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INCLUSION RESULTS ASSOCIATED WITH CERTAIN SUBCLASS OF
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1. Introduction

Let A be the class of analytic functions f of the form

f(z) = z +
∞∑

n=2

anzn (1)

defined in the open unit disk
U = {z : z ∈ C and |z| < 1}.

We denote by S the subclass of A consisting of functions which are analytic, univalent in U
and normalized by f(0) = 0 = f ′(0)− 1. Also denote by T the class of analytic functions with
negative coefficients (introduced by Silverman [28]) consisting of functions f of the form

f(z) = z −
∞∑

n=2

|an|zn, z ∈ U (2)

The class S∗(α) of starlike functions of order α < 1

S∗(α) :=
{

f ∈ A : <zf ′(z)
f(z)

> α, z ∈ U
}

.

and the class K(α) of convex functions of order α < 1

K(α) :=
{

f ∈ A : <
(

1 +
zf ′′(z)
f ′(z)

)
> α, z ∈ U

}
=

{
f ∈ A : zf ′ ∈ S∗(α)

}

were introduced by Robertson in [26]. We also write S∗(0) =: S∗, where S∗ denotes the class
of functions f ∈ A that f(U) is starlike with respect to the origin. Further, K(0) =: K is the
well-known standard class of convex functions. It is an established fact that f ∈ K(α) ⇐⇒ zf ′ ∈
S∗(α).

In 1993, Goodman [5, 6] introduced the concept of uniform convexity and uniform starlikeness
for functions in A. A function f ∈ A is said to be uniformly convex in U if f is a normalized
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convex univalent function and has the property that for every circular arc δ contained in the
open unit disc U, with centre ζ also in U, the image curve f(δ) is a convex arc. Ronning [23]
introduced the class SP , geometrically SP is the class of functions F for which zF ′(z)

F (z) has values
in the interior of the parabola in the right half-plane symmetric about the real axis with vertex at
(1/2, 0). In [10], the geometric definition of k-UCV and its connections with the conic domains
were considered. The class k-ST and its properties were investigated in [12]. The analytic
characterizations of k-UCV and k-ST are as follows:

k − UCV :=
{

f ∈ S : <
(

1 +
zf ′′(z)
f ′(z)

)
> k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ , (z ∈ U)
}

and

k − ST :=
{

f ∈ S : <
(

zf ′(z)
f(z)

)
> k

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ , (z ∈ U)

}
.

Further, Kanas and Srivastava [11] presented a systematic and unified study of the classes UCV
and SP . (also see [31]).

Let Ωk be a domain such that 1 ∈ Ωk and

∂Ωk = {ω = u + iv : u2 = k2(u− 1)2 + k2v2, u > 0}, 0 ≤ k < ∞.

The domain Ωk elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic when k = 1 and a right
half-plane when k = 0. If p is an analytic function with p(0) = 1 which maps the unit disc U
conformally onto the region Ωk, then p′(0) = P1(k) and

P1(k) =





2A2

1−k2 for 0 < k < 1
8
π2 for k = 1

π2

4
√

t(1+t)(k2−1)K2(t)
for k > 1

(3)

where A = 2
π arccos k and t ∈ (0, 1) is determined by k = cosh(πK′(t)/[4K(t)]), K(t) is the

Legendre’s complete Elliptic integral of the first kind

K(t) =
∫ 1

0

dχ√
(1− χ2)(1− t2χ2)

and K′(t) = K(
√

1− t2) is the complementary integral of K(t).
The concrete form of P1 was given in [8, 9, 16, 30]. Further P1(k) is strictly decreasing function
of the variable k and its values are included in the interval (0, 2].

