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Abstract: Motivated by chemical applications of topological indices in the QSPR/QSAR
analysis, we introduce here a new topological index that we call, First Neighbourhood
Zagreb Index (FNZI) and denote it by NM3(G). In this paper, FNZI is tested with physico-
chemical properties of octane isomers such as entropy, acentric factor, enthalpy of
vaporization (HVAP) and DHVAP using the linear models. The FNZI shows excellent
correlation with these chemical properties. Specially, high correlation with acentric factor
(coefficient of correlation 0.994557). Later, we obtain bounds for NM1(G) in terms of order
and size of original graph and determine the extremal graphs which achieve the bounds.
Finally, as an application we compute the FNZI of line graphs of subdivision graphs of 2D-
lattice, nanotube and nanotorus of TUC,C,[p,q]-
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1. Introduction
Let G =(V,E) be asimple graph with V as vertex set and E as edge set.

Let |V |=n and | E |= m. The set of neighbourhood of a vertex v e G is defined as
the number of vertices adjacent to v and denoted by Ng(v). The degree of a
vertex v eV (G), denoted by d(v) and is defined as | N (v) |. A graph G is said

to be r-regular if degree of each vertex in G is equal to r(e Z*). The subdivision
graph S(G) is the graph obtained from G by replacing each of its edge by a path
of length two [9]. The line graph L(G) of G is the graph whose vertex set is
E(G) in which two vertices are adjacent if and only if they are adjacent in G [9].
For unexplained graph terminology and notation refer [9, 13].

In the recent days chemical graph theory is growing big because of its
application in QSAR/QSPR study. A graph associated to a chemical molecule is
easier to study in terms of graph invariants. Topological indices are such graph
invariants. Due to this special property, topological indices are extensively used in
chemistry. There are numerous indices defined so far. Among them, first Zagreb
index is the first degree based topological index conceived in 1972 [8].
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Later, second Zagreb index [7], F-index [6], connectivity index (or Randic’
index) [21] are defined and extensively studied. Very recently, indices like
Sanskruti index [10], second order first Zagreb index [3] and (4, @) -connectivity

index [2] were introduced. The higher-order connectivity indices have found
numerous applications in chemistry. For details see [12, 17, 20, 21].
Let S (v)= X dg(u) be the degree sum of neighbour vertices and

ueNg (v)

Ng (v) ={u:uv e E(G)}. We denote First Neighbourhood Zagreb index (FNZI) as
NM, (G) and define as NM,(G) = ¥ S (v)*.

veV (G)
Let p and g be the number of squares in a row and the number of rows of squares
respectively in 2D -lattice, nanotube and nanotorus of Tuc,C,[p,q].- The 2D-
lattice, nanotube and nanotorus of TUC,C,[4,3] is shown in Fig. 1. (a), (b) and (c)
respectively. Much of the research work has been done on TUC,C,[p,q]

nanostructures. For example, authors in [1], computed Weiner index of
TUC,C,[p,q] hanotorus, and in [1, 2, 3, 10, 15], authors have obtained the

expressions for some topological indices of line graph of subdivision graphs of 2D-
lattice, nanotube and nanotorus of TUC,C,[p,q]. For more on topological indices of

line graphs of subdivision graphs refer [14, 22].

(a) (b) (c)

Figure 1: (a) 2D-lattice of TUC,C,[4,3]; (b) TUC,C,[4,3] nanotube;
(c) TUC,C,[4,3] nanotorus.

The present paper is organized as follows: In section 2, we study the chemical
applicability of the FNZI. In section 3, we obtain the upper and lower bounds for
FNZI. In Section 4, we derive explicit formula for computing the FNZI of line
graphs of subdivision graphs of 2D-lattice, nanotube and nanotorus of

TUC4C8[ p! q] '
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2. On the chemical applicability of First neighbourhood Zagreb index

The topological indices with the high correlation factor are of foremost important
in quantitative structure-property relationships (QSPR) and quantitative structure-
activity relationships (QSAR) analysis. In this section we discuss the linear
regression analysis of FNZI with entropy (S), acentric factor (AcentFac), enthalpy
of vaporization (HVAP) and DHVAP of octane isomers. The FNZI was tested
using a dataset of octane isomers found at
http://www.moleculardiscriptors.eu/dataset.htm. Interestingly, we have noticed that
this index is highly correlated with acentric factor (| r |=0.994557). The dataset of

octane isomers (columns 1-5 of Table 1) are taken from above web link whereas
last column of Table 1 is calculated by definition of FNZI.

