SOME GENERALIZED SEQUENCE SPACES DEFINED BY A MUSIELAK-ORLICZ FUNCTION OVER n-NORMED SPACES

KULDIP RAJ1, SUNIL K. SHARMA1

Abstract. In the present paper we introduce some sequence spaces defined by a Musielak-Orlicz function $\mathcal{M} = (M_k)$ over n-normed spaces. We study some topological properties and prove some inclusion relations between these spaces.

Keywords: Paranorm space, difference sequence space, Orlicz function, Musielak-Orlicz function, n-normed space.

AMS Subject Classification: 40A05, 46A45.

1. Introduction

The concept of 2-normed spaces was initially developed by Gähler [2] in the mid of 1960’s, while that of n-normed spaces one can see in Misiak [12]. Since then, many others have studied this concept and obtained various results, see Gunawan ([3], [4]) and Gunawan and Mashadi [5] and references therein.

Let w be the set of all sequences of real or complex numbers and l_∞, c and c_0 be the sequence spaces of bounded, convergent and null sequences $x = (x_k)$, respectively.

A sequence $x \in l_\infty$ is said to be almost convergent if all Banach limits of x coincide. Lorentz [8] proved that

$$\hat{c} = \left\{ x = (x_k) : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_{k+s} \text{ exists, uniformly in } s \right\}.$$

Maddox ([9], [10]) has defined x to be strongly almost convergent to a number L if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s} - L| = 0, \text{ uniformly in } s.$$

Let $p = (p_k)$ be a sequence of strictly positive real numbers. Nanda [14] has defined the following sequence spaces:

$$[\hat{c}, p] = \left\{ x = (x_k) : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s} - L|^{p_k} = 0, \text{ uniformly in } s \right\},$$

$$[\hat{c}, p]_0 = \left\{ x = (x_k) : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s}|^{p_k} = 0, \text{ uniformly in } s \right\}$$

and

$$[\hat{c}, p]_\infty = \left\{ x = (x_k) : \sup_{s, n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+s}|^{p_k} < \infty \right\}.$$

The notion of difference sequence spaces was introduced by Kizmaz [6], who studied the difference sequence spaces $l_\infty(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et

1 School of Mathematics, Shri Mata Vaishno Devi University, Katra, India

e-mail: kuldeepraj68@rediffmail.com, sunilksharma42@yahoo.co.in

Manuscript received September 2011.
by introducing the spaces \(l_\infty(\Delta^n) \), \(c(\Delta^n) \) and \(c_0(\Delta^n) \). Let \(m, r \) be non-negative integers, then for \(Z = l_\infty \), \(c \) and \(c_0 \), we have sequence spaces,

\[
Z(\Delta^m) = \{ x = (x_k) \in w : (\Delta^m_k x_k) \in Z \},
\]

where \(\Delta^m_r x = (\Delta^m_r x_k) = (\Delta^{m-1}_r x_k - \Delta^{m-1}_r x_{k+r}) \) and \(\Delta^0_r x_k = x_k \) for all \(k \in \mathbb{N} \), which is equivalent to the following binomial representation

\[
\Delta^m_r x_k = \sum_{v=0}^{n} (-1)^v \binom{n}{v} x_{k+rv}.
\]

Taking \(m = r = 1 \), we get the spaces \(l_\infty(\Delta) \), \(c(\Delta) \) and \(c_0(\Delta) \) introduced and studied by Kizmaz [6].

An Orlicz function \(M \) is a function, which is continuous and convex with \(M(0) = 0 \), \(M(q) > 0 \) for \(q > 0 \) and \(M(q) \to \infty \) as \(q \to \infty \).

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the sequence space, then the space

\[
\ell_M = \{ x = (x_k) \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty \},
\]

which is called as an Orlicz sequence space. The space \(\ell_M \) is a Banach space with the norm

\[
||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\}.
\]

It is shown in [10] that every Orlicz sequence space \(\ell_M \) contains a subspace isomorphic to \(\ell_p(p \geq 1) \). The \(\Delta_2 \)-condition is equivalent to \(M(Lx) \leq kLM(x) \) for all values of \(x \geq 0 \), and for \(L > 1 \).