Let f ∈ A be of the form (1). If f ∈ k-UCV, then the following coefficient inequalities hold
true [10]:

|an| ≤ (P1(k))n−1

(1)n
, n ∈ N\{1}. (4)

Similarly, if f ∈ A be of the form (1) belongs to the class k-ST , then [12]:

|an| ≤ (P1(k))n−1

(1)n−1
, n ∈ N\{1}. (5)

The study of operators plays an important role in the geometric function theory and its related
fields. We have seen many differential and integral operators defined soundly by convolution of
certain analytic functions. This somehow helps us to understand better the geometric properties
of such operators. For functions f ∈ A given by (1) and g ∈ A given by g(z) = z +

∑∞
n=2 bnzn

the Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn.
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Let Ω be the class of functions w which is analytic in U with

w(0) = 0 and |w(z)| < 1 (z ∈ U).

Let p(z) and q(z) be analytic in U then the function p(z) is said to subordinate to q(z) in U
written by

p(z) ≺ q(z) (z ∈ U), (6)

such that p(z) = q(w(z)) (z ∈ U). From the definition of the subordinations, it is easy to show
that the subordination (6) implies that

p(0) = q(0) and p(U) ⊂ q(U). (7)

In particular, if q(z) is univalent in U, then the subordination (6) is equivalent to the condition
(7).

We recall, for ν > −1; δ ∈ R the calculus operator Iδ
ν which was recently studied by Kim and

Srivastava [14](see also [27]) and the image of zn under this operator is given by

Iδ
νzn =

Γ(ν + 1 + n)
Γ(ν + 1 + δ + n)

zn+δ+ν

for positive ν + 1 + n > −δ; (δ ∈ R). Further, for positive ν + 2 > −δ; (δ ∈ R) and f of the form
(1),then the normalized operator Ĩδ

νf(z) of Iδ
νf(z) is given by

Ĩδ
νf(z) =

Γ(ν + 2 + δ)
Γ(ν + 2)

z−δ−νIδ
νf(z) = z +

∞∑

n=2

Θn(δ, ν)anzn (8)

where

Θn(δ, ν) =
(ν + 2)n−1

(ν + 2 + δ)n−1
(9)

and (a)n is the Pochhammer symbol given by

(a)n =
Γ(a + n)

Γ(a)
= a(a + 1)(a + 2) . . . (a + n− 1) and (a)0 = 1.

Note that for ν > −2 and different choices of δ, we get

Ĩ0
νf(z) ≡ f(z) and Ĩ−1

0 f(z) ≡ zf ′(z).

Further, for λ > −1; ν = λ and δ = −λ, we have

Ĩλ
−λf(z) ≡ Dλf(z)

the Ruscheweyh derivative operator [25] and

Ĩc−a
a−2f(z) ≡ L(a, c)

is the Carlson-Shaffer operator [3].
In this paper, due to Ramesha et al. [22], Obradovic and Joshi [19], Padmanabhan [21],

Nunokawa et al. [18], we introduce a new subclass Gδ
ν(λ, β) of A involving calculus operator to

obtain coefficient estimate and obtain maximization of |a3 − µa2
2|. Further we discussed certain

mappings to the class Gδ
ν(λ, β) of the operator Ĩδ

ν if some parametric inequalities hold.
For positive ν + 2 > −δ, (δ ∈ R); 0 ≤ λ < 1 and 0 ≤ β < 1, we let a generalized class Gδ

ν(λ, β)
the subclass of functions f(z) ∈ A which satisfy the condition

<
(

z(Ĩδ
νf(z))′ + λz2(Ĩδ

νf(z))′′

Ĩδ
νf(z)

)
> β, (z ∈ U). (10)
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Also denote T Gδ
ν(λ, β) = Gδ

ν(λ, β) ∩ T . Equivalently a function f ∈ A is said to be in the class
Gδ

ν(λ, β) if and only if

z(Ĩδ
νf(z))′ + λz2(Ĩδ

νf(z))′′

Ĩδ
νf(z)

≺ 1 + (1− 2β)w(z)
1− w(z)

(11)

where w(z) ∈ Ω.