Table 1: Experimental values of the entropy, AcentFac, HVAP, DHVAP and
corresponding value of FNZI of octane isomers.

Alkane S AcentFac | DHVAP | HVAP | NM;
n-octane 111.67 | 0.397898 9.915 73.19 90
2-methyl-heptane 109.84 | 0.377916 9.484 70.3 104
3-methyl-heptane 111.26 | 0.371002 9.521 71.3 108
4-methyl-heptane 109.32 | 0.371504 9.483 70.91 | 110
3-ethyl-hexane 109.43 | 0.362472 9.476 71.7 114
2,2-dimethyl-hexane 103.42 | 0.339426 8.915 67.7 138
2,3-dimethyl-hexane 108.02 | 0.348247 9.272 70.2 126
2,4-dimethyl-hexane 106.98 | 0.344223 9.029 68.5 124
2,5-dimethyl-hexane 105.72 0.35683 9.051 68.6 118
3,3-dimethyl-hexane 104.74 | 0.322596 8.973 68.5 146
3,4-dimethyl-hexane 106.59 | 0.340345 9.316 70.2 130
2-methyl-3-ethyl-pentane | 106.06 | 0.332433 9.209 69.7 132
3-methyl-3-ethyl-pentane | 101.48 | 0.306899 9.081 69.3 152
2,2,3-trimethyl-pentane 101.31 | 0.300816 8.826 67.3 162
2,2,4-trimethyl-pentane 104.09 0.30537 8.402 64.87 | 156
2,3,3-trimethyl-pentane 102.06 | 0.293177 8.897 68.1 164
2,3,4-trimethyl-pentane 102.39 | 0.317422 9.014 68.37 | 144
2,2,3,3-tetramethylbutane 93.06 | 0.255294 8.41 66.2 194

The linear regression models for the entropy, acentric factor, DHVAP and
HVAP using the data of Table 1 are obtained using the least squares fitting
procedure as implemented in R software [19]. The fitted models are:
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S = 127.80036(+1.81803) — 0.16707(+0.01334)NM, 1)
AcentFac = 0.5192(+0.004887) — 0.001369(+0.00003585)NM, (2)
DHVAP = 10.90808(+0.22768) — 0.01330(+0.00167)NM, 3)

HVAP = 77.870488(+1.51089) — 0.06498(+0.01108)NM, (4)
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Figure 2: Scatter diagram of (a) S on FNZI, (b) AcentFac on FNZI
superimposed by the fitted regression line.
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Figure 3: Scatter diagram of (a) DHVAP on FNZI (b) HVAP on FNZI,
superimposed by the fitted regression line.

Note: The values in the brackets of Eq. (1) to (4) are the corresponding standard
errors of the regression coefficients.
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Table 2: Correlation coefficient and residual standard error of regression models

. Absolute value of the Residual
Physical Property | ., rejation coefficient (Jr|) | standard error
Enthalpy 0.9526144 1.416
Acentric Factor 0.9945570 0.003807

DHVAP 0.8935526 0.1774
HVAP 0.8260472 0.8260472

From Table 2, we can observe that FNZI highly correlates with acentric
factor which is better than first Zagreb index (|r|=0.973087869 and residual

standard error is 0.008424), second order first Zagreb index (|r|=0.99020 and
residual standard error is 0.005101) [3] and (f,«)—connectivity index (|r|
=0.95802 and residual standard error is 0.01047) [2]. Closer the |r | to 1, better is
the index.

3. Mathematical Properties of the First neighbourhood Zagreb index
Firstly, we mention below some results which are important for our result.

Lemma 1.1 [11] Let G be connected graph with n, n>2 vertices and m
edges. Then

M,(G) > ‘":. @)

Equality holds if and only if G is isomorphic with a regular graph.

