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INTEGRAL INEQUALITIES FOR DIFFERENTIABLE RELATIVE
HARMONIC PREINVEX FUNCTIONS

(SURVEY)

M.A. NOOR1, K.I. NOOR1, S. IFTIKHAR1

Abstract. In this paper, we consider and investigate the relative harmonic preinvex functions,

which unifies several new known classes of harmonic preinvex functions. We derive several

new integral inequalities such as Hermite-Hadamard, Simpson’s, trapezoidal for the relative

harmonic preinvex functions. Since the relative harmonic preinvex functions include, convex

function, harmonic convex functions, preinvex functions, relative harmonic convex and relative

preinvex functions as special cases, results obtained in this paper continue to hold for these

problems. Several open problems have been suggested for further research in these areas.
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1. Introduction

It is well known that inequalities have played a fundamental role in the development of almost
all the fields of pure and applied sciences and are continuing to do so. Inequalities present very
active and fascinating field of research. In recent years, a wide class of integral inequalities
are being derived via different concepts of convexity. These integral inequalities are useful in
physics, where upper and lower bounds for natural phenomena described by integrals such as
mechanical work (virtual work) are required. Integral inequalities are closely related the convex
functions and their variant forms. As a result of interaction between different branches of
mathematical and engineering sciences, convex functions have been extended and generalized in
several directions from different point of views. The ideas and techniques of convex functions are
being used in a variety of diverse areas of sciences and proved to be productive and innovative.
These facts have inspired and motivated the researchers to generalize and extend the concept
of convexity in various directions. The development of convexity theory can be viewed as the
simultaneous pursuit of two different lines of research. It reveals the fundamental facts on
the qualitative behavior of the solution to important classes of problems; on the other hand,
it also helps us to develop us highly efficient and powerful new numerical techniques to solve
complicated and complex problems. In fact, convexity theory provides us a sound basis for
computing the approximate and analytical solutions of a large number of seemingly unrelated
problems in a general and unified framework. For example, the variational inequalities, which
can be regarded as a natural extension of variational principles, are related to the simple fact
that the minimum of a differentiable convex function on a convex set in any normed space can be
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characterized by a variational inequality. However, it remarkable and amazing that variational
inequalities allow many diversified applications in ever branch of pure and applied sciences. On
other hand, a function is a convex function, if and only if, it satisfies the Hermite-Hadamard
type inequality. To be more precise, a function f is a convex function on the interval I = [a, b],
if and only if, f satisfies the inequality

f

(
a + b

2

)
≤ 1

b− a

∫ b

a
f(x) dx ≤ f(a) + f(b)

2
, x ∈ [a, b], (1)

which is called the Hermite-Hadamard inequality for convex functions, see [13, 11, 25]. For a
novel applications of the Hermite-Hadamard inequality (1), see Khattri [15].

Convexity theory is an effective and powerful technique for studying a wide class of problems
which arise in various branches of pure and applied sciences. Convex functions have been
generalized and extended in several directions using interesting and novel ideas. Several new
classes of convex functions and convex sets have been introduced and investigated. Various new
inequalities related to these new classes of convex functions have been derived by researchers, see,
for example, [4, 6-16, 18-21, 25-29, 31-33, 35-51, 56] and the reference therein. Motivated by the
ongoing research in this field, Varosanec [54] introduced a class of convex functions with respect
to an arbitrary non-negative function h. This class of convex function is commonly known as
h-convex function. She has shown that this class contains several previously known classes of
convex functions as special cases.

Hanson [12] introduced and investigated another class of generalized convex functions, which
is called invex functions. Ben-Israel and Mond [5] introduced the concepts of invex sets and
preinvex functions. They shown that the differentiable preinvex functions are invex functions,
but the converse may not true. These preinvex functions are not convex functions, but they
enjoy some nice properties, which convex functions have. Noor [27] proved that the minimum
of the differentiable preinvex functions on the invex set can be characterized by a class of vari-
ational inequalities, which is called the variational-like-inequality or pre-variational inequality.
It is known that the invex functions and preinvex functions are equivalent under some suitable
conditions, see [35, 36]. For recent applications of the preinvex functions in different branches
of pure and applied sciences, see [4, 19, 20, 21, 36, 32, 49, 35, 45]. In 2007, Noor [32] has shown
that a function f is a preinvex function, if and only if, it satisfies the inequality of the type,

f(
2a + η(b, a)

2
) ≤ 1

η(b, a)

∫ a+η(b,a)

a
f(x)dx ≤ f(a) + f(b)

2
, ∀a, b ∈ [a, a + η(b, a)], (2)

which is called the Hermite-Hadamard-Noor type inequality. We remark that if η(b, a) = b− a,

then both inequalities (1) and (2) are the same. Several integral inequalities for various types of
preinvex functions have been obtained in recent years, see [47, 48, 49] and the references therein.
Noor et. al. [49] introduced a class of preinvex functions with respect to an arbitrary function h.
This class of h-preinvex functions is known as relative preinvx functions. They have shown that
this class contains several previously known classes of preinvex functions and convex functions
as special cases.