Remark 1.1. It is of interest to note that for λ = 0, we have Gδ
ν(λ, β) ≡ Sδ

ν(β)

We obtain the following necessary and sufficient conditions for functions f ∈ Gδ
ν(λ, β).

2. Coefficient estimate

Theorem 2.1. A function f ∈ A belongs to the class Gδ
ν(λ, β) if

∞∑

n=2

(n + λn(n− 1)− β) Θn(δ, ν)|an| ≤ 1− β. (12)

Proof. Since 0 ≤ β < 1 and λ ≥ 0, now for the function

P (z) =
z(Ĩδ

νf(z))′ + λz2(Ĩδ
νf(z))′′

Ĩδ
νf(z)

.

We prove that |P (z) − 1| < 1 − β, (z ∈ U). Indeed if f(z) ≡ z(z ∈ U), then we have P (z) ≡
1(z ∈ U). This implies that the desired in equality (12). If f(z) 6= z(z ∈ U), then there exist a

coefficient Θn(δ, ν)an 6= 0 for some n ≥ 2. It follows that
∞∑

n=2
Θn(δ, ν)|an| > 0. Further note that

∞∑

n=2

[
λn2 + n− λn− β

]
Θn(δ, ν)|an| > (1− β)

∞∑

n=2

Θn(δ, ν)|an|

which implies that
∞∑

n=2

Θn(δ, ν)|an| < 1.

By coefficient inequality (12), we thus obtain

|P (z)− 1| =

∣∣∣∣∣∣∣∣

∞∑
n=2

(n− 1)(nλ + 1)Θn(δ, ν)anzn−1

1 +
∑∞

n=2 Θn(δ, ν)anzn−1

∣∣∣∣∣∣∣∣

≤

∞∑
n=2

(n− 1)(nλ + 1)Θn(δ, ν)|an|

1−
∞∑

n=2
Θn(δ, ν)|an|

≤

∞∑
n=2

[
λn2 + n− λn− β

]
Θn(δ, ν)|an| − (1− β)

∞∑
n=2

Θn(δ, ν)|an|

1−
∞∑

n=2
Θn(δ, ν)|an|

≤
(1− β)− (1− β)

∞∑
n=2

Θn(δ, ν)|an|

1−
∞∑

n=2
Θn(δ, ν)|an|

, (z ∈ U).
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Hence we obtain

<
(

z(Ĩδ
νf(z))′ + λz2(Ĩδ

νf(z))′′

Ĩδ
νf(z)

)
= <(P (z)) > 1− (1− β) = β, (z ∈ U).

That is f ∈ Gδ
ν(λ, β). This completes the proof. ¤

In the next theorem, we show that the condition (12) is also necessary for functions f ∈
T Gδ

ν(λ, β).

Theorem 2.2. Let f be given by (2) then the function f ∈ T Gδ
ν(λ, β) if and only if (12) holds.

Proof. In view of Theorem 2.1 we need only to show that f ∈ T Gδ
ν(λ, β) satisfies the coefficient

inequality (12). If f ∈ T Gδ
ν(λ, β) then by definition, we have conversely assume that (12) holds.

Let

P (z) =
z(Ĩδ

νf(z))′ + λz2(Ĩδ
νf(z))′′

Ĩδ
νf(z)

.

Then we have <(P (z)) > β this implies that

Ĩδ
νf(z) = z −

∞∑

n=2

Θn(δ, ν)anzn 6= 0; (z ∈ U \ {0}).

Noting that Ĩδ
νf(r)

r is the real continuous function in the open interval (0, 1) with f(0) = 1, we
have

1−
∞∑

n=2

Θn(δ, ν)anrn−1 > 0, (0 < r < 1). (13)

Now

β < P (r) =
1−∑∞

n=2[λn2 + n− λn]Θn(δ, ν)anrn−1

1−∑∞
n=2 Θn(δ, ν)anrn−1

and consequently by (13) we obtain
∞∑

n=2

[λn2 + n− λn− β]Θn(δ, ν)an < 1− β.