Theorem 3.1 [18] Suppose & and b, 1<i<n are positive real numbers, then
1 /MM, mm,
a’dh’ < ab 5
.Z‘.Z‘ \/mm \/MM (z"] ®)
where M, = max(a,); M, = max(b); m, = = min (a,) and m, = = min (b,)

<1<
1<i<n 1<i<n

Theorem 3.2 [16] Let & and b,, 1<i<n are non-negative real numbers, then

n n n 2 2
;a?;bf _(;aibij < nT(Mle —mm, )2 (6)

where M, and m; are defined similarly to Theorem 3.1.
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Theorem 3.3.[4] Suppose & and b,, 1<i<n are positive real numbers, then

nzn:ai b, — Zn:ai Zn:bi
i=1

i=1 =l

< a(n)(A-a)(B-b) (7

where a,b, A and B are real constants, that for each i, 1<i<n, a<a <A and

b<b <B.Further, 4(n)= nFJ(l_EFD.
2 ni2

Theorem 3.4. [5] Let &, and b,, 1<i<n are nonnegative real numbers, then

ibf + rRiai2 < (r+ R)(iaibij (8)

where r and R are real constants, so that for each i, 1<i<n, holds,
ra, <b <Ra,.

We have the following observations.

Observation 3.5. Let G = (V,E) be agraph with |V |=n and |E|=m. Then

> Ss(v) < 2m(n-1). ©)

veV (G)
The Observation 3.5 holds, from the fact that maximum degree of a vertex in any
graph G of order n is n—1 and the remaining vertices may have degree <n-—1.
If all the vertices have degree n—1 then their degree sum of neighbourhood
vertices is equal to (n—1)°. For m = (n] weget, > Sg(v)=2m(n-1).
2 v.eV(G)

This is possible only if G is a complete graph. This leads to the following
observation:

Observation 3.6. If G = K be a complete graph of order n>2 and size m, then

3 S.(v) = 2m(n-1). (10)
veV (G)

The following theorem gives an upper bound for NM, (G) in terms of order and
size of G . We use Observations 3.5 and 3.6 to prove the following theorem.

Theorem 3.7. Let G = (V,E) be agraph with |V |=n and | E|=m. Then

Am*(n-1)°

NM,(G) < (11)

Further, equality holds if and only if G=K_, n>2.
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Proof. Let &,4,,...,a, and b,b,,...,b, be any two sequence of real numbers.
Then by Cauchy-Schwartz inequality, we have

[Zn:ai b, j < Zn:af . _Zn:biz. (12)

By setting & =1 and b, = S;(v;) in Eq. (12), we get
(Zn:SG (Vi)j < n‘ZH:SG (v,)? (13)
[Zs (v»}
ZH:SG(vi) < nNM,(G) (15)

From Eqg. (9) and Eg. (15), we have the following inequality
2m(n-1)

JNNM, (G)
JONM,(G) < 2m(n-1)

which implies,
4m*(n-1)°

n
For equality, suppose G = K, n> 2, then the result follows from Observation 3.6

IN

nNM, (G) (14)

1 <

NM,(G) < (16)

Conversely, if the equality of Eq. (11) holds then iSG(V-)Z _4m*(n-1)° Then we
i1 I n

conclude that the neighbourhood degree sum of every vertex is Sg (V;) = 2m(n-1).

This is possible only for complete graphs K, n> 2. Hence the theorem follows.

As an immediate consequence of Theorem 3.7 , we have the following result.
Corollary 3.8. Let G = (V,E) beagraphwith [V |=n and |E|=m. Then

NM,(G) < (n-1)>M,(G). @an

Equality holds if and only if G = K, n>2.
Proof. Follows from Lemma 1 and Theorem 3.7.
Before going for our next results, we define the following notions:
Definition 1. Let A'(G) and ¢'(G) denote the maximum and minimum
neighbourhood degree sum of a graph G, where

A(G) = max|Ss(vi)l, (18)

§(G) = min|Ss(v)l. (19)
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The following theorem gives the upper bound for NM, (G) in terms of order, size,
maximum and minimum neighbourhood degree sum of G.