It is worth mentioning that the weighted arithmetic mean is used to define the convex set.
Related to the arithmetic mean, we have harmonic mean, which has applications in electrical
circuit theory and other branches of sciences. It is known that that the total resistance of a set
of parallel resisters is obtained by adding up the reciprocal of the individual resistance value
and then considering the reciprocal of their total. For example, if r1 and r2 are the resistance
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of two parallel resisters, then the total resistance

R =
1

1
r1

+ 1
r2

=
r1r2

r1 + r1
,

which is half of the harmonic mean. Noor [34] has used harmonic mean to suggest some iterative
methods for solving nonlinear equations. Anderson et al. [2] and Iscan [14]. have considered
and studied some other properties of the harmonic convex functions. In particular, it has been
shown by Isan[14] that a function is a harmonic convex, if and only if, it satisfies the inequality
of the type

f(
2ab

a + b
) ≤ ab

b− a

∫ b

a

f(x)
x2

dx ≤ f(a) + f(b)
2

, ∀a, b ∈ [a, b], (3)

which is called the Hermite-Hadamard inequality for harmonic convex function. Noor and Noor
[37] have shown that the optimality conditions of the differentiable harmonic convex functions
on the harmonic convex set can be expressed by a class of variational inequalities, which is called
the harmonic variational inequality. This shows that harmonic convex functions have similar
properties, which convex functions have. This allows us to use the analogue results of the convex
functions to suggest similar numerical methods for the harmonic convex functions. This is itself
an interesting problem. Noor et al. [38] introduced the class of relative harmonic functions with
respect to an arbitrary nonnegative function h. This class is more general and contains several
known classes of harmonic convex functions as special cases. For the characterization and other
aspects of the relative harmonic convex functions, see the references.

We would like to emphasize that relative preinvex functions and relative harmonic convex
functions are two different extensions and generalizations of the relative convex functions. These
classes are quite different in nature and have different applications. It is natural to unify these
two classes of relative convex functions. Motivated and inspired by the ongoing research activities
in this field, Noor et al. [47, 48] introduced and investigated a new class of convex functions
with respective to an arbitrary nonnegative function, which is called relative harmonic preinvex
functions. It is shown that this new class unifies several new classes of harmonic preinvex and
harmonic convex functions such as Breckner type of s-harmonic preinvex functions, Godunova-
Levin type of s-harmonic preinvex functions and harmonic P -preinvex functions.

We remark that the relative harmonic prienvex functions theory is quite broad, we shall con-
tent ourselves to give the flavor of the ideas and techniques involved. The techniques used to
establish the results are a beautiful blend of ideas of pure and applied mathematical sciences. In
this paper, we have presented the results regarding the derivation of integral inequalities such
as Hermite-Hadamard, trapezoidal, Simpson’s for the relative harmonic preinvex functions. We
have included several new results which we and our coworkers have recently obtained such as
several Hermite-Hadamard, trapezoidal and Simpson’s type inequalities for the relative har-
monic preinvex functions. The framework chosen should be seen as a model setting for general
results for other classes of convex functions. It is true that each of these areas of applications
requires special consideration of peculiarities of the class of convex functions at hand and the
inequalities that model it. However, many of the concepts and techniques, we have discussed
are fundamental to all of these applications. General and unified framework are important and
significant scientific value, both as a means of summarization existing and to provide ideas and
tools for explaining relationship and performing investigation. In this paper, we focus basically
on presenting the state-art-of generalizing convexity and invexity by means of the harmonic
means. We would like to mention that the results obtained and discussed in this paper may
motivate and bring a large number of novel, potential applications, extensions, generalizations



6 TWMS J. PURE APPL. MATH., V.7, N.1, 2016

and interesting topics in these dynamical fields. We have given only the basic and fundamental
concepts in this dynamic field.

2. Preliminaries and basic results

In this section, we recall the basic concepts and results in the convex analysis. For more
details, see [25, 50] and the references therein. Let K be set in the finite dimensions Euclidean
space Rn, whose inner product and norm are denoted by 〈., .〉 and ‖.‖, respectively.

Definition 2.1. A set K in Rn is said to be a convex set, if and only if,

(1− t)u + tv ∈ K, ∀u, v ∈ K, t ∈ [0, 1].

Definition 2.2. A function f on the convex set K is said to be a convex function, if and only
if,

f((1− t)u + tv) ≤ (1− t)f(u) + tf(v), ∀u, v ∈ K, t ∈ [0, 1].

If t = 1
2 , the definition 1.2 reduces to;

f(
u + v

2
) ≤ f(u) + f(v)

2
, ∀u, v ∈ K,

which is called Jensen convex function.
It is known that a function f is a convex function on the interval I = [a, b], if and only if, it

satisfies the Hermite-Hadamard inequality (1).
For the differentiable convex function, we have the following celebrated result.