A sequence \(M = (M_k) \) of Orlicz functions is called a Musielak-Orlicz function see ([11],[13]). A sequence \(N = (N_k) \) defined by

\[
N_k(v) = \sup \{|v|u - (M_k)(u) : u \geq 0\}, \quad k = 1, 2, \cdots
\]

is called the complementary function of a Musielak-Orlicz function \(M \). For a given Musielak-Orlicz function \(M \), the Musielak-Orlicz sequence space \(t_M \) and its subspace \(h_M \) are defined as follows

\[
t_M = \{ x \in w : I_M(cx) < \infty \text{ for some } c > 0 \},
\]

\[
h_M = \{ x \in w : I_M(cx) < \infty \text{ for all } c > 0 \},
\]

where \(I_M \) is a convex modular defined by

\[
I_M(x) = \sum_{k=1}^{\infty} M_k(x_k), \quad x = (x_k) \in t_M.
\]

We consider \(t_M \) equipped with the Luxemburg norm

\[
||x|| = \inf \left\{ k > 0 : I_M \left(\frac{x}{k} \right) \leq 1 \right\}
\]

or equipped with the Orlicz norm

\[
||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_M(kx) \right) : k > 0 \right\}.
\]

For more details about sequence spaces see ([15], [16], [17], [18]) and many others.
2. Preliminaries

Let \(n \in \mathbb{N} \) and \(X \) be a linear space over the field \(\mathbb{K} \), where \(\mathbb{K} \) is field of real or complex numbers of dimension \(d \), where \(d \geq n \geq 2 \). A real valued function \(||\cdot, \cdots, \cdot|| \) on \(X^n \) satisfying the following four conditions:

1. \(||x_1, x_2, \cdots, x_n|| = 0 \) if and only if \(x_1, x_2, \cdots, x_n \) are linearly dependent in \(X \);
2. \(||x_1, x_2, \cdots, x_n|| \) is invariant under permutation;
3. \(||\alpha x_1, x_2, \cdots, x_n|| = \alpha ||x_1, x_2, \cdots, x_n|| \) for any \(\alpha \in \mathbb{K} \), and
4. \(||x + x', x_2, \cdots, x_n|| \leq ||x, x_2, \cdots, x_n|| + ||x', x_2, \cdots, x_n|| \)

is called a \(n \)-norm on \(X \) and the pair \((X, ||\cdot, \cdots, \cdot||)\) is called a \(n \)-normed space over the field \(\mathbb{K} \).

For example, we may take \(X = \mathbb{R}^n \) being equipped with the \(n \)-norm \(||x_1, x_2, \cdots, x_n||_E = \) the volume of the \(n \)-dimensional parallelepiped spanned by the vectors \(x_1, x_2, \cdots, x_n \) which may be given explicitly by the formula

\[
||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,
\]

where \(x_i = (x_{i1}, x_{i2}, \cdots, x_{in}) \in \mathbb{R}^n \) for each \(i = 1, 2, \cdots, n \) and \(||\cdot||_E \) is the \(n \)-norm on Euclidean space \(\mathbb{R}^n \). Let \((X, ||\cdot, \cdots, \cdot||)\) be an \(n \)-normed space of dimension \(d \geq n \geq 2 \) and \(\{a_1, a_2, \cdots, a_n\} \) be linearly independent set in \(X \). Then the following function \(||\cdot, \cdots, \cdot||_\infty \) on \(X^{n-1} \) defined by

\[
||x_1, x_2, \cdots, x_{n-1}||_\infty = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}
\]
defines an \((n-1)\)-norm on \(X \) with respect to \(\{a_1, a_2, \cdots, a_n\} \).

A sequence \((x_k)\) in a \(n \)-normed space \((X, ||\cdot, \cdots, \cdot||)\) is said to converge to some \(L \in X \) if

\[
\lim_{k \to \infty} ||x_k - L, z_1, \cdots, z_{n-1}|| = 0 \quad \text{for every} \quad z_1, \cdots, z_{n-1} \in X.
\]

A sequence \((x_k)\) in a \(n \)-normed space \((X, ||\cdot, \cdots, \cdot||)\) is said to be Cauchy if

\[
\lim_{k,p \to \infty} ||x_k - x_p, z_1, \cdots, z_{n-1}|| = 0 \quad \text{for every} \quad z_1, \cdots, z_{n-1} \in X.
\]

If every Cauchy sequence in \(X \) converges to some \(L \in X \), then \(X \) is said to be complete with respect to the \(n \)-norm. Any complete \(n \)-normed space is said to be \(n \)-Banach space.

