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Abstract: Motivated by chemical applications of topological indices in the QSPR/QSAR 
analysis, we introduce here a new topological index that we call, First Neighbourhood 
Zagreb Index (FNZI) and denote it by NM1(G). In this paper, FNZI is tested with physico-
chemical properties of octane isomers such as entropy, acentric factor, enthalpy of 
vaporization (HVAP) and DHVAP using the linear models. The FNZI shows excellent 
correlation with these chemical properties. Specially, high correlation with acentric factor 
(coefficient of correlation 0.994557). Later, we obtain bounds for NM1(G) in terms of order 
and size of original graph and determine the extremal graphs which achieve the bounds. 
Finally, as an application we compute the FNZI of line graphs of subdivision graphs of 2D-
lattice, nanotube and nanotorus of 4 8[ , ]TUC C p q .  
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1. Introduction 

Let = ( , )G V E  be a simple graph with V  as vertex set and E  as edge set. 
Let | |=V n  and | |=E m . The set of neighbourhood of a vertex v G∈  is defined as 
the number of vertices adjacent to v  and denoted by ( )GN v . The degree of a 
vertex ( )v V G∈ , denoted by ( )Gd v  and is defined as | ( ) |GN v . A graph G  is said 

to be r -regular if degree of each vertex in G  is equal to ( ).r Z +∈  The subdivision 
graph ( )S G  is the graph obtained from G  by replacing each of its edge by a path 
of length two [9]. The line graph ( )L G  of G  is the graph whose vertex set is 

( )E G  in which two vertices are adjacent if and only if they are adjacent in G [9]. 
For unexplained graph terminology and notation refer [9, 13]. 

In the recent days chemical graph theory is growing big because of its 
application in QSAR/QSPR study. A graph associated to a chemical molecule is 
easier to study in terms of graph invariants. Topological indices are such graph 
invariants. Due to this special property, topological indices are extensively used in 
chemistry. There are numerous indices defined so far. Among them, first Zagreb 
index is the first degree based topological index conceived in 1972 [8].  
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Later, second Zagreb index [7], F-index [6], connectivity index (or Randi c′  
index) [21] are defined and extensively studied. Very recently, indices like 
Sanskruti index [10], second order first Zagreb index [3] and ( , )β α -connectivity 
index [2] were introduced. The higher-order connectivity indices have found 
numerous applications in chemistry. For details see [12, 17, 20, 21]. 

Let 
( )

( ) = ( )
G

G G
u N v

S v d u
∈
∑  be the degree sum of neighbour vertices and 

( ) = { : ( )}GN v u uv E G∈ . We denote First Neighbourhood Zagreb index (FNZI) as 

1( )NM G  and define as 2
1

( )
( ) = ( )G

v V G
NM G S v

∈
∑ . 

Let p  and q  be the number of squares in a row and the number of rows of squares 
respectively in 2D -lattice, nanotube and nanotorus of 4 8[ , ]TUC C p q . The 2D -
lattice, nanotube and nanotorus of 4 8[4,3]TUC C  is shown in Fig. 1. (a), (b) and (c) 
respectively. Much of the research work has been done on 4 8[ , ]TUC C p q  
nanostructures. For example, authors in [1], computed Weiner index of 

4 8[ , ]TUC C p q  nanotorus, and in [1, 2, 3, 10, 15], authors have obtained the 
expressions for some topological indices of line graph of subdivision graphs of 2D-
lattice, nanotube and nanotorus of 4 8[ , ]TUC C p q . For more on topological indices of 
line graphs of subdivision graphs refer [14, 22]. 
 

 
Figure 1: (a) 2D-lattice of 4 8[4,3]TUC C ; (b) 4 8[4,3]TUC C  nanotube; 
               (c) 4 8[4,3]TUC C  nanotorus.    
 