Theorem 2.1. Let K be nonempty convex set in Rn. and let f be a differentiable convex function
on the set K. Then u ∈ K is the minimum of f, if and only if u ∈ K satisfies the inequality

〈f ′(u), v − u〉 ≥ 0, ∀v ∈ K. (4)

The inequality of the type (4) is known as variational inequality, which was introduced and
investigated by Stampacchia [53] in 1964. This shows that the variational inequalities are con-
nected with the theory of convex functions. Variational inequalities can be regarded as nat-
ural extension of the variational principles, the origin of which can be traced back to Euler,
Newton, Bernoulli brothers and Lagrange. Variational inequalities provides us a unified and
general framework to study a wide class of unrelated problems, which arise in pure, applied,
regional, economics, transportation, structural analysis, game theory and engineering sciences,
see [3, 16, 30, 28, 29, 34, 36, 37, 32, 35, 45, 53].

We now recall the concept of relative convex functions with respective to an arbitrary non-
negative function h, which is due to [54].

Definition 2.3. [54]. Let h : [0, 1] ⊆ J −→ R be a non-negative function. A function f : I =
[a, b] ⊆ R −→ R is a relative convex function with respect to an arbitrary function h, if

f
(
(1− t)x + ty) ≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ I, t ∈ [0, 1].

It is clear that, if h(t) = t, then the relative convex functions are exactly the convex functions.
For different, appropriate and suitable choice of the arbitrary function h, one can obtain several
classes of convex functions, which are being investigated by the researchers.

We now consider an other important class of convex functions, which is known as preinvex
functions.
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Definition 2.4. [12]. A set Kη ⊆ R is said to be invex set with respect to the bifunction η(·, ·),
if and only if,

x + tη(y, x) ∈ I, ∀x, y ∈ Kη, t ∈ [0, 1].

The invex set I is also called η-connected set. Note that, if η(b, a) = b − a, then invex set
becomes the convex set. Clealry, every convex set is an invex set, but the converse is not true.

Definition 2.5. [55]. Let Kη be an invex set in Rn. Then a function f : Kη ⊆ R −→ R is said
to be preinvex function with respect to the bifunction η(·, ·), if and only if,

f
(
x + tη(y, x)

) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ Kη, t ∈ [0, 1].

Noor[32] has shown that a function f is preinvex function, if and only if, it satisfies the
Hermite-Hadamrd-Noor inequality (2).
For differentiable preinvex functions, we have the following result, which is mainly due to Noor
[27].

Theorem 2.2. Let Kη be nonempty inves set in Rn. and let f be a differentiable preinvex
function on the set Kη. Then u ∈ Kη is the minimum of f, if and only if u ∈ Kη satisfies the
inequality

〈f ′(u), η(v, u)〉 ≥ 0, ∀v ∈ Kη. (5)

Inequality of type (5) is called the variational-like inequality. For the applications and other
properties of the variational-like inequalities, see [27, 31, 36].

We now consider concepts of the harmonic convex set and harmonic convex functions. For
more information, see Anderson et al.[2] and Iscan [14].

Definition 2.6. [14]. A set Kh ⊂ R \ {0} is said to a harmonic convex set, if and only if,
uv

v + t(u− v)
∈ Kh, ∀u, v ∈ Kh, t ∈ [0, 1].

Definition 2.7. [14]. A function f : Kh ⊆ R \ {0} −→ R is said to be harmonic convex function,
if and only if,

f

(
xy

tx + (1− t)y

)
≤ (1− t)f(x) + tf(y), ∀x, y ∈ Kh, t ∈ [0, 1].

Noor and Noor [37] have shown that the minimum of a differentiable harmonic convex func-
tions f on the harmonic convex set can be characterized by a class of variational inequalities,
which is called harmonic variational inequalities. In this direction, we have the following result.

Theorem 2.3. Let Kh be nonempty harmonic convex set in Rn. and let f be a differentiable
harmonic convex function on the set Kh. Then u ∈ Kh is a minimum of f, if and only if, u ∈ Kh

satisfies the inequality

〈f ′(u),
uv

u− v
〉 ≥ 0, ∀v ∈ Kh. (6)

The inequality of the type (6) is called the harmonic variational inequality, see Noor and Noor
[34, 37].

Noor et al.[38] and Mihai et al.[23] introduced the relative harmonic convex functions with
respect to an arbitrary nonnegative function,
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Definition 2.8. Let h : [0, 1] ⊆ J −→ R be a non-negative function. a function on the harmonic
convex set Kh is said to relative harmonic convex functions with respect to the nonnegative
function h, if and only if,

f

(
xy

tx + (1− t)y

)
≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ Kh, t ∈ [0, 1].

If h(t) = t, then the relative harmonic convex functions become harmonic convex functions.
For appropriate choice and suitable choice of the function h, one can obtain several new classes
of harmonic convex functions. This shows that the relative harmonic convex functions are quite
general and unifying ones.

From the above discussion, it follows that the relative preinvex functions and the relative
harmonic convex functions are two different generalization of the relative convex functions.
Noor et al . [47, 48] introduced a new class of relative convex functions, which includes all these
classes of convex functions as special cases.

Definition 2.9. [48]. A set I = [a, a+ η(b, a)] ⊆ R \ {0} is said to be a harmonic invex set with
respect to the bifunction η(·, ·), if

x(x + η(y, x))
x + (1− t)η(y, x)

∈ I, ∀x, y ∈ I, t ∈ [0, 1].

