (29)

where ν is the vector of the measurement errors. The estimation of the ∆
⌢
ω i value is determined

by relation (12,2, 7) from [33]:

∆
⌢
ω i= ∆ω̄i + PHTR−1(z −H∆ω̄i), P

−1 =M−1 +HTR−1H. (30)

Here M is the covariance matrix of the estimation errors of ∆
⌢
ω i and R is covariance matrix of

measurement errors ν in (29). Finally, the value of vector ω in the moment ti is determined by

relation:

ω(ti) = ω(ti−1) + ∆
⌢
ω i, (31)

where ∆
⌢
ω i can be found from (13). Note, that matrix P−1 might be ill-conditioned. Then for

determination of matrix P in (30) it could be expedient to use the approach, described in [36,

45].

As far as the matrices M,R are symmetric and positively defined, they can be represented in

the following form: M = m2, R = r2, or m =M
1/2, r = R

1/2. Correspondingly it is possible to

represent the expressions for matrix P−1 as follows [24, 51, and 61]:

P−1 =
[
m−1 HT r−1

] [
m−1 HT r−1

]T
. (32)

Using QR-factorization procedure, we can transform matrix
[
m−1 HT r−1

]T
to the following

form: [
m−1 HT r−1

]T
= Q [ρ 0]T , (33)

where Q is orthogonal matrix, and ρ is the invertible matrix. Taking into account, that QTQ = I

and substituting (33) in (32), we obtain: P−1 = ρTρ, or P = ρ−1ρ−T .

Thus the 1st expression (30) can be represented in the following form:

∆
⌢
ω i= ∆ω̄i + ρ−1ρ−THTR−1(z −H∆ω̄i). (34)

If we suppose, that M = µ2I, R = γ2I, then the relation (34) can be written as:

∆
⌢
ω i= ∆ω̄i + ρ−1ρ−THT (z −H∆ω̄i), (35)

where ρ is determined by QR-factorization of the following matrix:[
λI HT

]T
, λ =

γ

µ
. (36)

Note, that described algorithm of correction can be used in a case of 12 accelerometers. In this

case the matrix H and the vector Ωn0 in (28) have the following forms:
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H =

 0 ω3 ω2 2ω1 0 0

ω3 0 ω1 0 2ω2 0

ω2 ω1 0 0 0 2ω3

T

,Ωn0 =
[
ω2ω3 ω1ω3 ω1ω2 ω2

1 ω2
2 ω2

3

]T
.

Here, likewise to the 9 accelerometers case, entries of H and Ωn0 are determined by components

of vector ω(ti−1). Components of vectorΩn are determined by relations (26), (27).

5. External correction of the sins errors

In this item the algorithms of the SINS error correction on the basis of GPS data are consid-

ered. The correction algorithms based on the combined usage the data of GPS, magnetometer

and altimeter are described also. This problem is considered via linear approximation, i.e. in

the framework of the Kalman filter.

5.1. SINS errors correction via GPS [38-41, 45, 47]

Let µ, δv, δr are the vectors of the SINS errors in the frame, which is used in the equation (8),

namely: µ is the vector of the small turn of the attitude determination error, which defines DCM

As in (7); δv, δr are the vectors the errors of determination of the velocity and the coordinates

of the moving vehicle. Let δcis the vector of the RG systematic errors and w = [w1, w2, w3]
T

is the vector of the full acceleration. All aforementioned errors are components of the Kalman

filter state vector x = [µ δv δr δc]T ; x ∈ R12×1. The direct cosine matrix (DCM) A is defined

with expression (3). The equation of the SINS errors propagation is accepted in the form, which

is similar to the equation (7.149) [27]:

ẋ = Fx+ n, (37)

x =


µ

δv

δr

δc

 , F =


0 0 0 AT

C 0 0 0

0 I 0 0

0 0 0 0

 , C =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 ,
where n is the white noise vector. Hereafter 0 is the zero matrix of the corresponding size, and I

is the unit matrix of the corresponding size. The following equation, which is the discrete analog

of the equation (37), i.e. the equation of the errors propagation in the sampling moments tk, is

accepted as:

xk+1 = Φkxk + nk, (38)