Let \(X \) be a linear metric space. A function \(p : X \to \mathbb{R} \) is called paranorm, if

1. \(p(x) \geq 0 \), for all \(x \in X \);
2. \(p(-x) = p(x) \), for all \(x \in X \);
3. \(p(x + y) \leq p(x) + p(y) \), for all \(x, y \in X \);
4. if \((\sigma_n)\) is a sequence of scalars with \(\sigma_n \to \sigma \) as \(n \to \infty \) and \((x_n)\) is a sequence of vectors with \(p(x_n - x) \to 0 \) as \(n \to \infty \), then \(p(\sigma_n x_n - \sigma x) \to 0 \) as \(n \to \infty \).

A paranorm \(p \) for which \(p(x) = 0 \) implies \(x = 0 \) is called total paranorm and the pair \((X, p)\) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [19], Theorem 10.4.2, p.183).

Let \(M = (M_k) \) be a Musielak-Orlicz function, \((X, ||\cdot, \cdots, \cdot||)\) be a \(n \)-normed space, \(p = (p_k) \) be bounded sequence of strictly positive real numbers and \(u = (u_k) \) be any sequence of strictly positive real numbers. By \(S(n - X) \) we denote the space of all sequences defined over \((X, ||\cdot, \cdots, \cdot||)\). In the present paper we define the following sequence spaces:

\[
\left[\hat{c}, M, u, p, ||\cdot, \cdots, \cdot|| \right] (\Delta^m_p) = \left\{ x = (x_k) \in S(n - X) : \lim_{s \to \infty} \frac{\sum_{k = 1}^{n} M_k \left(\frac{u_k \Delta^m_p x_{k+s} - L}{\rho}, z_1, \cdots, z_{n-1} \right)}{p_k} = 0 \right\}_0 \quad \text{uniformly in} \ s, \ \text{for some} \ L \ \text{and} \ \rho > 0 \ ,
\]

\[
\left[\hat{c}, M, u, p, ||\cdot, \cdots, \cdot|| \right] (\Delta^m_p) =
\]
\[
\begin{align*}
\{ x = (x_k) \in S(n - X) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\eta} M_k \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right) \} & = \emptyset, \\
\text{uniformly in } s, \text{ for } \rho > 0, \\
\{ x = (x_k) \in S(n - X) : \sup_{s, \eta} \frac{1}{\eta} \sum_{k=1}^{\eta} M_k \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right)^p & < \infty, \text{ for } \rho > 0 \}.
\end{align*}
\]

If we take \(\mathcal{M}(x) = \rho \), we get
\[
\{ x = (x_k) \in S(n - X) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\eta} \left(\frac{\| u_k \Delta^m x_{k+s} - L, z_1, \cdots, z_{n-1} \|}{\rho} \right) \} = 0,
\]

uniformly in \(s \), for some \(L \) and \(\rho > 0 \),
\[
\{ x = (x_k) \in S(n - X) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\eta} \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right)^p \} = 0,
\]

uniformly in \(s \), for \(\rho > 0 \),
\[
\{ x = (x_k) \in S(n - X) : \sup_{s, \eta} \frac{1}{\eta} \sum_{k=1}^{\eta} \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right)^p < \infty, \text{ for } \rho > 0 \}.
\]

If we take \(p = (p_k) = 1 \) for all \(k \in \mathbb{N} \), we get
\[
\{ x = (x_k) \in S(n - X) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\eta} M_k \left(\frac{\| u_k \Delta^m x_{k+s} - L, z_1, \cdots, z_{n-1} \|}{\rho} \right) \} = 0,
\]

uniformly in \(s \), for some \(L \) and \(\rho > 0 \),
\[
\{ x = (x_k) \in S(n - X) : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{\eta} M_k \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right)^p \} = 0,
\]

uniformly in \(s \), for \(\rho > 0 \),
\[
\{ x = (x_k) \in S(n - X) : \sup_{s, \eta} \frac{1}{\eta} \sum_{k=1}^{\eta} M_k \left(\frac{\| u_k \Delta^m x_{k+s} - z_1, \cdots, z_{n-1} \|}{\rho} \right)^p < \infty, \text{ for } \rho > 0 \}.
\]
The following inequality will be used throughout the paper. If \(0 \leq p_k \leq \sup p_k = H, K = \max(1, 2H^{-1}) \) then
\[
|a_k + b_k|^{p_k} \leq K\{|a_k|^{p_k} + |b_k|^{p_k}\}
\]
for all \(k \) and \(a_k, b_k \in \mathbb{C} \). Also \(|a|^{p_k} \leq \max(1, |a|^H) \) for all \(a \in \mathbb{C} \).