If η(y, x) = y − x, then harmonic invex set reduces to harmonic set. Clearly, every harmonic
set is invex set but the converse is not true.

We now introduce the concept of the relative harmonic preinvex functions, which are mainly
due to Noor et al [47, 48].

Definition 2.10. Let h : [0, 1] ⊆ J −→ R be a non-negative function. A function f : I =
[a, a + η(b, a)] ⊆ R \ {0} −→ R is a relative harmonic preinvex function with respect to an
arbitrary nonnegative function h and an arbitrary bifunction η(·, ·), if

f

(
x(x + η(y, x))

x + (1− t)η(y, x)

)
≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ I, t ∈ [0, 1]. (7)

Note that for t = 1
2 , we have Jensen type relative harmonic preinvex function.

f

(
2x(x + η(y, x))

2x + η(y, x)

)
≤ h

(1
2
)
[f(x) + f(y)], ∀x, y ∈ I.

We now discuss some special cases of Definition 2.10, which appear to be new ones.
I. If h(t) = t in (7), then Definition 2.10 reduce to the definition of harmonic preinvex

functions.

Definition 2.11. [48]. A function f : I ⊆ R\{0} −→ R is said to be harmonic preinvex function
with respect to η(·, ·), if

f

(
x(x + η(y, x))

x + (1− t)η(y, x)

)
≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

II. If h(t) = ts in (7), then Definition 2.10 reduces to the definition of Breckner type of
s-harmonic preinvex functions.

Definition 2.12. A function f : I ⊆ R \ {0} −→ R is said to be s-harmonic preinvex function
with respect to η(·, ·) and s ∈ (0, 1], if

f

(
x(x + η(y, x))

x + (1− t)η(y, x)

)
≤ (1− t)sf(x) + tsf(y), ∀x, y ∈ I, t ∈ [0, 1].



M.A. NOOR et al: INTEGRAL INEQUALITIES FOR DIFFERENTIABLE ... 9

III. If h(t) = t−s in (7), then Definition 2.10 reduces to the definition of Godunova-Levin
type of s-harmonic preinvex functions.

Definition 2.13. A function f : I ⊆ R \ {0} −→ R is said to be Godunova-Levin type of s-
harmonic preinvex function, where s ∈ (0, 1) with respect to η(·, ·), if

f

(
x(x + η(y, x))

x + (1− t)η(y, x)

)
≤ 1

(1− t)s
f(x) +

1
ts

f(y), ∀x, y ∈ I, t ∈ (0, 1).

It is obvious that for s = 0, s-harmonic Godunova-Levin preinvex functions reduces to har-
monic P -preinvex functions. If s = 1, s-harmonic Godunova-Levin preinvex functions reduces
to harmonic Godunova-Levin preinvex functions.

V. If h(t) = 1 in (7), then Definition 2.10 reduces to the definition of harmonic P -preinvex
functions.

Definition 2.14. A function f : I ⊆ R \ {0} −→ R is said to be harmonic P-preinvex function
with respect to η(·, ·), if

f

(
x(x + η(y, x))

x + (1− t)η(y, x)

)
≤ f(x) + f(y), ∀x, y ∈ I, t ∈ [0, 1].

Definition 2.15. [50]. Two functions f, g are said to be similarly ordered (f is g-monotone),
if and only if,

〈f(x)− f(y), g(x)− g(y)〉 ≥ 0, ∀x, y ∈ Rn.

Noor et al [47, 48] have proved that the pproduct of two relative harmonic preinvex functions
is again a relative preinvex function.

Lemma 2.1. Let f and g be two similarly ordered relative harmonic preinvex functions. If
h(t) + h(1− t) ≤ 1, then the product fg is again a relative harmonic preinvex function.

We need the following assumption about the bifunction η(., .), which is due to Mohan and
Neogy[24]. This assumption have been used to prove the existence of a solution of variational-like
inequalities. We use to prove the left hand of the Hermire-Hadamard type inequalities;
Condition C : Let I ⊂ R be an invex set with respect to bifunction η(·, ·) : I × I → R. For any
x, y ∈ I and any t ∈ [0, 1], we have

η(y, y + tη(x, y)) = −tη(x, y)

η(x, y + tη(x, y)) = (1− t)η(x, y).

Note that for every x, y ∈ I, t1, t2 ∈ [0, 1] and from condition C, we have

η(y + t2η(x, y), y + t1η(x, y)) = (t2 − t1)η(x, y).

It is remarked that this condition is automatically satisfied for the convex functions.
We now derive Hermite-Hadamard inequalities for relative harmonic preinvex functions.