Φk = I + F∆t+
(∆t)2

2
F 2 =


I 0 0 AT∆t

C∆t I 0 CAT (∆t)2

2

C (∆t)2

2 I∆t I 0

0 0 0 I

 ,
where nk stands for the vector of the random errors of the SINS operation. Subscript k indicates

corresponding sampling moment k∆t. Let us assume that information about estimation of the

UAV coordinates and velocity is produced by the SINS and GPS operation at the k−th sampling

moment, i.e. the following observation process takes place:

zk = Hxk + ξk, (39)

H =

[
0 I 0 0

0 0 I 0

]
,

where ξk is the measurement error.
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Thereby, using relations (39), the problem of the SINS correction can be formulated as the

optimal filtration problem. It is known (see, for instance, item 12.4 in [15]), that solution of this

problem can be found in the following form:

x̂k = x̄k +Kk (zk −Hx̄k) ,

x̄k+1 = Φkx̂k.
(40)

The filter gain matrix (Kk), which generates the vector of the optimal estimation, is determined

in the following way:

Kk =MkH
T
(
HMkH

T +Rk

)−1
. (41)

Mk+1 = ΦkSkΦ
′
k +QT

k , (42)

Sk =Mk −Kk

(
HMkH

T +Rk

)
KT

k . (43)

Here Qk, Rk are covariance matrices of noises nk,ξk, which are present in the expressions (38),

(39). Matrix M0 is the covariance matrix of the vector x initial estimation, which is assumed to

be given. Note that correction of the SINS errors is done after j > 1 sampling periods. In this

case the variation of the SINS errors is done in correspondence with equation (38), meanwhile

the variations of their covariance matrices is done in correspondence with (42) (it is possible to

assume that at these sampling periods H = 0). At the sampling period k, when correction of

the covariance matrix is performed, this correction is described by equation (43).

Thereby the first 9 components of vector xk in (40) determine the estimations of the error

vectors µk, δvk, δrk, and consequently the estimations of the attitude determination, velocity

and UAV coordinates in the sampling period tk. Last three components of the vector xk ( or

vector δck) define the estimations of the systematic errors of the RG readouts. It is expedient

to use these estimations for correction of the RG readouts. Thus, if in the moment tk the RG

readouts are the vector ω̄(tk) components, then in the relation (8) it is necessary to use the

following value of the angular rate vector:

ω(tk) = ω̄(tk)− δ
⌢
c , δ

⌢
c=

∑
k

δck. (44)

Underline that correction δck changes its value only in the moment of correction SINS via

GPS data, i.e. in the moments, when H ̸= 0.

Essential peculiarity of this problem is the property of incomplete observability of the pair of

Φk and H matrices [38]. This circumstance requires increasing of the computational procedures

accuracy. For this kind of problems there are commonly used algorithms, which allow computing

the Cholesky’s factors for corresponding matrices. Below the algorithm [38] based on the QR

factorization of these matrices will be described. It is assumed, that the matrix Rk is convertible.

The general case is described in [35]. Let mk, pk, qk, ηk stand for the Cholesky’s factors of the

Mk, Sk, Qk, Rk matrices respectively, i.e.

Mk = mkm
T
k , Sk = pkp

T
k , Qk = qkq

T
k , Rk = ηkη

T
k .

In the case of the matrix Rk convertibility the relation (43) can be rewritten in the following

form:

pkp
T
k = mk

(
I +mT

kH
TR−1

k Hmk

)−1
mT

k . (45)

We represent the expression in the brackets in the form of the product of two rectangular

matrices:
I +mT

kH
TR−1

k Hmk = NkN
T
k

Nk =
[
I mT

kH
T η−1

k

]
.
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Using the orthogonal matrix U and the algorithm of the QR-factorization [21, 48, and 61], we

transform matrix NT as follows: [
Λk

0

]
= UkN

T
k , (46)

where Λk is convertible matrix.