The main aim of this paper is to study some sequence spaces defined by a Musielak-Orlicz function over \(n \)-normed spaces. We also make an effort to study some topological properties and some inclusion relations between these spaces.

3. **Main Results**

Theorem 3.1. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function, \(p = (p_k) \) be bounded sequence of positive real numbers and \(u = (u_k) \) be any sequence of strictly positive real numbers. Then the spaces \(\left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) and \(\left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) are linear spaces.

Proof. Let \(x = (x_k), y = (y_k) \in \left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) and \(\alpha, \beta \) be any scalars. Then there exist positive numbers \(\rho_1 \) and \(\rho_2 \) such that
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s} + \beta u_k y_{k+s}}{\rho_3}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} = 0
\]
and
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s} + \beta u_k y_{k+s}}{\rho_3}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} = 0.
\]
Let \(\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2) \). Since \(\mathcal{M} = (M_k) \) is non-decreasing convex function and so by using inequality (1), we have
\[
\frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s} + \beta u_k y_{k+s}}{\rho_3}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} \leq
\]
\[
\leq \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s}}{\rho_3}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} + \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\beta u_k y_{k+s}}{\rho_3}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} \leq
\]
\[
\leq \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} + \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\beta u_k y_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} \leq
\]
\[
K \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\alpha u_k \Delta^m x_{k+s}}{\rho_1}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} + K \frac{1}{n} \sum_{k=1}^{n} \left| M_k \left(\frac{\beta u_k y_{k+s}}{\rho_2}, z_1, \cdots, z_{n-1} \right) \right|^{p_k} \to 0
\]
as \(n \to \infty \), uniformly in \(s \).

So that \(\alpha x + \beta y \in \left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \). Thus \(\left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) is a linear space. Similarly, we can prove that \(\left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) and \(\left[\mathcal{M}, u, p, ||\cdot, \cdot, \cdot|| \right] \left(\Delta^m \right) \) are linear spaces.

Theorem 3.2. Let \(\mathcal{M} = (M_k) \) be a Musielak-Orlicz function, \(p = (p_k) \) be a bounded sequence of positive real numbers and \(u = (u_k) \) be any sequence of strictly positive real numbers. Then
\[[c, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||]_0 (\Delta^m) \text{ is a paranormed space with respect to the paranorm defined by} \]
\[
g(x) = \inf \left\{ \rho^m : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\},
\]
where \(H = \max(1, \sup_k p_k < \infty) \).

Proof. Clearly \(g(x) \geq 0 \) for \(x = (x_k) \in [c, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||]_0 (\Delta^m) \). Since \(M_k(0) = 0 \), we get \(g(0) = 0 \).

Conversely, suppose that \(g(x) = 0 \), then
\[
\inf \left\{ \rho^m : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\} = 0.
\]
This implies that for a given \(\epsilon > 0 \), there exists some \(\rho_\epsilon (0 < \rho_\epsilon < \epsilon) \) such that
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho_\epsilon} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1.
\]
Thus
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\epsilon} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho_\epsilon} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1,
\]
for each \(n \). Suppose that \(x_k \neq 0 \) for each \(k \in N \). This implies that \(u_k \Delta^m x_{k+s} \neq 0 \), for each \(k, s \in N \). Let \(\epsilon \to 0 \), then \(|| \frac{u_k \Delta^m x_{k+s}}{\epsilon} \cdot z_1, \cdots, z_{n-1} || \to \infty \). It follows that
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\epsilon} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \to \infty
\]
which is a contradiction. Therefore, \(u_k \Delta^m x_{k+s} = 0 \) for each \(k \) and thus \(x_k = 0 \) for each \(k \in N \). Let \(\rho_1 > 0 \) and \(\rho_2 > 0 \) be such that
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho_1} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1
\]
and
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m x_{k+s}}{\rho_2} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1
\]
for each \(n \). Let \(\rho = \rho_1 + \rho_2 \). Then by using Minkowski’s inequality, we have
\[
\left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(|| \frac{u_k \Delta^m (x_{k+s} + y_{k+s})}{\rho} \cdot z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq
\]
\begin{align*}
&\leq \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} + \Delta^{m}_{r} y_{k+s} \|}{\rho_1 + \rho_2}, z_1, \ldots, z_{n-1} \| \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq \\
&\leq \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[\frac{\rho_1}{\rho_1 + \rho_2} M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} \|}{\rho_1}, z_1, \ldots, z_{n-1} \| \right) \right]^{\frac{1}{p}} \right) + \\
&+ \left(\frac{\rho_2}{\rho_1 + \rho_2} M_k \left(\frac{\| u_k \Delta^{m}_{r} y_{k+s} \|}{\rho_2}, z_1, \ldots, z_{n-1} \| \right) \right) \leq 1.
\end{align*}