Letting r → 1, and using (12) we get

|P (z)− 1| ≤ 1− β

which implies that
< (P (z)) > β.

This proves the converse part. ¤

Corollary 2.1. (Coefficient Estimate) If a function f of the form (2) belongs to the class
T Gδ

ν(λ, β), then

|an| ≤ 1− β

[λn2 + n− λn− γ] Θn(δ, ν)
n = 2, 3, . . . .

The equality holds for the functions

hn(z) = z − 1− β

[λn2 + n− λn− β] Θn(δ, ν)
zn, z ∈ U, n = 2, 3, . . . . (14)
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Remark 2.1. Making use of the necessary and sufficient conditions and the coefficient estimate
one can easily obtain the distortion bounds,extreme points, integral means and neighbourhood
results,convolution and inclusion results for functions f ∈ T Gδ

ν(λ, β) proceeding as in the work
of Dziok and Murugusundaramoorthy in [4](see also the references cited therein) and Silverman
[28].

3. Maximization of |a3 − µa2
2|

Lemma 3.1. [13] Let w(z) =
∑∞

k=1 ckz
k ∈ Ω. If µ is any complex number, then

|c2 − µc2
1| ≤ max{1, |µ|}.

For convenience we let Θn = Θn(δ, ν) for our study.

Theorem 3.1. If a function f(z) defined by (1) is in the class Gδ
ν(λ, β) and µ is any complex

number then
|a3 − µa2

2| ≤ max {1, |d|},
where

d =
2(1− β)(6λ + 2)Θ3 − (2λ + 3− 2β)(2λ + 1)Θ2

2

(2λ + 1)2Θ2
2

.

Proof. Since f ∈ Gδ
ν(λ, β), by (11) we have

z(Ĩδ
νf(z))′ + λz2(Ĩδ

νf(z))′′

Ĩδ
νf(z)

≺ 1 + (1− 2β)w(z)
1− w(z)

by simple computation we get

w(z) =
λz2Ĩ(f)′′ + zĨ(f)′ − Ĩ(f)

λz2Ĩ(f)′′ + zĨ(f)′ + (1− 2β)Ĩ(f)

=
∑∞

n=2[n(n− 1)λ + (n− 1)]anΘnzn

2(1− β)z +
∑∞

n=2[n(n− 1)λ + (n + 1− 2β)]anΘnzn

=
∑∞

n=2[n(n− 1)λ + (n− 1)]anΘnzn−1

2(1− β)
×

(
1 +

∑∞
n=2[n(n− 1)λ + (n + 1− 2β)]anΘnzn−1

2(1− β)

)−1

.

Thus,

w(z)
(

1 +
∑∞

n=2[n(n− 1)λ + (n + 1− 2β)]anΘnzn−1

2(1− β)

)
=

∑∞
n=2[n(n− 1)λ + (n− 1)]anΘnzn−1

2(1− β)
.

(15)
By comparing the coefficients of z and z2 in the above equation, we get,

a2 =
2(1− β)c1

(2λ + 1)Θ2
, where Θ2 =

ν + 2
ν + 2 + δ

(16)

and

a3 =
2(1− β)

(6λ + 2)Θ3

(
c2 +

2λ + 2− 2β

2λ + 1
c2
1

)
, Θ3 =

(ν + 2)(ν + 3)
(ν + 2 + δ)(ν + 3 + δ)

. (17)

Hence,

a3 − µa2
2 =

2(1− β)
(6λ + 2)Θ3

(c2 − dc2
1), (18)

where

d =
2(1− β)(6λ + 2)Θ3 − (2λ + 3− 2β)(2λ + 1)Θ2

2

(2λ + 1)2Θ2
2

.
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Taking modulus on both sides in (18),we have

|a3 − µa2
2| =

2(1− β)
(6λ + 2)Θ3

|c2 − dc2
1|, (19)

Using Lemma 3.1, we have

|a3 − µa2
2| =

2(1− β)
(6λ + 2)Θ3

max {1, |d|}.