       The present paper is organized as follows: In section 2, we study the chemical 
applicability of the FNZI. In section 3, we obtain the upper and lower bounds for 
FNZI. In Section 4, we derive explicit formula for computing the FNZI of line 
graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of 

4 8[ , ]TUC C p q . 
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2. On the chemical applicability of First neighbourhood Zagreb index 
 

The topological indices with the high correlation factor are of foremost important 
in quantitative structure-property relationships (QSPR) and quantitative structure-
activity relationships (QSAR) analysis. In this section we discuss the linear 
regression analysis of FNZI with entropy (S), acentric factor (AcentFac), enthalpy 
of vaporization (HVAP) and DHVAP of octane isomers. The FNZI was tested 
using a dataset of octane isomers found at 
http://www.moleculardiscriptors.eu/dataset.htm. Interestingly, we have noticed that 
this index is highly correlated with acentric factor ( | |r =0.994557). The dataset of 
octane isomers (columns 1-5 of Table 1) are taken from above web link whereas 
last column of Table 1 is calculated by definition of FNZI.   
 
Table 1: Experimental values of the entropy, AcentFac, HVAP, DHVAP and 
corresponding value of FNZI of octane isomers. 

Alkane S AcentFac DHVAP HVAP NM1 
 n-octane  111.67 0.397898 9.915 73.19 90 
2-methyl-heptane  109.84 0.377916 9.484 70.3 104 
3-methyl-heptane  111.26 0.371002 9.521 71.3 108 
4-methyl-heptane  109.32 0.371504 9.483 70.91 110 
3-ethyl-hexane  109.43 0.362472 9.476 71.7 114 
2,2-dimethyl-hexane  103.42 0.339426 8.915 67.7 138 
2,3-dimethyl-hexane  108.02 0.348247 9.272 70.2 126 
2,4-dimethyl-hexane  106.98 0.344223 9.029 68.5 124 
2,5-dimethyl-hexane  105.72 0.35683 9.051 68.6 118 
3,3-dimethyl-hexane  104.74 0.322596 8.973 68.5 146 
3,4-dimethyl-hexane  106.59 0.340345 9.316 70.2 130 
2-methyl-3-ethyl-pentane 106.06 0.332433 9.209 69.7 132 
3-methyl-3-ethyl-pentane  101.48 0.306899 9.081 69.3 152 
2,2,3-trimethyl-pentane  101.31 0.300816 8.826 67.3 162 
2,2,4-trimethyl-pentane  104.09 0.30537 8.402 64.87 156 
2,3,3-trimethyl-pentane  102.06 0.293177 8.897 68.1 164 
2,3,4-trimethyl-pentane  102.39 0.317422 9.014 68.37 144 
2,2,3,3-tetramethylbutane  93.06 0.255294 8.41 66.2 194 

 
The linear regression models for the entropy, acentric factor, DHVAP and 

HVAP using the data of Table 1 are obtained using the least squares fitting 
procedure as implemented in R  software [19]. The fitted models are: 
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1

1

1

1

= 127.80036( 1.81803) 0.16707( 0.01334) (1)

= 0.5192( 0.004887) 0.001369( 0.00003585) (2)

= 10.90808( 0.22768) 0.01330( 0.00167) (3)

= 77.870488( 1.51089) 0.06498( 0.01108) (4)

S NM

AcentFac NM

DHVAP NM

HVAP NM

± − ±

± − ±

± − ±

± − ±

 

 

 
 
Figure 2: Scatter diagram of  (a) S  on FNZI , (b) AcentFac  on FNZI  
superimposed by the fitted regression line.     

 
Figure 3: Scatter diagram of (a) DHVAP  on FNZI  (b) HVAP  on FNZI , 
superimposed by the fitted regression line.    
 
Note: The values in the brackets of Eq. (1) to (4) are the corresponding standard 
errors of the regression coefficients. 
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Table 2: Correlation coefficient and residual standard error of regression models 
 

Physical Property 
Absolute value of the 
correlation coefficient ( | |r ) 

Residual 
standard error 

Enthalpy 0.9526144 1.416 
Acentric Factor 0.9945570 0.003807 

DHVAP 0.8935526 0.1774 
HVAP 0.8260472 0.8260472 

 
From Table 2, we can observe that FNZI highly correlates with acentric 

factor which is better than first Zagreb index ( | |r =0.973087869 and residual 
standard error is 0.008424), second order first Zagreb index ( | |r =0.99020 and 
residual standard error is 0.005101) [3] and ( , )β α − connectivity index (| |r
=0.95802 and residual standard error is 0.01047) [2]. Closer the | |r  to 1, better is 
the index.   
 