Since \(\rho \)'s are non-negative, so we have

\begin{align*}
g(x + y) &= \inf \left\{ \rho_{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} + \Delta^{m}_{r} y_{k+s} \|}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\} \\
&\leq \inf \left\{ \rho_{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} \|}{\rho_1}, z_1, \ldots, z_{n-1} \| \right) \right]^{\frac{1}{p}} \right) \leq 1 \right\} + \\
&+ \inf \left\{ \rho_{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} y_{k+s} \|}{\rho_2}, z_1, \ldots, z_{n-1} \| \right) \right]^{\frac{1}{p}} \right) \leq 1 \right\}.
\end{align*}

Therefore,

\begin{align*}
g(x + y) \leq g(x) + g(y).
\end{align*}

Finally, we prove that the scalar multiplication is continuous. Let \(\lambda \) be any complex number. By definition,

\begin{align*}
g(\lambda x) &= \inf \left\{ \rho_{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} \lambda x_{k+s} \|}{\rho}, z_1, \ldots, z_{n-1} \| \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\}.
\end{align*}

Then

\begin{align*}
g(\lambda x) &= \inf \left\{ \left(|\lambda| t \right)^{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} \|}{t}, z_1, \ldots, z_{n-1} \| \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\}.
\end{align*}

where \(t = \frac{\rho}{|\lambda|} \). Since \(|\lambda|^p \leq \text{max}(1, |\lambda|^\text{sup } p) \), we have

\begin{align*}
g(\lambda x) \leq \text{max}(1, |\lambda|^\text{sup } p) \inf \left\{ \left(|\lambda| t \right)^{\frac{M}{\eta}} : \left(\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{\| u_k \Delta^{m}_{r} x_{k+s} \|}{t}, z_1, \ldots, z_{n-1} \| \right) \right]^{p_k} \right)^{\frac{1}{p}} \leq 1 \right\}.
\end{align*}

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof of the theorem. \(\square \)

Theorem 3.3. Let \(M = (M_k) \) be a Musielak-Orlicz function. Then the following statements are equivalent

(i) \(\left[\hat{c}, u, p, || \cdot, \cdots, || \right] \left(\Delta^m \right) \subseteq \left[\hat{c}, M, u, p, || \cdot, \cdots, || \right] \left(\Delta^m \right), \)

(ii) \(\left[\hat{c}, u, p, || \cdot, \cdots, || \right] \left(\Delta^m \right) \subseteq \left[\hat{c}, M, u, p, || \cdot, \cdots, || \right] \left(\Delta^m \right), \)

(iii) \(\sup_{n} \frac{1}{\eta} \sum_{k=1}^{\eta} [M_k(t)]^{p_k} < \infty, \) where \(t = \frac{\| u_k \Delta^{m}_{r} x_{k+s} \|}{\rho}, z_1, \ldots, z_{n-1} \| > 0. \)
Proof. (i) \implies (ii) is obvious, since
$[\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m) \subseteq [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m).$

(ii) \implies (iii). Suppose
$[\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m) \subseteq [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$ and let (iii) does not hold. Then for some $t > 0$

$$\sup_{\eta_i} \frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(t)|^p_k = \infty,$$

and therefore there is a sequence (η_i) of positive integers such that

$$\frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(i-1)|^p_k > i, \quad i = 1, 2, ... \quad (2)$$

Define $x = (x_k)$ by

$$x_k = \begin{cases} i-1, & 1 \leq k \leq \eta_i, \quad i = 1, 2, ... \\ 0, & k \geq \eta_i. \end{cases}$$

Then $x = (x_k) \in [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$ but $x = (x_k) \notin [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$ which contradicts (ii). Hence (iii) must hold.

