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Abstract.In the paper a numerical approach to solving a system of three-point discrete
equations with non-separated boundary conditions is proposed.The formulas for the
solution of this problem are obtained and the algorithm for the application of the proposed
method is given. The results of numerical solution of the problem, illustrating the
effectiveness of the proposed method, are given.
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1. Introduction

In this paper, we investigate the numerical solution of a system with a large
number of independent three-point discrete equations with nonlocal boundary
conditions unshared.

Many well-known mathematical models of discrete dynamic models of
complex processes are obtained using the decomposition of complex objects into
simpler subobjects with known mathematical models, or subobjects for which it’s
easy to build them ([15,18,19]). It is assumed that the decomposition of complex
object carried out in such a way that the intermediate states of subobjects do not
affect each other, and the relationship between subobjects is only through the initial
and final states of the subobjects (see [7,11,14,20]). In reality, the subobjects
usually associated with an arbitrary, but a small number of other subobjects and,
therefore, the conditions defining the relationship between subobjectsare
characterized by poorly filled Jacobi matrices (see [4, 5]).

In practice, this kind of problems arise in the numerical study of discrete
models of complex processes in which their constituent sub-processes can be
described, in particular, by the difference equations. In the general (nodal) points of
the individual subobjects it’s impossible to measure the value of each state variable
subobject separately, but there are physical laws, which should satisfy the
parameter values at the nodal points, which leads to indivisibility of setting the
boundary conditions. In real life, such problems arise in the mathematical modeling
of complex systems in electric power, unsteady motion of the liquid and gas
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pipeline systems with looped structure, adsorption and desorption processes of
gases and others.

Direct use of the sweep method of boundary conditions for the solution of this
type of problem is not effective, since it is possible to significantly speed up their
decision, using the specific structure of condition setting.

In this paper a numerical approach based on the idea of the method of transfer
of boundary conditions ([1-3,6,9]) for solving systems of independent discrete
equations involving only the nodal points of the boundary conditions is proposed.
The formulae for the implementation of the transfer conditions and the results of
numerical experiments are obtained. As an illustration, consider the solution of the
model problem arising in finite difference approximations of partial differential
equations of hyperbolic type, which describes the motion of the fluid in the
pipeline of complex loopback structure.

2. Statement of the problem

Consider a system of independent discrete second-order equations describing
the complex discrete process (object), consisting of L mutually independent
discrete subprocesses (subobjects):

a'y"t +b7y +cty" =d*, i=2,..,N, -1 s=1,..,L. 1)

Here, the value y*' - defines the state of the s—process in the i—th discrete
moment i=1..,N_; s=1...,L; a%,b", c*, d* —given values, where a*,b%, c*
are nonzero values; N, —the number of steps of the s —thsubprocess.

Considered independent discrete equations are linked by unshared boundary

conditions of the form:
Zv'5y51+2v'5 2 = =1..,l, (2)

Zwls SN, 1+ZWIS SN, _R;,i:l,...,lz, (3)
or more generally

Zvlsysl+zv|sysz+zwls N, 1+ZW|5 Ny 1’“.,M (4)

In practlce, a settmg of und|V|ded boundary conditions both of the form (2),
(3) and the conditions of the mixed nature of (4) can be found, of much importance
is the fact that their total number in the assumption of their linear independence
should be equal 2L (i.e., I, +1,=2L=M).
The conditions (4) can be written in a more general form
Vlyl +V2y2 ‘*’\leNi1 +W2yN =R, (5)
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where we have introduced the following notations: V,, V,, W,, W, — defined
dimension matrices M xL, R=(R',...,R" ) —specified M —dimensional vector,
yl :(yll y21 yLl)* y2 :(y12 y22 yLZ)* yN—l :(lel—l

yN — (lel, y2N2 ,---,yLNL)* .
We assume that the problem is correct, i.e., solution is available and it is unique.

The relations (1) and (5) are mathematical models of many complex discrete
functioning objects, processes with lumped or distributed parameters ([1-6]). For
mathematical modeling of these processes has been used decomposition method for
temporal and /or spatial variables, i.e. partitioning the entire object into separate
subobjects whose function is independent from one another and can communicate
between their input and output states, i.e. by the conditions (5).

To the problems of the form (1), (5) can also be reduced boundary value
problems, described by a system of differential equations with ordinary or partial
derivatives, which are used for solving the finite difference methods ([12,16,17]).
In doing so, the system of equations consist of separate second order differential
equations, linked only by the initial and / or boundary conditions. For this kind of
boundary value problems leads, in particular, the study of the following tasks:
calculation of branched electrical circuit using Kirchhoff's laws, when the knots
and loops the circuit equates to the first and second Kirchhoff's law regarding the
current and the voltage drop; calculation of complex pipeline ring, which is also
produced using elektroanalogy Kirchhoff's laws, and for each node in a balance
sheet expenses, and for each ring (loop) - the balance of pressures ([10,13]). The
very process of motion on each linear section describes the hyperbolic system of
two partial differential equations of the first order ([8,13]). After application of the
method of lines for any of the variables of the problem data to the form (1), (5).