So in accordance with (45), (46) we have

pk = mkΛ
−1
k . (47)

Similarly we represent the right part of (46) as the product of two rectangular matrices and use

the QR-factorization of these matrices, which produces the orthogonal matrix Zk:

mk+1m
T
k+1 = TkT

T
k ,

Tk = [Φk pk qk] ; (48)[
XT

k

0

]
= ZkT

T , (49)

mk+1 = Xk. (50)

Thereby using givenmk, ηk, the factor pk is computed in accordance with (46), (47), and then the

factor mk+1 is computed in accordance with (48 – 50). Now we can withdraw from assumption

about matrix R convertibility. For this purpose we can eliminate matrix η−1
k and transform

matrix Nk. Using orthogonal matrix Ωk in QR – factorization, we transform matrix mT
kH

T to

the following expression: [
Yk
0

]
= Ωkm

T
kH

T .

Assuming existence of matrix Y −1
k , we introduce matrix W̃k = diag

{
ηTk Y

−1
k , E

}
. Using this

matrix we can transform matrix Nk as follows:

Nk = ΩT
k W̃

−1
k Ñk,

Ñk =

[
W̃kΩk

[
E

0

]]
.

It is obvious, that:
(
NkN

T
k

)−1
= ΩT

k W̃
T
k

(
ÑkÑ

T
k

)−1
W̃kΩk. Therefore, if orthogonal matrix Ũ

transforms matrix ÑT likewise to (46), i.e.[
S̃T
k

0

]
= ŨkÑ

T
k ,

then it will be possible to right down the following expression for matrix pk,which doesn’t contain

η−1
k :

pk = mkΩ
T
k W̃

T
k S̃

−1
k .

It is obvious, that in the case of the matrix ηk singularity relations, which define matrix mk+1,

will not be changed, i.e. matrix mk+1 will be defined by expressions (48) – (50).

5.2. Usage magnetometer and altimeter signals for SINS errors correction [47].

In previous item the process of SINS correction based on SINS/GPS fusion was described. In

this item this problem will be generalized via including in the sources of external correction the

magnetometer and altimeter signals.
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So besides the statistical parameters of the signals and the measurements noises, the initial

information for the correction algorithm operation is the discrepancy vector (εk), which is com-

puted as the difference between the GPS signals (vector z) and the estimation of the current

values of UAV coordinates and velocity (vector H x̄k):

εk = zk −H x̄k. (51)

It is natural, that considered generalization of the problem statement must be associated

with the generalization of the computational procedure of the corresponding discrepancy vector

estimation. Thus, in a case of augmentation of the measurement channels with the altimeter

readouts, this generalization is reduced to the corresponding extension of the vector zk and

matrix H in (30). However the inclusion of the magnetometer readouts requires some additional

considerations. For the sake of the computational simplicity we will consider (or simulate)

the information channel, which is associated with the magnetometer, using following way. It

is supposed that the vector of magnetometer readouts (m̄) is measured in the body frame

on the moving vehicle. In the Earth frame this vector is the unit vector directed along the

x − axis(m =
[
1 0 0

]T
). So, possessing values of the m̄ vector and estimation of the Ā-

DCM, we will find the estimation of the small turn angle γ, which defines the attitude error. For

this aim it is possible to use the following relation (see, for instance, expression (6.4) in [44]):

Ām̄−m = m× γ. (52)

Expression (31) can be interpreted as the formalization of the assumption, that the small turn

vector γ produces the rotation of the vector m till the coincidence with vector Ām̄. Assume also,

that vectors γ and m are mutually orthogonal vectors. Multiplying both parts of the expression

(52) by m×, we will receive the following expression for γ:

−γ = m× (Ā ¯̂m−m). (53)

As the consequence of the accepted assumption of the vectors m and γ orthogonality, the 1st

component of the vector γ will be equal to zero and it can be excluded from consideration.

Remained components of the vector γ can be interpreted as the result of the measurement of

two corresponding components of the vector µ, appearing in (37).

Thus, taking into account aforementioned remarks, in a case, when the information about the

magnetometer and altimeter readouts is available along with the GPS signals, it is possible to

accept as the vector zk appearing in (51), the following vector zk ∈ R9×1:

zk = [−γ̃, ṽ, r̃]T , (54)

where γ̃ ∈ R2×1 stands for vector, consisting of the last two components of the vector γ defined

by (32), ṽ ∈ R3×1 stands for the UAV velocity estimation obtained from GPS, and r̃ ∈ R4×1

stands for the vector of the UAV coordinates, obtained with help of GPS and altimeter readouts.