(iii) \implies (i). Suppose $x = (x_k) \in [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$ and $x = (x_k) \notin [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$.

Then

$$\sup_{s, \eta_i} \frac{1}{\eta_i} \sum_{k=1}^{\eta_i} \left| M_k\left(\|\frac{u_k \Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}\|\right)\right|_{\infty} = \infty. \quad (3)$$

Let $t = |\frac{u_k \Delta^m x_{k+s}}{\rho}, z_1, \cdots, z_{n-1}|$ for each k and fixed s, then by (3)

$$\sup_{\eta_i} \frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(t)|^p_k = \infty,$$

which contradicts (iii). Hence (i) must hold. \qed

Theorem 3.4. Let $1 \leq p_k \leq \sup_k p_k < \infty$. Then the following statements are equivalent

(i) $[\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m) \subseteq [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m),$

(ii) $[\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m) \subseteq [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m),$

(iii) $\inf_{\eta_i} \frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(t)|^p_k > 0, \quad t > 0.$

Proof. (i) \implies (ii) is obvious.

(ii) \implies (iii). Suppose $[\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m) \subseteq [\hat{c}, u, p, ||, \cdots, ||]_0 (\Delta^m)$ and let (iii) does not hold. Then

$$\inf_{\eta_i} \frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(t)|^p_k = 0, \quad t > 0. \quad (4)$$

We can choose an index sequence (η_i) such that

$$\frac{1}{\eta_i} \sum_{k=1}^{\eta_i} |M_k(i)|^p_k < i^{-1}, \quad i = 1, 2, ...$$
Define the sequence $x = (x_k)$ by

$$(x_k) = \begin{cases}
 i, & 1 \leq k \leq \eta_i, \quad i = 1, 2, \ldots \\
 0, & k \geq \eta_i.
\end{cases}$$

Thus by (4), $x = (x_k) \in \left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$ but $x = (x_k) \notin \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$ which contradicts (ii). Hence (iii) must hold.

(iii) \implies (i) Let $x = (x_k) \in \left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$. That is,

$$\lim_{\eta} \frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{|u_k \Delta^m_r x_k + s, z_1, \cdots, z_{n-1}|}{\rho} \right) \right]^{p_k} = 0, \quad \text{uniformly in } s. \quad (5)$$

Suppose (iii) hold and $x = (x_k) \notin \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$. Then for some number $\epsilon_0 > 0$ and index η_0, we have $||u_k \Delta^m_r x_k + s, z_1, \cdots, z_{n-1}|| \geq \epsilon_0$, for some $s > s'$ and $1 \leq k \leq \eta_0$. Therefore $[M_k(\epsilon_0)]^{p_k} \leq \left[M_k \left(\frac{|u_k \Delta^m_r x_k + s, z_1, \cdots, z_{n-1}|}{\rho} \right) \right]^{p_k}$ and consequently by (5)

$$\lim_{\eta} \frac{1}{\eta} \sum_{k=1}^{\eta} [M_k(\epsilon_0)]^{p_k} = 0,$$

which contradicts (iii). Hence $\left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r) \subseteq \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r).$ \hfill \square

Theorem 3.5. Let $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function. Let $1 \leq p_k \leq \sup_k p_k < \infty$. Then

$$\left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r) \subseteq \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$$

holds if and only if

$$\lim_{\eta} \frac{1}{\eta} \sum_{k=1}^{\eta} [M_k(t)]^{p_k} = \infty, \quad t > 0. \quad (6)$$

Proof. Suppose $\left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r) \subseteq \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$ and let (6) does not hold. Therefore there is a number $t_0 > 0$ and an index sequence (η_i) such that

$$\frac{1}{\eta_i} \sum_{k=1}^{\eta_i} [M_k(t_0)]^{p_k} \leq N < \infty, \quad i = 1, 2, \ldots \quad (7)$$

Define the sequence $x = (x_k)$ by

$$(x_k) = \begin{cases}
 t_0, & 1 \leq k \leq \eta_i, \quad i = 1, 2, \ldots \\
 0, & k \geq \eta_i.
\end{cases}$$

Clearly, $x = (x_k) \in \left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$ but $x = (x_k) \notin \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r).$ Hence (6) must hold.