Theorem 2.4. Let f : I = [a, a+η(b, a)] ⊂ R\{0} −→ R be relative harmonic preinvex function,
where a, a + η(b, a) ∈ I with a < a + η(b, a). If f ∈ L[a, a + η(b, a)] and condition C holds, then

1
2h(1

2)
f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx ≤ [f(a) + f(b)]
∫ 1

0
h(t)dt. (8)

Proof. Let f be relative harmonic preinvex function with t = 1
2 in the inequality (7). Then

f

(
2x(x + η(y, x)
2x + η(y, x)

)
≤ h

(1
2
)
[f(x) + f(y)], ∀x, y ∈ I, t ∈ [0, 1].
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Let

x =
a(a + η(b, a))

a + (1− t)η(b, a)
,

y =
a(a + η(b, a))
a + tη(b, a)

.

Then, using condition C, we have

1
h(1

2)
f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤

[
f

(
a(a + η(b, a))

a + (1− t)η(b, a)

)
+ f

(
a(a + η(b, a))
a + tη(b, a)

)]
.

Integrating both sides of the above inequality with respect to t over [0, 1], we have

1
2h(1

2)
f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx

=
∫ 1

0
f

(
a(a + η(b, a))

a + (1− t)η(b, a)

)
dt

≤
∫ 1

0

[
h(1− t)f(a) + h(t)f(a + η(b, a))

]
dt

= [f(a) + f(a + η(b, a))]
∫ 1

0
h(t)dt ≤ [f(a) + f(b)]

∫ 1

0
h(t)dt,

which is the required result. ¤

Now we discuss some special cases of Theorem 2.4, which appear to be new ones.
I. If h(t) = t, then Theorem 2.4 reduces to the following result.

Corollary 2.1. [48]. Let f : I = [a, a + η(b, a)] ⊂ R \ {0} −→ R be harmonic preinvex function.
If f ∈ L[a, a + η(b, a)], then

f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx ≤ f(a) + f(b)
2

.

II. If h(t) = ts, then Theorem 2.4 reduces to the following result.

Corollary 2.2. Let f : I = [a, a + η(b, a)] ⊂ R \ {0} −→ R be s-harmonic preinvex function. If
f ∈ L[a, a + η(b, a)], then

2s−1f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx ≤ f(a) + f(b)
s + 1

.

III. If h(t) = t−s, then Theorem 2.4 reduces to the following result.

Corollary 2.3. Let f : I = [a, a + η(b, a)] ⊂ R \ {0} −→ R be s-harmonic Godunova-Levin
preinvex function. If f ∈ L[a, a + η(b, a)], then

1
2s+1

f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx ≤ f(a) + f(b)
1− s

.

IV. If h(t) = 1, then Theorem 2.4 reduces to the following result.

Corollary 2.4. Let f : I = [a, a + η(b, a)] ⊂ R \ {0} −→ R be harmonic P-preinvex function. If
f ∈ L[a, a + η(b, a)], then

1
2
f

(
2a(a + η(b, a))
2a + η(b, a)

)
≤ a(a + η(b, a))

η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx ≤ f(a) + f(b).
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3. Main results

We need the following result, which plays an important role in the derivation of the main
results.

Lemma 3.1. Let f : I = [a, a + η(b, a)] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, a + η(b, a)] and λ ∈ [0, 1], then

Υf (a, a + η(b, a);λ)

=
a(a + η(b, a))η(b, a)

2

[ ∫ 1
2

0

2t− λ(
a + (1− t)η(b, a)

)2 f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

+
∫ 1

1
2

2t− 2 + λ(
a + (1− t)η(b, a))2

f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

]
,

where

Υf (a, a + η(b, a);λ)

= (1− λ)f
(

2a(a + η(b, a))
2a + η(b, a)

)
+ λ

(
f(a) + f(a + η(b, a))

2

)

−a(a + η(b, a))
η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx.

Proof. Let

I =
a(a + η(b, a))η(b, a)

2

∫ 1
2

0

2t− λ(
a + (1− t)η(b, a)

)2 f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

+
∫ 1

1
2

2t− 2 + λ(
a + (1− t)η(b, a))2

f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

]

=
a(a + η(b, a))η(b, a)

2

∫ 1
2

0

2t− λ(
a + (1− t)η(b, a)

)2 f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

+
a(a + η(b, a))η(b, a)

2

∫ 1

1
2

2t− 2 + λ(
a + (1− t)η(b, a)

)2 f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

= I1 + I2.

Now

I1 =
a(a + η(b, a))η(b, a)

2

∫ 1
2

0

2t− λ(
a + (1− t)η(b, a)

)2 f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

=
1
2

∣∣∣∣(2t− λ)f
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣
1
2

0

−
∫ 1

2

0
f

(
a(a + η(b, a))

a + (1− t)η(b, a)

)
dt

=
1− λ

2
f

(
2a(a + η(b, a))
2a + η(b, a)

)
+

λ

2
f
(
a
)−

∫ 1
2

0
f

(
a(a + η(b, a))

a + (1− t)η(b, a)

)
dt.