3. Mathematical Properties of the First neighbourhood Zagreb index 

 
Firstly, we mention below some results which are important for our result. 
   
Lemma 1.1  [11] Let G  be connected graph with n , 2n ≥  vertices and m  
edges. Then  

 
2

1
4( ) .mM G

n
≥     (4) 

Equality holds if and only if G  is isomorphic with a regular graph.   
   

Theorem 3.1 [18] Suppose ia  and ib , 1 i n≤ ≤  are positive real numbers, then  

         
2

2 2 21 2 1 2

=1 =1 =11 2 1 2

1 ( )
4

n n n

i i i i
i i i

M M m ma b a b
m m M M

 ≤ +  
 

∑ ∑ ∑    (5)  

where 
1 1

= max( )ii n
M a

≤ ≤
; 2

1
= max( )i

i n
M b

≤ ≤

; 
1 1

= min ( )ii n
m a

≤ ≤
 and 

2 1
= min ( )ii n

m b
≤ ≤

   

  
Theorem 3.2 [16] Let ia  and ib , 1 i n≤ ≤  are non-negative real numbers, then  

            ( )
2 2

22 2
1 2 1 2

=1 =1 =1 4

n n n

i i i i
i i i

na b a b M M m m − ≤ − 
 

∑ ∑ ∑  (6)  

where iM  and im  are defined similarly to Theorem 3.1.   
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Theorem  3.3. [4] Suppose ia  and ib , 1 i n≤ ≤  are positive real numbers, then  

            
=1 =1 =1

( )( )( )
n n n

i i i i
i i i

n a b a b n A a B bα− ≤ − −∑ ∑ ∑  (7) 

where , ,a b A  and B  are real constants, that for each i , 1 i n≤ ≤ , ia a A≤ ≤  and 

ib b B≤ ≤ . Further, 1
( ) = 1

2 2
n n

n n
n

α −
    
        

.   

 Theorem 3.4. [5] Let ia  and ib , 1 i n≤ ≤  are nonnegative real numbers, then  

            2 2

=1 =1 =1
( )

n n n

i i i i
i i i

b rR a r R a b + ≤ +  
 

∑ ∑ ∑  (8) 

where r  and R  are real constants, so that for each i , 1 i n≤ ≤ , holds, 

i i ira b Ra≤ ≤ .   
 

 We have the following observations.   
 

Observation 3.5. Let = ( , )G V E  be a graph with | |=V n  and | |=E m . Then  
                  ( ) 2 ( 1).

( )
G i

i

S v m n
v V G

≤ −
∈
∑  (9) 

The Observation 3.5 holds, from the fact that maximum degree of a vertex in any 
graph G  of order n  is 1n −  and the remaining vertices may have degree 1n≤ − . 
If all the vertices have degree 1n −  then their degree sum of neighbourhood 

vertices is equal to 2( 1)n − . For =
2
n

m  
 
 

 we get, ( ) = 2 ( 1).
( )

G i

i

S v m n
v V G

−
∈
∑  

This is possible only if G  is a complete graph. This leads to the following 
observation:   
 

Observation 3.6. If = nG K  be a complete graph of order 2n ≥  and size m , then  
                   ( ) = 2 ( 1).

( )
G i

i

S v m n
v V G

−
∈
∑             (10)   

The following theorem gives an upper bound for 1( )NM G  in terms of order and 
size of G . We use Observations 3.5 and 3.6 to prove the following theorem. 
 
Theorem 3.7. Let = ( , )G V E  be a graph with | |=V n  and | |=E m . Then 

                      
2 2

1
4 ( 1)( ) .m nNM G

n
−

≤            (11)   

Further, equality holds if and only if = , 2nG K n ≥ .   
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Proof. Let 1 2, , , na a a  and 1 2, , , nb b b  be any two sequence of real numbers. 
Then by Cauchy-Schwartz inequality, we have  

               
2

2 2

=1 =1 =1
.

n n n

i i i i
i i i

a b a b  ≤ ⋅ 
 
∑ ∑ ∑           (12) 