Conversely, if $x = (x_k) \in \left[\hat{c}, \mathcal{M}, u, p, ||\cdot, \cdot, \cdot||\right]_0 (\Delta^m_r)$, then for each s and η

$$\frac{1}{\eta} \sum_{k=1}^{\eta} \left[M_k \left(\frac{|u_k \Delta^m_r x_k + s, z_1, \cdots, z_{n-1}|}{\rho} \right) \right]^{p_k} \leq N < \infty. \quad (8)$$
Suppose that \(x = (x_k) \not\in \left[\hat{c}, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r) \). Then for some number \(\epsilon_0 > 0 \) there is a number \(s_0 \)

\[
\frac{\|u_k\Delta^m_r x_k + s\|}{s}, z_1, \cdots, z_{n-1} \| \geq \epsilon_0, \quad \text{for} \quad s \geq s_0.
\]

Therefore

\[
[M_k(\epsilon_0)]^{pk} \leq \left[M_k\left(\frac{\|u_k\Delta^m_r x_k + s\|}{s}, z_1, \cdots, z_{n-1} \| \right) \right]^{pk},
\]

and hence for each \(k \) and \(s \) we get

\[
\frac{1}{\eta} \sum_{k=1}^\eta [M_k(\epsilon_0)]^{pk} \leq N < \infty,
\]

for some \(N > 0 \), which contradicts (6). Hence

\[
\left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_\infty(\Delta^m_r) \subseteq \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r).
\]

\(\square \)

Theorem 3.6. Suppose \(M = (M_k) \) be a Musielak-Orlicz function and let \(1 \leq p_k \leq \sup_k p_k < \infty \).

Then

\[
\left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_\infty(\Delta^m_r) \subseteq \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r)
\]

holds if and only if

\[
\lim_{t \to 0} \frac{1}{\eta} \sum_{k=1}^\eta [M_k(t)]^{pk} = 0, \quad t > 0.
\] \((9) \)

Proof. Let \(\left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_\infty(\Delta^m_r) \subseteq \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r) \). Suppose that (9) does not hold. Then for some \(t_0 > 0 \),

\[
\lim_{t \to 0} \frac{1}{\eta} \sum_{k=1}^\eta [M_k(t)]^{pk} = L \neq 0.
\] \((10) \)

Define \(x = (x_k) \) by

\[
(x_k) = t \sum_{v=0}^{k-m} (-1)^m \left(\begin{array}{c} m + k - v - 1 \\ k - v \end{array} \right)
\]

for \(k = 1, 2, \ldots \). Then \(x = (x_k) \not\in \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r) \) but

\[
x = (x_k) \in \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_\infty(\Delta^m_r).
\]

Hence (9) must hold.

Conversely, let \(x = (x_k) \in \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_\infty(\Delta^m_r) \). Then for every \(k \) and \(s \), we have

\[
\|u_k\Delta^m_r x_k + s, z_1, \cdots, z_{n-1} \| \leq N < \infty.
\]

Therefore

\[
\left[M_k\left(\frac{\|u_k\Delta^m_r x_k + s\|}{s}, z_1, \cdots, z_{n-1} \| \right) \right]^{pk} \leq [M_k(N)]^{pk}
\]

and

\[
\lim_{t \to 0} \frac{1}{\eta} \sum_{k=1}^\eta [M_k\left(\frac{\|u_k\Delta^m_r x_k + s\|}{s}, z_1, \cdots, z_{n-1} \| \right)]^{pk} \leq \lim_{t \to 0} \frac{1}{\eta} \sum_{k=1}^\eta [M_k(N)]^{pk} = 0.
\]

Hence \(x = (x_k) \in \left[\hat{c}, M, u, p, ||\cdot, \cdot, \cdot||\right]_0(\Delta^m_r) \). This completes the proof. \(\square \)
4. Acknowledgement

The authors thank the referee(s) for their valuable suggestions that improved the presentation of the paper.

References

Kuldip Raj is an assistant Professor in the School of Mathematics, Shri Mata Vaishno Devi University, Katra, India. His area of specialization is sequence series, summability and operator theory.
Sunil K. Sharma is a Ph.D. Scholar in the School of Mathematics, Shri Mata Vaishno Devi University, Katra, India. His area of specialization is sequence series, summability and operator theory.