¤

4. Applications of calculus operator

The Theory of Special Functions play an important rôle in Geometric Function Theory, es-
pecially in the solution by de Branges [2] of the famous Bieberbach conjecture. There is an
extensive literature dealing with geometric properties of different families of special functions,
particularly the generalized hypergeometric functions [3, 7, 15, 20, 24, 29] .The Gaussian hyper-
geometric function F (a, b; c; z) given by

2F1(a, b; c; z) = F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn (z ∈ U)

near z = 1 is classified into three cases according as <(c − a − b) is positive, zero or negative,
respectively was studied by many authors on different counts.

Let

Ĩδ
νu(z) =

Γ(ν + 2 + δ)
Γ(ν + 2)

z−δ−νIδ
νu(z) = z +

∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1
zn.

By using the Gauss Summation theorem [1]

F (a, b; c; 1) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
=

Γ(c− a− b)Γ(c)
Γ(c− a)Γ(c− b)

for <(c− a− b) > 0, (20)

to Ĩδ
νu(z) and taking z = 1, simple computation yields

Ĩδ
νu(1) =

∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1
=

Γ(ν + 2 + δ)Γ(δ − 1)
Γ(δ)Γ(ν + 1 + δ)

− 1, δ > 1. (21)

Differentiating Ĩδ
νu(z) with respect to z and taking z = 1, we have
∞∑

n=2

n(ν + 2)n−1

(ν + 2 + δ)n−1
=

Γ(ν + 2 + δ)Γ(δ − 2)
Γ(δ)Γ(ν + δ)

− 1, δ > 2. (22)

Again differentiating (Ĩδ
νu(z))′ with respect to z and taking z = 1, we have

∞∑

n=2

n(n− 1)(ν + 2)n−1

(ν + 2 + δ)n−1
=

2(ν + 2)Γ(ν + 2 + δ)Γ(δ − 3)
Γ(δ)Γ(ν + δ)

, δ > 3. (23)

Further differentiating (Ĩδ
νu(z))′′ with respect to z and taking z = 1, we have

∞∑

n=2

n(n− 1)(n− 2)(ν + 2)n−1

(ν + 2 + δ)n−1
=

6(ν + 2)(ν + 3)Γ(ν + 2 + δ)Γ(δ − 4)
Γ(δ)Γ(ν + δ)

, δ > 4. (24)
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Motivated by the works of Srivastava et al. [30], Murugusundaramoorthy and Magesh [17]
and applying coefficient inequality (12) of Lemma 3.1, we estimate certain inclusion relations
involving the classes k-UCV, k-ST and Gδ

ν(λ, β) if some parametric inequalities hold.

Theorem 4.1. Let ν > −2, δ > 3. If f ∈ S and if the parametric inequality

Γ(ν + 2 + δ)Γ(δ − 2)
Γ(δ)Γ(ν + δ)

[1− β + (ν + 2)(δ − 2)[6λ(ν + 3)(δ − 3) + 2(2λ + 1)]]

≤ 2(1− β) (25)

holds, then Ĩδ
ν : S∗ → Gδ

ν(λ, β).

Proof. Let f of the form (1) belong to the class S∗, then we get |an| ≤ n, n ≥ 2 to show
Ĩδ

ν ∈ Gδ
ν(λ, β) by the coefficient inequality (12), we need to show that

G(δ, ν, λ, β) =
∞∑

n=2

(n + λn(n− 1)− β)Θn(δ, ν)|an| ≤ 1− β (26)

where Θn(δ, ν) is given by (9). Hence, we deduce that

G(δ, ν, λ, β) =
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an|

≤
∞∑

n=2

n(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1

=
∞∑

n=2

[n3λ + (1− λ)n2 − nβ]
(ν + 2)n−1

(ν + 2 + δ)n−1
. (27)

Writing
n3 = n(n− 1)(n− 2) + 3n(n− 1) + n, n2 = n(n− 1) + n, (28)

from (27), we have,

G(δ, ν, λ, β) ≤ λ
∞∑

n=2

n(n− 1)(n− 2)
(ν + 2)n−1

(ν + 2 + δ)n−1

+ (2λ + 1)
∞∑

n=2

n(n− 1)
(ν + 2)n−1

(ν + 2 + δ)n−1
+ (1− β)

∞∑

n=2

n
(ν + 2)n−1

(ν + 2 + δ)n−1
.