By setting = 1ia  and = ( )i G ib S v  in Eq. (12), we get  

             
2

2

=1 =1
( ) ( )

n n

G i G i
i i

S v n S v  ≤ ⋅ 
 
∑ ∑               (13) 

            
2

1
=1

( ) ( )
n

G i
i

S v nNM G  ≤ 
 
∑                              (14) 

             
1

=1
( ) ( )

n

G i
i

S v nNM G≤∑        (15) 

From Eq. (9) and Eq. (15), we have the following inequality  

            1

1

2 ( 1)1
( )

( ) 2 ( 1)

m n
nNM G

nNM G m n

−
≤

≤ −

 

which implies, 

                               
2 2

1
4 ( 1)( ) m nNM G

n
−

≤       (16) 

For equality, suppose = , 2nG K n ≥ , then the result follows from Observation 3.6  

Conversely, if the equality of Eq. (11) holds then 2 2
2

=1

4 ( 1)( ) =
n

G i
i

m nS v
n
−∑ . Then we 

conclude that the neighbourhood degree sum of every vertex is = 2 ( 1).( )G iS m nv −

This is possible only for complete graphs 2,nK n ≥ . Hence the theorem follows.  
 

 As an immediate consequence of Theorem 3.7 , we have the following result.   
 

Corollary 3.8. Let = ( , )G V E  be a graph with | |=V n  and | |=E m . Then  
              2

1 1( ) ( 1) ( ).NM G n M G≤ −                                              (17) 
Equality holds if and only if = , 2G K nn ≥ .     

Proof. Follows from Lemma 1 and Theorem 3.7.    

Before going for our next results, we define the following notions:   
 

Definition 1.  Let ( )G′∆  and ( )Gδ ′  denote the maximum and minimum 
neighbourhood degree sum of a graph G , where  

( ) = | ( ) | ,G iG max S v′∆     (18) 
( ) = | ( ) | .G iG min S vδ ′      (19) 

 184 



B. BASAVANAGOUD, A. P. BARANGI, S. M. HOSAMANI: FIRST NEIGHBOURHOOD…. 

The following theorem gives the upper bound for 1( )NM G  in terms of order, size, 
maximum and minimum neighbourhood degree sum of .G    
 
Theorem 3.9. Let G  be a graph of order n  and size m  with maximum(minimum) 
neighbourhood degree ( ) ( ( ))G Gδ′ ′∆  respectively. Then  

                
22 2

1
( 1) ( ) ( )( ) .

( ) ( )
m n G GNM G

n G G
δ

δ
′ ′ − ∆

≤ + ′ ′∆ 
        (20) 

 

Proof. Let G  be a graph with vertex set 1 2= { , , , }nV v v v  and let 

1 2( ), ( ), , ( )G G G nS v S v S v  are the corresponding neighbourhood degrees of 
vertices of G . We assume that = 1ia , = ( )i G ib S v , 1 2= = ( )M M G′∆  and 

1 2= = ( )m m Gδ ′  in Eq. (5) and by Eq. (16) we get  

           

2 22 2

1 2 2
=1

2
2 2

1

22 2

1 ( ) ( )( ) ( )
4 ( ) ( )

1 ( ) ( )( ) 4 ( 1)
4 ( ) ( )

( 1) ( ) ( )
( ) ( )

n

G i
i

G GnNM G S v
G G

G GNM G m n
n G G

m n G G
n G G

δ
δ

δ
δ

δ
δ

 ′ ′∆  ≤ + ⋅    ′ ′∆   

′ ′ ∆
≤ + ⋅ − ′ ′∆ 

′ ′ − ∆
≤ + ′ ′∆ 

∑
 

as desired.  
 

Theorem 3.10. Let G  be a graph of order n  and size m . Then  
 

2
2 2 2 2

1
1( ) ( ( ) ( )) 4 ( 1) .

4
nNM G G G m n

n
δ

 
′ ′≤ ∆ − + − 

 
        (21) 

   

Proof. The required inequality follows by setting 1 = 1a , = ( )i G ib S v , 

1 2= = ( )M M G′∆  and 1 2= = ( )m m Gδ ′  in Eq. (6).  
 