It is naturally, that the matrix H in (39) must be correspondingly changed.

Now we can consider more realistic case of the SINS correction via magnetometer signals.

As opposed to the previous case we will withdraw from aforementioned assumption, that in

the Earth frame the vector of the magnetic field is determined by the OX-axis unit vector, i.e.

m =
[
1 0 0

]T
. We will show that in this general case it is possible to use after corresponding

modification the algorithm mentioned above.

Thus, let mτ is the unit vector, which determines the magnetic field but doesn’t coincide with

the OX-axis unit vector. Let the orthogonal matrix τ possesses the following property:

τmτ = m =
[
1 0 0

]T
. (55)
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In this case it is expedient to consider the first 3 components of the vector xk, which determine

the small turn vector, in the frame determined by matrix τ appearing in (55). In other words,

it is necessary to introduce the small turn vector µ̄, which is associated with µ, in a following

way:

µ̄ = τµ. (56)

In connection with (56), the matrix Φk appearing in (38) must be undergone to the following

linear transformation:

Φ̄k = θΦkθ
T , θ = diag

{
τ, I, I

}
. (57)

This matrix Φ̄k must be used in the relations of the item 3. Now we consider the modifications,

which are necessary to apply the procedure defined by the relations (51) – (53). The analog of

the relation (52) in this case is the following relation:

Ām̄τ −mτ = mτ × γτ . (58)

The vector m̄τ in the expression (58) is the result of the magnetic field strength vector measure-

ment in the body frame, γτ is the vector corresponding to a small turn. Multiplying (58) by τ ,

we will obtain the following relation:

τĀm̄τ −m = m× γ̄, γ̄ = τγτ . (59)

The analog of (53) is derived from (59):

−γ̄ = m× τĀm̄τ . (60)

As far as the vector γ is orthogonal to the vector m, then the 1st component of the vector γ̄ is

zero. As it follows from (60), the vector γ̃ appearing in (54) will possess only two components,

which coincide with last two components of the vector γ̄. So in the considered case the vector

zk in (54) is determined.

Then it is necessary to multiply the vector xk estimation, obtained in accordance with (37),

by matrix θT . It is stipulated by the fact, that the first three components of the vector xk
correspond to the vector µ̄, which is connected by the relation (56) with the small turn vector

(µ) in the initial frame.

6. Detection of the faulty sensor [46]

Note that along with given equations, when that or those uncertainty is present in the system

(see, for instance, [23]), the problems of the “faulty” element detection also attracts increasing

attention of researchers [20, 23, 34, 49, 53, 59]. We consider that the faulty element is the

element, which changed essentially its characteristics. In this connection we consider the problem

of detection of the faulty RG included in the SINS. Thus, it was assumed above, that 3 rate

gyros (RG) are included in the SINS. However it might be expedient to increase the number of

RG for obtaining possibility to exclude the faulty sensor and therefore to increase the reliability

level of the SINS (see, for instance, [20]). Then an output of the RG – block y is connected with

measured value of the angular rate ω by the next equation (analog of the relations (2), (8) in

[20]):

y = ARω + e, (61)

where: y ∈ Rn×1, e ∈ Rn×1, ω ∈ R(n−m)×1, and AR ∈ Rn×(n−m), i.e. m is the redundant sensors

amount. It is assumed that in a case of the “faulty” i − th sensor, the error appearing in (61)

has the following form:

e∗i = [0, . . . , ai, 0, . . . , 0]
T . (62)
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The non-zero element ai in the vector e∗i determined by (61) stands at i-th place. For identifi-

cation of the faulty RG it is necessary to determine the value of the index i and, if it is desirable,

to find the value ai.

Applying the least square method for solution of equation (61), we can determine the value

ω as follows:

ω = Z(y − e), Z = (AT
RAR)

−1AT
R. (63)

Note, that if the vector e is determined by (63), then:

Ze = aizi, (64)

where zi is the i-th column of the matrix Z, which is determined by (63).