Now by using the equations (22) to (24) we get

G(δ, ν, λ, β) ≤ λ
6(ν + 2)(ν + 3)Γ(ν + 2 + δ)Γ(δ − 4)

Γ(δ)Γ(ν + δ)

+ (2λ + 1)
2(ν + 2)Γ(ν + 2 + δ)Γ(δ − 3)

Γ(δ)Γ(ν + δ)
+ (1− β)

(
Γ(ν + 2 + δ)Γ(δ − 2)

Γ(δ)Γ(ν + δ)
− 1

)
.

The last expression is bounded above by 1− β if and only if (25) is satisfied. Hence the proof
of Theorem 4.1 is completed. ¤

Theorem 4.2. Let ν > −2, δ > 2. If f ∈ S and if the parametric inequality

Γ(ν + 2 + δ)Γ(δ − 1)
Γ(δ)Γ(ν + δ)

(
(δ − 1){1 + 2λ(ν + 2)(δ − 2)} − β

ν + δ

)
≤ 2(1− β) (29)

holds, then Ĩδ
ν : K → Gδ

ν(λ, β).
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Proof. Let f of the form (1) belong to the class K, then we get |an| ≤ 1, n ≥ 2 to show
Ĩδ

ν ∈ Gδ
ν(λ, β) by the coefficient inequality (12), we need to show that

G(δ, ν, λ, β) =
∞∑

n=2

(n + λn(n− 1)− β)Θn(δ, ν)|an| ≤ 1− β (30)

where Θn(δ, ν) is given by (9). Hence,

G(δ, ν, λ, β) ≤
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
.

Thus, we have

G(δ, ν, λ, β) ≤ λ
∞∑

n=2

n(n− 1)
(ν + 2)n−1

(ν + 2 + δ)n−1
+

∞∑

n=2

n
(ν + 2)n−1

(ν + 2 + δ)n−1
− β

∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1
.

Using the equations (21) to (23) we get

G(δ, ν, λ, β) ≤ λ
2(ν + 2)Γ(ν + 2 + δ)Γ(δ − 3)

Γ(δ)Γ(ν + δ)
+

(
Γ(ν + 2 + δ)Γ(δ − 2)

Γ(δ)Γ(ν + δ)
− 1

)

− β

(
Γ(ν + 2 + δ)Γ(δ − 1)

Γ(δ)Γ(ν + 1 + δ)
− 1

)
.

The last expression is bounded above by 1− β if and only if (29) is satisfied. Hence the proof
is completed. ¤

Theorem 4.3. Let ν > −2, δ > 2 and P1 = P1(k) given by (3). If f ∈ k-UCV, for some k
(0 ≤ k < ∞) and if the parametric inequality

Γ(ν + 2 + δ)
Γ(δ)Γ(ν + 2 + δ − P1)

(Γ(δ − P1) + λ(ν + 2)P1Γ(δ − P1 − 1))

− Γ(ν + 2 + δ)
Γ(δ)Γ(ν + 2 + δ − P1)

β

(ν + 1)(P1 − 1)

(
Γ(δ − P1 + 1)− Γ(δ)Γ(ν + 2 + δ − P1)

Γ(ν + 1 + δ)

)

≤ 2(1− β) (31)

is satisfied, then Ĩδ
νf ∈ Gδ

ν(λ, β).