Theorem 3.9. Let G be a graph of order n and size m with maximum(minimum)
neighbourhood degree A'(G)(8'(G)) respectively. Then

e ¢ MO (KO @) @
n 5'(G)  A'(G)

Proof. Let G be a graph with vertex set V ={v,Vv,,...,v,} and let
Se(v,),Sg(V,),...,Ss(v,) are the corresponding neighbourhood degrees of
vertices of G. We assume that a =1, b, =S,(v,), M, =M, =A'(G) and
m, =m, =5'(G) in Eq. (5) and by Eq. (16) we get

1 [AGY?  [5(G)
nNM,(G) < Z[\/&'(G) \/A(G)J [Z (V)j
w© = 5O IO iy
4| 5'(G) " A'(G)
m’(n-1)° ( A(G) , 5'(G) ?
n 5'(G)  A'(G)

as desired.

Theorem 3.10. Let G be a graph of order n and size m. Then
1in* 2 2 2
NM,(G) < — T(A (G)-9"(G))+4m"(n—-1)° |. (21)
n

Proof. The required inequality follows by setting a =1, b =S;(v.),
M, =M, =A'(G) and m, =m, =6'(G) in Eq. (6).

Theorem 3.11. Let G be a nontrivial graph of order n and size m. Then
a(n)(A'(G)-&'(G))? +4m*(n—1)?
n 1
where, ;) = nFJ(l_EFD. Further, equality holds if and only if G =K, , n>2.
2 ng2

NM,(G) <

Proof. Let a,,a,,...,a, and b, b,,...,b, be real numbers for which there exist real
constants a,b, A and B, so that for each i, i=1,2,...,n,a<a <A and
b <b < B . Then by Theorem 3.3, the following inequality is valid.

185



PROCEEDINGS OF 1AM, V.7, N.2, 2018

nzn;aibi —an:ai Zn;bi < a(n)(A-a)(B-b) (22)
Where, (n) = nEJ[l_%ED Equality holds if and only if a =a,=---=a, and
b =b,=--=h,.
We choose a, = S;(v;) =b,, A=A'(G)=B and a=6'(G) =b, Eg. (22), becomes
“an‘,se (v)* _(ZHISG (Vi)J2 <a(n)(A'(G)-s'(G))(A'(G)-4"(G)) (23)
) nI;\IMl(G) <a(n)(A'(G)-5'(G))? +4m?(n—1)2 (24)
AL () < ZAE) —5'«?)2 +4m?(n-1) 25)
The equality in above equation holds ifand only if &, =a, =---=a_,
b,=b,=---=Db, and Z S¢(v,) = 2m(n-1) . Therefore equality of the theorem
W&V (e)

holds ifand only if G=K_ , n>2.

Theorem 3.12. Let G be a nontrivial graph of order n and size m. Then
NM,(G) £ (0'(G)+A'(G))2m(n—-1)—nd'(G)A'(G). (26)
Equality holds ifand only if G=K_, n>2.

Proof. Let a,,a,,...,a, and b;,b,,...,b, be real numbers for which there exist real

constants I and R so that for each i, i =1,2,...,n holds ra, <b, <Ra,. Then
the following inequality is valid.

Zn:bf+rRZn:af < (r+R)Zn:aibi. (27)

i=1 i=1 i=1

Equality of (27) equation holds if and only if, for at least one i, 1<i<n holds
ra, =b, = Ra,.
We choose b =S, (v,), & =1, r=¢'(G) and R=A'(G) in Eq. (27), then

35 +F @MYL < (3(G)+AG)Y 5 (v)
NM, (G)+5'(G)A'(G)n < (5'(G)+A'(G))Zn:SG(Vi)

NM,(G) < (5'(G)+A'(G))2m(n-1)-n&'(G)A'(G).
If for some i, ra; =b, = Ra, holds, then b, =r =R also holds. Therefore
equality holds if and only if 6'(G) = A'(G) = 2m(n—1). This implies that G isa
complete graph K, n>2.
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4. First neighbourhood Zagreb index of some nanostructures

In this section, we obtain explicit formule for computing FNZI of line
graph of subdivision graphs of 2D-lattice, nanotube and nanotorus of

TUC,C,[p,q]. The proof technique used here is partitioning the edge set of
nanostructures. Here, we denote p,q respectively to denote order and size of the
underline molecular graph.