Theorem 3.11. Let G  be a nontrivial graph of order n  and size m . Then  

               

2 2 2

1
( )( ( ) ( )) 4 ( 1)( ) ,n G G m nNM G

n
α δ′ ′∆ − + −

≤  

where, 1
( ) = 1

2 2
n n

n n
n

α −
    
        

. Further, equality holds if and only if = 2,nG K n ≥ .   

Proof. Let 1 2, , , na a a  and 1 2, , , nb b b  be real numbers for which there exist real 
constants , ,a b A  and B , so that for each i , = 1,2, , , ii n a a A≤ ≤  and 

ib b B≤ ≤ . Then by Theorem 3.3, the following inequality is valid.  
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=1 =1 =1

( )( )( )
n n n

i i i i
i i i

n a b a b n A a B bα− ≤ − −∑ ∑ ∑  (22) 

Where, 1
( ) = 1

2 2
n n

n n
n

α −
    
        

. Equality holds if and only if 1 2= = = na a a  and 

1 2= = = nb b b .  
We choose = ( ) =i G i ia S v b , = ( ) =A G B′∆  and = ( ) =a G bδ ′ , Eq. (22), becomes  

    

2
2

=1 =1
( ) ( ) ( )( ( ) ( ))( ( ) ( ))

n n

G i G i
i i

n S v S v n G G G Gα δ δ  ′ ′ ′ ′− ≤ ∆ − ∆ − 
 

∑ ∑  (23) 

                       
2 2 2

1( ) ( )( ( ) ( )) 4 ( 1)nNM G n G G m nα δ′ ′≤ ∆ − + −  (24) 

                               

2 2 2

1
( )( ( ) ( )) 4 ( 1)( ) n G G m nNM G

n
α δ′ ′∆ − + −

≤      (25) 

The equality in above equation holds if and only if 1 2= = = na a a , 

1 2= = = nb b b  and 
( )

( ) = 2 ( 1)
i

G i
v V G

S v m n −
∈
∑ . Therefore equality of the theorem 

holds if and only if = , 2nG K n ≥ .  
 

Theorem 3.12. Let G  be a nontrivial graph of order n  and size m . Then  

         1( ) ( ( ) ( )) 2 ( 1) ( ) ( ).NM G G G m n n G Gδ δ′ ′ ′ ′≤ + ∆ − − ∆        (26) 
Equality holds if and only if = , 2nG K n ≥ .   
 

Proof. Let 1 2, , , na a a  and 1 2, , , nb b b  be real numbers for which there exist real 
constants r  and R  so that for each i , = 1,2, ,i n  holds i i ira b Ra≤ ≤ . Then 
the following inequality is valid.  

                
( )2 2

=1 =1 =1
.

n n n

i i i i
i i i

b rR a r R a b+ ≤ +∑ ∑ ∑         (27) 

Equality of (27) equation holds if and only if, for at least one i , 1 i n≤ ≤  holds 
= =i i ira b Ra . 

We choose = ( )i G ib S v , = 1ia , = ( )r Gδ ′  and = ( )R G′∆  in Eq. (27), then  
2

=1 =1 =1

1
=1

1

( ) ( ) ( ) 1 ( ( ) ( )) ( )

( ) ( ) ( ) ( ( ) ( )) ( )

( ) ( ( ) ( )) 2 ( 1) ( ) ( ).

n n n

G i G i
i i i

n

G i
i

S v G G G G S v

NM G G G n G G S v

NM G G G m n n G G

δ δ

δ δ

δ δ

′ ′ ′ ′+ ∆ ≤ + ∆

′ ′ ′ ′+ ∆ ≤ + ∆

′ ′ ′ ′≤ + ∆ − − ∆

∑ ∑ ∑

∑

 
If for some i , = =i i ira b Ra  holds, then = =ib r R  also holds. Therefore 
equality holds if and only if ( ) = ( ) = 2 ( 1)G G m nδ ′ ′∆ − . This implies that G  is a 
complete graph , 2nK n ≥ .  
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4. First neighbourhood Zagreb index of some nanostructures 
 

  In this section, we obtain explicit formule for computing FNZI of line 
graph of subdivision graphs of 2D-lattice, nanotube and nanotorus of 

4 8[ , ].TUC C p q  The proof technique used here is partitioning the edge set of 
nanostructures. Here, we denote ,p q  respectively to denote order and size of the 
underline molecular graph. 