Similarly, one can show that

I2 =
a(a + η(b, a))η(b, a)

2

∫ 1

1
2

2t− 2 + λ(
a + (1− t)η(b, a))2

f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)
dt

=
λ

2
f(a + η(b, a)) +

1− λ

2
f

(
2a(a + η(b, a))
2a + η(b, a)

)
−

∫ 1

1
2

f

(
a(a + η(b, a))

a + (1− t)η(b, a)

)
dt.
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Thus

I1 + I2 = (1− λ)f
(

2a(a + η(b, a))
2a + η(b, a)

)
+ λ

(
f(a) + f(a + η(b, a))

2

)

−a(a + η(b, a))
η(b, a)

∫ a+η(b,a)

a

f(x)
x2

dx,

which is the required result. ¤

Theorem 3.1. Let f : I = [a, a + η(b, a)] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, a+ η(b, a)] and |f ′|q is relative harmonic preinvex function on I for
q ≥ 1 and λ ∈ [0, 1], then

∣∣∣∣Υf (a, a + η(b, a);λ)
∣∣∣∣ ≤ a(a + η(b, a))η(b, a)

2

[
(κ1(a, b; λ))1−

1
q [κ2(a, b;λ, h)|f ′(a)|q

+κ3(a, b; λ, h)|f ′(b)|q] 1
q + (κ4(a, b; λ))1−

1
q [κ5(a, b; λ, h)|f ′(a)|q

+κ6(a, b; λ, h)|f ′(b)|q] 1
q

]
,

where one can evaluate these integrals using any mathematical software (i.e, maple).

κ1(a, b;λ) =
∫ 1

2

0

∣∣2t− λ
∣∣

(a + (1− t)η(b, a))2
dt, (9)

κ2(a, b; λ, h) =
∫ 1

2

0

h(1− t)
∣∣2t− λ

∣∣
(a + (1− t)η(b, a))2

dt, (10)

κ3(a, b; λ, h) =
∫ 1

2

0

h(t)
∣∣2t− λ

∣∣
(a + (1− t)η(b, a))2

dt, (11)

κ4(a, b; λ) =
∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(a + (1− t)η(b, a))2
dt, (12)

κ5(a, b;λ, h) =
∫ 1

1
2

h(1− t)
∣∣2t− 2 + λ

∣∣
(a + (1− t)η(b, a))2

dt, (13)

κ6(a, b;λ, h) =
∫ 1

1
2

h(t)
∣∣2t− 2 + λ

∣∣
(a + (1− t)η(b, a))2

dt. (14)
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Proof. Using Lemma 3.1 and the power mean inequality, we have
∣∣∣∣Υf (a, a + η(b, a);λ)

∣∣∣∣

≤ a(a + η(b, a))η(b, a)
2

[ ∫ 1
2

0

∣∣2t− λ
∣∣

(
a + (1− t)η(b, a)

)2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣dt

+
∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(
a + (1− t)η(b, a)

)2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣dt

]

≤ a(a + η(b, a))η(b, a)
2

[(∫ 1
2

0

∣∣2t− λ
∣∣

(
a + (1− t)η(b, a)

)2 dt

)1− 1
q

( ∫ 1
2

0

∣∣2t− λ
∣∣

(
a + (1− t)η(b, a)

)2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣
q

dt

) 1
q

+
(∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(
a + (1− t)η(b, a)

)2 dt

)1− 1
q

( ∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(
a + (1− t)η(b, a)

)2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣dt

) 1
q
]

≤ a(a + η(b, a))η(b, a)
2

[(∫ 1
2

0

∣∣2t− λ
∣∣

(
a + (1− t)η(b, a)

)2 dt

)1− 1
q

( ∫ 1
2

0

∣∣2t− λ
∣∣

(
a + (1− t)η(b, a)

)2

[
h(1− t)|f ′(a)|q + h(t)|f ′(b)|q]dt

) 1
q

+
(∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(
a + (1− t)η(b, a)

)2 dt

)1− 1
q

( ∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(
a + (1− t)η(b, a)

)2

[
h(1− t)|f ′(a)|q + h(t)|f ′(b)|q]dt

) 1
q
]

≤ a(a + η(b, a))η(b, a)
2

[
(κ1(a, b; λ))1−

1
q [κ2(a, b; λ, h)|f ′(a)|q + κ3(a, b; λ, h)|f ′(b)|q] 1

q

+(κ4(a, b;λ))1−
1
q [κ5(a, b; λ, h)|f ′(a)|q + κ6(a, b; λ, h)|f ′(b)|q] 1

q

]
,

which is the required result. ¤

If q = 1, then, Theorem 3.1 reduces to the following result, which appears to be a new one.

Corollary 3.1. Let f : I = [a, a + η(b, a)] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, a + η(b, a)] and |f ′| is relative harmonic preinvex function on I and
λ ∈ [0, 1], then

∣∣∣∣Υf (a, a + η(b, a);λ)
∣∣∣∣ ≤ a(a + η(b, a))η(b, a)

2
[
[κ2(a, b; λ, h) + κ3(a, b; λ, h)]|f ′(a)|

+[κ5(a, b;λ, h) + κ6(a, b;λ, h)]|f ′(b)|],
where κ2(a, b; λ, h), κ3(a, b; λ, h), κ5(a, b; λ, h), κ6(a, b; λ, h) are given by (10), (11), (13) and(14)
respectively.
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Theorem 3.2. Let f : I = [a, a + η(b, a)] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, a+ η(b, a)] and |f ′|q is relative harmonic preinvex function on I for
p, q > 1, 1

p + 1
q = 1 and λ ∈ [0, 1], then

∣∣∣∣Υf (a, a + η(b, a);λ)
∣∣∣∣

≤ a(a + η(b, a))η(b, a)
2

[
(κ7(a, b; p, λ))