Note also, that the algorithm of the systematic RG error compensation described in the item

3 allows obtaining estimation δ
⌢
c of the vector δc. Having this estimation it is possible to

determine vector e∗i, i.e. the value of the index i and estimation
⌢
a i of the value ai.

Let the vector δc is specified by the systematic error of the i-th RG determined by (62), i.e.

δc = aizi in accordance with (64). Then, assuming the estimation δ
⌢
c to be known, the problem

of determination of the index i and the value
⌢
a i is considered.

So let we have the estimation of δ
⌢
c . The problem is formulated as the choice of the vector zi

(and finding index i and value
⌢
a i), which could approximate δ

⌢
c in the best way. In other words,

it is necessary to determine zi and
⌢
a i, which minimizes value of the following discrepancy:

Dis =
∥∥∥δ ⌢

c − ⌢
a i zi

∥∥∥2 = (δ
⌢
c − ⌢

a i zi)(δ
⌢
c − ⌢

a i zi)
T =

=
⌢
a
2

i ziz
T
i − 2

⌢
a i ziδ

⌢
c
T
+δ

⌢
c δ

⌢
c
T
.

(65)

In accordance with (65), the value
⌢
a i, which minimizes Dis, is determined by the following

relation:
⌢
a i= ziδ

⌢
c
T
/
ziz

T
i . (66)

Thus problem of the index i choice is reduced to the choice of vector zi (i = 1, . . . , n), which

minimizes Dis in (65) under condition, that
⌢
a i is determined by (66), i.e.

i = argmin
i

∥∥∥δ ⌢
c − ⌢

a i zi

∥∥∥ . (67)

Then, if necessary, the value
⌢
a i might be determined by (66). It is useful to underline, that the

algorithm, described above, allows determination not only estimation of
⌢
a i, but the estimation

of the faulty RG index (i) as well. The problem of the faulty RG “isolation” and corresponding

reconfiguration of the system operation algorithm requires (by our opinion) separate considera-

tion. Example, which is given below, illustrates described above procedures of determination of

the estimations
⌢
a i and index of the faulty RG (i).

Limited volume of journal publication doesn’t permit to include in this review some practical

examples, which illustrate the efficiency of all aforementioned algorithms. However the reader

can find them in [42 – 46].

7. Conclusion

7.1. Solution of problems of navigation systems development for low-cost small UAV requires

application of low-cost hardware as well as low-cost software designated to the application in

these systems. One of the possible approaches for solution of the navigation software problems

in this area is adoption of some simplifying assumptions, based on the properties of dynamics
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and kinematics of small UAV. These include: relatively small flight distances, flight periods, air

speeds etc.

7.2. Taking in account these peculiarities it is possible to use the quadratic spline approxi-

mation of the sensors signals and effective approximation of “elementary” quaternion at small

sampling periods, thus to obtain the solution of the rotational and translational state mainte-

nance in quadratures. The last feature essentially simplifies the algorithms of SINS software.

7.3. Such systems need in the external correction. This problem is solved on the basis of

the linearization approach and Kalman filter application. The application of this approach is

complicated due to the problem of incomplete observability of the pair of the state propagation

Φk and observation H matrices. This difficulty can be overcome via QR-decomposition of cor-

responding covariance matrices. Using this approach it was possible to compensate effectively

SINS errors via GPS/SINS fusion.

7.4. Further improvement of the external error correction can be implemented via combination

of the magnetometer and altimeter output signals for increasing of the accuracy of the navigation

problem solution. All these corrections give possibility to compensate the attitude, velocity and

position errors, as well as systematic errors of rate gyros.

7.5. In cases of the fast-spinning UAV the problem of withdrawal from RG usage and creation

accelerometer-based SINS (ASINS) arises. Aforementioned mathematical background allows

proposing algorithms of ASINS operation with correction from GPS, having possibility of atti-

tude determination. These algorithms are represented in review, as well as the solution of the

problem of the ASINS accuracy improvement via increasing of the sensors redundancy degree.

7.6. It is shown in this review, that on the basis of the proposed software it is possible to

develop algorithms for fault-tolerant navigation system in a case of redundant sensors. The

algorithm of faulty sensor identification is also proposed.
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