Proof. Let f be of the form (1) belong k-UCV. By using (12), we need to show that Ĩδ
νf ∈

Gδ
ν(λ, β), it is sufficient to prove that

∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an| ≤ 1− β.

Let

P(δ, ν, λ, β) =
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an|.
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Now by substituting for |an| given by (4) and proceeding as in the proof of Theorem 4.1, we get

P(δ, ν, λ, β) =
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an|

≤
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n

≤
∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−1
+ λ

∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−2

− β
∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n

≤
(

Γ(ν + 2 + δ)Γ(δ − P1)
Γ(δ)Γ(ν + 2 + δ − P1)

− 1
)

+ λ
(ν + 2)P1

(ν + 2 + δ)

∞∑

n=2

(ν + 3)n−2

(ν + 3 + δ)n−2

(1 + P1(k))n−2

(1)n−2

− β
(ν + 1 + δ)

(ν + 1)(P1 − 1)

∞∑

n=2

(ν + 1)n

(ν + 1 + δ)n

(P1 − 1)n

(1)n

=
(

Γ(ν + 2 + δ)Γ(δ − P1)
Γ(δ)Γ(ν + 2 + δ − P1)

− 1
)

+ λ
(ν + 2)P1

(ν + 2 + δ)

(
Γ(ν + 3 + δ)Γ(δ − P1 − 1)

Γ(δ)Γ(ν + 2 + δ − P1)

)

− β
(ν + 1 + δ)

(ν + 1)(P1 − 1)

(
Γ(ν + 1 + δ)Γ(δ − P1 + 1)

Γ(δ)Γ(ν + 2 + δ − P1)
− 1

)
+ β.

The last expression is bounded above by 1− β if and only if (31) is satisfied. Hence the proof
is completed. ¤

Theorem 4.4. Let ν > −2, δ > 2 and P1 = P1(k) given by (3). If f ∈ k-ST , for some k

(0 ≤ k < ∞) and if the parametric inequality

3F2(ν + 2, P1, 2; ν + 2 + δ; 1; 1) + 2λ
(ν + 2)P1

(ν + 2 + δ) 3F2(ν + 3, 1 + P1, 3; ν + 3 + δ, 2; 1)

−β 2F1(ν + 2, P1; ν + 2 + δ; 1) ≤ 2(1− β) (32)

is satisfied, then Ĩδ
νf ∈ G(λ, β).

Proof. Let f be given by (1) belong to k-ST . By (12)we have

∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an| ≤ 1− β.
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Substituting for |an| given by (5), we get
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1
|an|

≤
∞∑

n=2

(n + λn(n− 1)− β)
(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−1

≤ λ
∞∑

n=2

n(n− 1)
(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−1
+

∞∑

n=2

n
(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−1

− β
∞∑

n=2

(ν + 2)n−1

(ν + 2 + δ)n−1

(P1(k))n−1

(1)n−1

= [ 3F2(ν + 2, P1, 2; ν + 2 + δ; 1; 1)− 1]

+ 2λ
(ν + 2)P1

(ν + 2 + δ) 3F2(ν + 3, 1 + P1, 3; ν + 3 + δ, 2; 1)

− β [ 2F1(ν + 2, P1; ν + 2 + δ; 1)− 1].

The last expression is bounded above by 1− β if and only if (32) is satisfied. Hence the proof
is completed. ¤

Concluding Remarks: For the different choices of δ and ν,it is of interest to note that
δ = −ν = λ > −1, Ĩλ

−λf(z) ≡ Dλf(z) the Ruscheweyh derivative operator [25] and Ĩc−a
a−2f(z) ≡

L(a, c) is the Carlson-Shaffer operator [3], hence one can deduce analogous results given in
Theorems 4.1 to 4.4 for the function class defined in this paper involving Ruscheweyh and
Carlson-Shaffer derivative operators and we omit the details involved.

Acknowledgement:We record our sincere thanks to the referees for their insightful sugges-
tions to improve the paper in the present form.
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