R g R
(@) (b)
Figure 4: (a) Subdivision graph of 2D-lattice of TUC,C,[4,3]; (b) line graph of
the subdivision graph of 2D-lattice of TUC,C,[4,3].

Table 3:0rder and Size of graphs
Graph Order Size

2D-Lattice of TUC,C,[ p,q] 4pq 6pg—p—q
TUC,C[ p,q] Nanotube 4pq 6pg—p
TUC,C,[p,q] Nonotorus 4pq 6pq

Table 4:Vertex partition Graph Awhen p>1,q>1
(dy(v).:SaV) | @4 | @259 (3.8) (3.9

Number of 4(p+g-2) 4(p+q-2) _Epn_
Vertices 8 2(6 P4—5p—5q-+ 4)

Table 5: Vertex partition Graph Awhen p>1,9=1

(ds(v),Sa(V) 24 | @59 (3. 8) (3.9)
Number of Vertices 8 4(p-1) 4(p-1) 2(p-1)

The following theorem gives the FNZI of line graph of the subdivision
graph of 2D -lattice of TUC,C;[p,q].

Theorem 4.1. Let A be a line graph of the subdivision graph of 2D -lattice of
TUC,Cy[p,q]. Then
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NM, (A) = 128+356(p+q—-2)+162(6pg—5p—-5q+4) if p>1,9>1,
"7 |128+518(p-1) if p>1,q=1.

Proof. The 2D -lattice of TUC,C,;[p,q] has 4pq vertices and 6pg—p—q
edges. The subdivision graph of 2D -lattice of TUC,Cy[p,q] has 10pg—p—q
vertices and 2(6 pq— p—q) edges. Thus, line graph of subdivision graph of 2D -
lattice of TUC,C,[ p,q] has vertices 2(6 pg— p—q) and 18 pg—5p—5q edges.

Therefore, we partition the vertex set of G into the following cases:
Case 1: when p>1and q>1.

From the Table 4, we see that the vertex partition is obtained based on the degree
sum of neighbour vertices of each vertex.

Now,
NM,(A) PMERO))
veV (G)

8x(4)° +4(p+q—2)x5*+4(p+q—2)x8 +2(6pq—5p—5q +4)x9*
162(6 pg—5p—-5q+4)+356(p+q-2)+128.
Case 2: when p>1and q=1.

The vertex partition is obtained on the base of the degree sum of neighbour vertices
is shown in Table 5.
Now,

NM,(A) = > (S.(v)

veV (G)
8x(4)* +4(p—-1)x5° +4(p-1)x8* +2(p—1)x9?
128+518(p-1).

Table 6:Vertex partition of Graph Bwhen p>1,q>1

(dg(v),S5(v) (2,5) (3.8) (3,9)
Number of Vertices 4p 4p 12pq-10p

Table 7:Vertex partition Graph Bwhen p>1,q=1

(dg (v),Sg (V) (2,5) (38) (3,9
Number of Vertices 4p 4p 2p
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(a) (b)
Figure 5: (a) Subdivision graph of TUC,C,[4,3] of nanotube; (b) line graph of the
subdivision graph of TUC,C;[4, 3] of nanotube.

The next theorem gives FNZI of line graph of the subdivision graph of
TUC,C,[ p,q] nanotube.
Theorem 4.2. If B be a line graph of the subdivision graph of TUC,C,[p,q]
nanotube, then
972pq-454pif p>1,9>1,
NMI(B):{ pq-454p if p>1.q

518p if p>1,q=1.

Proof. The TUC,C,[p,q] nanotube has 4pq vertices and 6pg— p edges. The
subdivision graph of TUC,C,[p,q] nanotube has 10pg— p vertices and
12pg—2p edges. Thus line graph of subdivision graph of TUC,C,[p,q]

nanotube has 12pg—2p vertices and 18pq—5p edges. Therefore, we can

partition the vertex set of G into the following cases:
Case 1: when p>1and q>1.