 

Figure 4: (a) Subdivision graph of 2D-lattice of 4 8[4,3]TUC C ; (b) line graph of 
the subdivision graph of 2D-lattice of 4 8[4,3]TUC C .     
 

Table 3:Order and Size of graphs 
Graph Order Size 

2D-Lattice of 4 8[ , ]TUC C p q  4 pq  6 pq p q− −  

4 8[ , ]TUC C p q  Nanotube 4 pq  6 pq p−  

4 8[ , ]TUC C p q  Nonotorus 4 pq  6 pq  
 

Table 4:Vertex partition Graph A when > 1, > 1p q  
( ( ), ( ))A Ad v S v  (2, 4) (2, 5) (3, 8) (3, 9) 

Number of 
Vertices 8  

4( 2)p q+ −
 

4( 2)p q+ −
 

2(6 5 5 4)pq p q− − +  

 
                 Table 5: Vertex partition Graph A when > 1, = 1p q    

( ( ), ( ))A Ad v S v  (2, 4) (2, 5) (3, 8) (3, 9) 

Number of Vertices 8  4( 1)p −  4( 1)p −  2( 1)p −  
 
  The following theorem gives the FNZI of line graph of the subdivision 

graph of 2D -lattice of 4 8[ , ]TUC C p q .   
 

Theorem 4.1. Let A  be a line graph of the subdivision graph of 2D -lattice of 
4 8[ , ]TUC C p q . Then  
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1( )NM A =
128 356( 2) 162(6 5 5 4) > 1, > 1,
128 518( 1) > 1, = 1.

p q pq p q if p q
p if p q

+ + − + − − +
 + −

  

   
Proof. The 2D -lattice of 4 8[ , ]TUC C p q  has 4 pq  vertices and 6 pq p q− −  
edges. The subdivision graph of 2D -lattice of 4 8[ , ]TUC C p q  has 10 pq p q− −  
vertices and 2(6 )pq p q− −  edges. Thus, line graph of subdivision graph of 2D -
lattice of 4 8[ , ]TUC C p q  has vertices 2(6 )pq p q− −  and 18 5 5pq p q− −  edges. 
Therefore, we partition the vertex set of G  into the following cases: 
Case 1: when > 1p  and > 1q .  
From the Table 4, we see that the vertex partition is obtained based on the degree 
sum of neighbour vertices of each vertex. 
Now,  

( )2
1

( )

2 2 2 2

( ) = ( )

= 8 (4) 4( 2) 5 4( 2) 8 2(6 5 5 4) 9
= 162(6 5 5 4) 356( 2) 128.

A
v V G

NM A S v

p q p q pq p q
pq p q p q

∈

× + + − × + + − × + − − + ×
− − + + + − +

∑

 
Case 2: when > 1p  and = 1q . 
The vertex partition is obtained on the base of the degree sum of neighbour vertices 
is shown in Table 5. 
Now,  

( )2
1

( )

2 2 2 2

( ) = ( )

= 8 (4) 4( 1) 5 4( 1) 8 2( 1) 9
= 128 518( 1).

A
v V G

NM A S v

p p p
p

∈

× + − × + − × + − ×
+ −

∑
 

  
Table 6:Vertex partition of Graph B when > 1, > 1p q  

( ( ), ( ))B Bd v S v  (2, 5) (3, 8) (3, 9) 

Number of Vertices 4 p  4 p  12 10pq p−  
 

Table 7:Vertex partition Graph B when > 1, = 1p q  
( ( ), ( ))B Bd v S v  (2, 5) (3, 8) (3, 9) 

Number of Vertices 4 p  4 p  2 p  
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Figure 5: (a) Subdivision graph of 4 8[4,3]TUC C  of nanotube; (b) line graph of the 
subdivision graph of 4 8[4,3]TUC C  of nanotube.    
 