1
p

( |f ′(a)|q +
∣∣f ′(2a(a+η(b,a))

2a+η(b,a)

)∣∣q

2

∫ 1

0
h(t)dt

) 1
q

+(κ8(a, b; p, λ))
1
p

(∣∣f ′(2a(a+η(b,a))
2a+η(b,a)

)∣∣q + |f ′(b)|q
2

∫ 1

0
h(t)dt

) 1
q
]
, (15)

where

κ7(a, b; p, λ) =
∫ 1

2

0

|2t− λ|p
(a + (1− t)η(b, a))2

dt, (16)

κ8(a, b; p, λ) =
∫ 1

1
2

|2t− 2 + λ|p
(a + (1− t)η(b, a))2

dt. (17)

Proof. Using Lemma 3.1 and the Holder’s integral inequality, we have∣∣∣∣Υf (a, a + η(b, a);λ)
∣∣∣∣

≤ a(a + η(b, a))η(b, a)
2

[ ∫ 1
2

0

∣∣2t− λ
∣∣

(a + (1− t)η(b, a))2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣dt

+
∫ 1

1
2

∣∣2t− 2 + λ
∣∣

(a + (1− t)η(b, a))2

∣∣∣∣f ′
(

a(a + η(b, a))
a + (1− t)η(b, a)

)∣∣∣∣dt

]

≤ a(a + η(b, a))η(b, a)
2

[( ∫ 1
2

0

∣∣2t− λ
∣∣p

(a + (1− t)η(b, a))2
dt

) 1
p
(∣∣∣∣f ′

(
a(a + η(b, a))

a + (1− t)η(b, a)

)∣∣∣∣
q

dt

) 1
q

+
( ∫ 1

1
2

∣∣2t− 2 + λ
∣∣p

(a + (1− t)η(b, a))2
dt

) 1
p
(∣∣∣∣f ′

(
a(a + η(b, a))

a + (1− t)η(b, a)

)∣∣∣∣
q

dt

) 1
q
]

=
a(a + η(b, a))η(b, a)

2

[(∫ 1
2

0

∣∣2t− λ
∣∣p

(a + (1− t)η(b, a))2
dt

) 1
p

(
a(a + η(b, a))

η(b, a)

∫ 2a(a+η(b,a))
2a+η(b,a)

a

|f ′(x)|q
x2

dx

) 1
q

+
(∫ 1

1
2

∣∣2t− 2 + λ
∣∣p

(a + (1− t)η(b, a))2
dt

) 1
p
(

a(a + η(b, a))
η(b, a)

∫ a+η(b,a)

2a(a+η(b,a))
2a+η(b,a)

|f ′(x)|q
x2

dt

) 1
q
]
. (18)

Using the relative harmonic preinvexity of |f ′|q, we obtain the following inequalities from in-
equality (8)

2a(a + η(b, a))
η(b, a)

∫ 2a(a+η(b,a))
2a+η(b,a)

a

|f ′(x)|q
x2

dx ≤
[
|f ′(a)|q +

∣∣∣∣f ′
(

2a(a + η(b, a))
2a + η(b, a)

)∣∣∣∣
q] ∫ 1

0
h(t)dt, (19)

and

2a(a + η(b, a))
η(b, a)

∫ a+η(b,a)

2a(a+η(b,a))
2a+η(b,a)

|f ′(x)|q
x2

dx ≤
[∣∣∣∣f ′

(
2a(a + η(b, a))
2a + η(b, a)

)∣∣∣∣
q

+ |f ′(b)|q
] ∫ 1

0
h(t)dt. (20)



M.A. NOOR et al: INTEGRAL INEQUALITIES FOR DIFFERENTIABLE ... 15

A combination of (18)-(20) gives the required inequality (15). ¤

Theorem 3.3. Let f : I = [a, a + η(b, a)] ⊆ R \ {0} −→ R be a differentiable function on the
interior Io of I. If f ′ ∈ L[a, a+ η(b, a)] and |f ′|q is relative harmonic preinvex function on I for
p, q > 1, 1

p + 1
q = 1 and λ ∈ [0, 1], then

∣∣∣∣Υf (a, a + η(b, a);λ)
∣∣∣∣

≤ a(a + η(b, a))η(b, a)
2

×
(

λp+1 + (1− λ)p+1

2(p + 1)

) 1
p [(

κ9(a, b; q, h)|f ′(a)|q

+ κ10(a, b; q, h)|f ′(b)|q)
1
q +

(
κ11(a, b; q, h)|f ′(a)|q + κ12(a, b; q, h)|f ′(b)|q)

1
q
]
,

where

κ9(a, b; q, h) =
∫ 1

2

0

h(1− t)
(a + (1− t)η(b, a))2q

dt, (21)