From the Table 6, we observe that the vertex partition is obtained based on the
degree sum of neighbour vertices of each vertex.
Now,

NM,(B) = X (Ss(v)’

veV (G)
= 4px5°+4px8° +(12pq-10p)x9?
= 972pq-454p.

Case 2: when p>1 and g =1, the vertex partition is obtained on the base of the

degree sum of neighbour vertices is shown in Table 7.
Now,
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NM, (B) =

> (Se (W)

veV (G)

4px5° +4px8° +2px9?
518p.

The following theorem gives FNZI of line graph of the subdivision graph of

TUC,C,[p,q] nanotorus.

(@)

(b)

Figure 6: (a) Subdivision graph of TUC,C,[4,3] of nanotorus; (b) line graph of
the subdivision graph of TUC,C,[4, 3] of nanotorus.

Table 8:Vertex p

artition of Graph C

(de (V). Sc (V)

3,9

Number of Vertices 12pq

Theorem 4.3. Let C be a line graph of the subdivision graph of TUC,C,[p,q] of

nanotorus. Then NM,(C) =972pq.

Proof. The subdivision graph of TUC,C,[p,q] of nanotorus and the graph C are

shown in Fig. 6 (a) and (b). The graph C is 3-regular with 12pq vertices.
Therefore, degree sum of each neighbour vertices is 9.

Now,
NM,(C) =

2 (Scw)’

veV (G)

190
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3. Conclusion

In this paper, we have introduced a novel topological index namely the
first neighbourhood Zagreb index (FNZI) in the field of mathematical chemistry, it
has chemical applicability in determining several physico-chemical properties of
octane isomers as it has coefficient of correlation close to 1, which is far better than
other indices. Next, we have studied mathematical properties of FNZI by obtaining
several bounds (both lower and upper). Finally, we have obtained explicit formulae
for FNZI of certain nanostructures.
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PE3IOME

OCHOBBIBasICh Ha XMMHYECKHX MPUMCHCHHSIX TOIMOJIOTMYECKUX WHACKCOB B aHAIIN3E
QSPR / QSAR, MBI BBOIUM HOBBI TOIOJOTHYECKHI MHIEKC, KOTOPBIA Ha3bIBaeM
Barpebckuii uHaekc nepsoi okpectHocTr (FNZI), n 06o3nagaem ero kak NMi1(G). B aroit
cratbe FNZI Tectupyercs ¢ GpU3NKO-XMMHYIECKIMA CBOMCTBAMH H30MEPOB OKTaHa, TAKUMHU
KaK DHTPOMWsI, aleHTpUYeckuit ¢akrop, sHTanbmus ucmapenus (HVAP) u DHVAP c
WCIIONBb30BaHUEeM THHEWHBIX Mojenell. FNZI mokaspiBaeT OTIHYIHYIO KOPPETSAIHIO C STUMHU
XUMHUYECKHUMHU CBOMCTBaMH. OCOOCHHO BBICOKAsI KOPPEISIHS C alleHTPHYECKUM (DaKTOpOM
(xoadpdurent xoppensuuu 0,994557). TMoszxe mbr momyudaem ouenku aast NMq(G) B
TEPMHUHAX MOPSAJKA M pa3Mepa UCXOTHOro rpada U ompenesseM 3KCTpeMajbHbBIC Tpadbl,
KOTOpPBIC JIOCTUTAIOT TpaHuil. HakoHen, B KadyecTBe MPUIIOKEHHs] MBI Bbrumcisiem FNZI
JNUHEHHBIX TpadoB mompasznenoB rpado 2D-pemieTkn, HAHOTPYOOK ¥ HAHOTOPA

TUC,Gqlp,ql-

KiwueBble cioBa: mepBblidi 3arpeOCKUil WHIEKC, MepBas OKPECTHOCTh 3arpe0dCcKoro
WHJCKCa, TUHEHHBIN Tpad, rpad moapa3aencHui.
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