The next theorem gives FNZI of line graph of the subdivision graph of 

4 8[ , ]TUC C p q  nanotube.  
Theorem 4.2.  If B  be a line graph of the subdivision graph of 4 8[ , ]TUC C p q  
nanotube, then  

 1

972 454 > 1, > 1,
( )

518 > 1, = 1.
pq p if p q

NM B
p if p q

−
= 


   

  
Proof. The 4 8[ , ]TUC C p q  nanotube has 4 pq  vertices and 6 pq p−  edges. The 
subdivision graph of 4 8[ , ]TUC C p q  nanotube has 10 pq p−  vertices and 

12 2pq p−  edges. Thus line graph of subdivision graph of 4 8[ , ]TUC C p q  
nanotube has 12 2pq p−  vertices and 18 5pq p−  edges. Therefore, we can 
partition the vertex set of G  into the following cases: 
Case 1: when > 1p  and > 1q . 
From the Table 6, we observe that the vertex partition is obtained based on the 
degree sum of neighbour vertices of each vertex. 
Now,  

2
1

( )

2 2 2

( ) = ( ( ))

= 4 5 4 8 (12 10 ) 9
= 972 454 .

B
v V G

NM B S v

p p pq p
pq p

∈

× + × + − ×
−

∑

 
 

Case 2: when > 1p  and = 1q , the vertex partition is obtained on the base of the 
degree sum of neighbour vertices is shown in Table 7. 
Now,  
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2
1

( )

2 2 2

( ) = ( ( ))

= 4 5 4 8 2 9
= 518 .

B
v V G

NM B S v

p p p
p

∈

× + × + ×

∑

 

 
The following theorem gives FNZI of line graph of the subdivision graph of 

4 8[ , ]TUC C p q  nanotorus.   
 

 
Figure 6: (a) Subdivision graph of 4 8[4,3]TUC C  of nanotorus; (b) line graph of 
the subdivision graph of 4 8[4,3]TUC C  of nanotorus.   

 
Table 8:Vertex partition of Graph C 

( ( ), ( ))C Cd v S v  (3, 9) 
Number of Vertices 12 pq  

 
 

Theorem 4.3. Let C  be a line graph of the subdivision graph of 4 8[ , ]TUC C p q  of 
nanotorus. Then 1( ) = 972NM C pq .   

  

Proof. The subdivision graph of 4 8[ , ]TUC C p q  of nanotorus and the graph C  are 
shown in Fig. 6 (a) and (b). The graph C  is 3 -regular with 12 pq  vertices. 
Therefore, degree sum of each neighbour vertices is 9 . 
Now,  

                           

2
1

( )

2

( ) = ( ( ))

= 12 9
= 972 .

C
v V G

NM C S v

pq
pq

∈

×

∑
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3.    Conclusion 
In this paper, we have introduced a novel topological index namely the 

first neighbourhood Zagreb index (FNZI) in the field of mathematical chemistry, it 
has chemical applicability in determining several physico-chemical properties of 
octane isomers as it has coefficient of correlation close to 1, which is far better than 
other indices. Next, we have studied mathematical properties of FNZI by obtaining 
several bounds (both lower and upper). Finally, we have obtained explicit formulae 
for FNZI of certain nanostructures.  
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РЕЗЮМЕ 
        Основываясь на химических применениях топологических индексов в анализе 
QSPR / QSAR, мы вводим новый топологический индекс, который называем 
Загребский индекс первой окрестности (FNZI), и обозначаем его как NM1(G). В этой 
статье FNZI тестируется с физико-химическими свойствами изомеров октана, такими 
как энтропия, ацентрический фактор, энтальпия испарения (HVAP) и DHVAP с 
использованием линейных моделей. FNZI показывает отличную корреляцию с этими 
химическими свойствами. Особенно высокая корреляция с ацентрическим фактором 
(коэффициент корреляции 0,994557). Позже мы получаем оценки для NM1(G) в 
терминах порядка и размера исходного графа и определяем экстремальные графы, 
которые достигают границ. Наконец, в качестве приложения мы вычисляем FNZI 
линейных графов подразделов графов 2D-решетки, нанотрубок и нанотора 

4 8[ , ]TUC C p q . 
Ключевые слова: первый загребский индекс, первая окрестность загребского 
индекса, линейный граф, граф подразделений.   
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