κ10(a, b; q, h) =
∫ 1

2

0

h(t)
(a + (1− t)η(b, a))2q

dt, (22)

κ11(a, b; q, h) =
∫ 1

1
2

h(1− t)
(a + (1− t)η(b, a))2q

dt, (23)

κ12(a, b; q, h) =
∫ 1

1
2

h(t)
(a + (1− t)η(b, a))2q

dt. (24)

Proof. Using Lemma 3.1 and the Holder’s integral inequality, we have
∣∣∣∣Υf (a, a + η(b, a);λ)

∣∣∣∣

≤ a(a + η(b, a))η(b, a)
2

[ ∫ 1
2

0

∣∣2t− λ
∣∣
∣∣∣∣

f ′
( a(a+η(b,a))

a+(1−t)η(b,a)

)

[a + (1− t)η(b, a)]2

∣∣∣∣dt

+
∫ 1

1
2

∣∣2t− 2 + λ
∣∣
∣∣∣∣

f ′
( a(a+η(b,a))

a+(1−t)η(b,a)

)

[a + (1− t)η(b, a)]2

∣∣∣∣dt

]

≤ a(a + η(b, a))η(b, a)
2

[(∫ 1
2

0

∣∣2t− λ
∣∣pdt

) 1
p
(∣∣∣∣

f ′
( a(a+η(b,a))

a+(1−t)η(b,a)

)

[a + (1− t)η(b, a)]2

∣∣∣∣
q

dt

) 1
q

+
( ∫ 1

1
2

∣∣2t− 2 + λ
∣∣pdt

) 1
p
(∣∣∣∣

f ′
( a(a+η(b,a))

a+(1−t)η(b,a)

)

[a + (1− t)η(b, a)]2

∣∣∣∣
q

dt

) 1
q
]

=
a(a + η(b, a))η(b, a)

2

[(∫ 1
2

0

∣∣2t− λ
∣∣pdt

) 1
p
( ∣∣f ′( a(a+η(b,a))

a+(1−t)η(b,a)

)∣∣q

[a + (1− t)η(b, a)]2q
dt

) 1
q

+
( ∫ 1

1
2

∣∣2t− 2 + λ
∣∣pdt

) 1
p
( ∣∣f ′( a(a+η(b,a))

a+(1−t)η(b,a)

)∣∣q

[a + (1− t)η(b, a)]2q
dt

) 1
q
]
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≤ a(a + η(b, a))η(b, a)
2

[(∫ 1
2

0

∣∣2t− λ
∣∣pdt

) 1
p
(

h(1− t)|f ′(a)|q + h(t)|f ′(b)|q
[a + (1− t)η(b, a)]2q

) 1
q

+
(∫ 1

1
2

∣∣2t− 2 + λ
∣∣pdt

) 1
p
(

h(1− t)|f ′(a)|q + h(t)|f ′(b)|q
[a + (1− t)η(b, a)]2q

) 1
q
]

=
a(a + η(b, a))η(b, a)

2
×

(
λp+1 + (1− λ)p+1

2(p + 1)

) 1
p [(

κ9(a, b; q, h)|f ′(a)|q

+κ10(a, b; q, h)|f ′(b)|q)
1
q +

(
κ11(a, b; q, h)|f ′(a)|q + κ12(a, b; q, h)|f ′(b)|q)

1
q
]
,

which is the required result. ¤

Remark 3.1.

(1) For h(t) = t, h(t) = ts, h(t) = t−s and h(t) = 1, the class of relative harmonic prein-
vex functions reduces to the class of harmonic preinvex functions, s-harmonic convex
functions, s-harmonic Godunova-Levin functions and harmonic P -preinvex functions re-
spectively. This shows that the class of relative harmonic preinvex functions is quite
general and unifying one. Consequently, results obtained in this paper continue to hold
for all these new classes of harmonic preinvex functions.

(2) With the suitable and appropriate choice value of λ, one can obtain integral inequalities
for midpoint, trapezoidal, Simpson’s rule and three point trapezoidal rule, respectively.
We leave this to the interested readers.

Conclusion and future research
In this paper, we have presented the state-of-the art in convexity theory and several aspects

of relative harmonic preinvex functions. These new concepts are very recent ones and offer great
opportunities for future research. It is expected that the interplay among all these classes of
convex functions will certainly lead to some innovative, interesting and significant results. In
this paper, our main aim have been to describe the basic ideas and techniques, which have
used to derive the integral inequalities, the foundation, we have laid is quite broad and flexible.
Quantum calculus is branch of mathematics and has many applications in physics. Noor et
al. [40, 41] has established some quantum estimates for the convex functions. These quantum
Hermite-Hadamard inequalities and their variant forms are useful for quantum mechanics where
upper and lower bounds for natural phenomena described by integrals are frequently required.
In spite of their importance, little research has been carried out in this direction. To the best of
knowledge, no quantum estimates have been derived for harmonic convex functions. This field
s new one and efforts are needed to develop a sound basis for applications. The study of these
aspects of the integral inequalities is fruitful and growing field of intellectual endeavor.
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