Among the features that characterize the mathematical models of many real
complex structure of large objects, you can specify the following: 1) a large
number of subobjects of L; 2) weak and arbitrary relationship between the
subobjects, i.e. weak and arbitrary filling of matrices V,, V,, W, , W, ; 3) longer

duration of operation, i.e. a large number of steps N.,s=1,...,L (individual for

each sub-process).
Features 1), 3) for real objects lead to the fact that the order of the algebraic

2N,-1

Y yeer Y

LNL—l)*
’

L
system (1), (5), equal to sz N, , may exceed several thousand, which does not

s=1
apply to their decision known numerical methods for solving systems of algebraic
equations. Feature 2) leads to an undivided boundary conditions, which makes it
necessary to use the methods of transfer of boundary conditions.
The aim of this work is to develop an efficient numerical method for solving a
system of independent discrete equations (1) with undivided boundary conditions
(5) with the specifications listed above. The method is based on an analog transfer
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method (sweep) conditions and reduced to solving a series of specially constructed
discrete Cauchy problems on individual equations of the system (1).

3. Numerical solution to the problem

The approach proposed to solve the problem in question, based on the transfer
of boundary conditions (5) in one end: to the left or right. This means that the
relation (4) or (5) are replaced by their equivalents relations in which there will be
no vectors y*, y?, when transferring conditions in the right end:

WyNt+ W,y =R (6)
more details can be Written as:
ZW'S N, l+ZW'S N = =1...M. (7
When transferring conditions in the left end there will be no vectors y"*, y"
V.y' +V,y? =R. (8)

These conditions can be written as:

Zv's 51+Zv'5 2 =R"i=1..,M. 9

After transferring condltlons in one end we obtain (6), (7) or (8), (9), which
constitute the system of M algebraic equations with unknowns y*, y* or y"*, y".
Solving these systems and determining y*,y? or y"*,y" solution of the task is

achieved by performing simple calculations based on explicit recurrence formulas
(Cauchy) with respect to certain discrete equations (1).

Selecting the direction of transport conditions (4) and (5) depends on the
degree of filling of the matrices V,, V,, W,, W, . Namely, when compared to the
matrices W,, W, , matrices V,, V, are less filled ,then the conditions should be

transferred to the right and vice versa. This rule will become apparent after the
following description of the migration process.

Transfer conditions (5), more precisely (4), will be carried out for each of the i —th
condition separately, i =1,...,M.

Thus, we consider an arbitrary i—th condition in (4), which after the transfer
to the right takes the form (7), where w°, Wy, R' —are yet unknown new
coefficients. Getting the conditions in the form (7) will be carried out in stages.

Suppose that among the coefficients vlis,vizs , s=1...,L, there are non-zero,
otherwise the i—th condition is not necessarily transformed, because in this

sNg-1

condition the only involved values are y™:™, y™: . Let the first nonzero coefficient
be vi* z00r v #0 , 1<k<L , v=0,vy =0, for s<Kk.
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Definition 1. We say that the values o', 2’ and B’, j=1...,N, carry out the
transfer of the i —th condition (4) with respect to k —th unknown y*' to the right
if for all vectors y*J satisfying the equation (1), we have the equalities

alyf 4 lyke g
L 4 s oson N s N s SN o . (10)
DY HvEY ) D Wy rwEy ™) (= 81, j=100N,
s=k+1 s=1
Itis clear that if j =1 the following equalities should be satisfied:
a' =V, I=vy, B =R. (11)

Values o', A and pB’', j=1..,N, satisfying (10), (11) will be called sweep
coefficients.
Substituting in (10) the values of the sweep coefficients, where j=N, , we obtain
new condition
L L L L -

DVEYT 4+ D vy Y WY Y Wy ™ =R i=1..,M,

s=k+1 s=k+1 s=1 s=1
where we use the following notations

W =W o™, W=w AN, W =wS, W = w,
s=1..L, s=k R =p".
The right-wing sweep factors ', 4’ g, producing the transfer conditions (4) to

the right, can be define in different ways. One of them is suggested in the
following theorem.
Theorem 1. Suppose that the values «',A' and p' define by the following

recurrent relations (discrete Cauchy problems):
it :_a/g ot :Vlik’ 2 :Vizk, j=1...N,

oVt = A+ Ap* (12)
B =d + B, B =R, j=1...,N,.
Then o', A', B’ are the right sweep coefficients for the i—th condition (4) with
respect to the k — solution of equation (1).
Proof.Let’s rewrite the system (1) in the form
¥yt by It 4yt =g | j=1..,N, -2, k=1...,L.

from here

y i =gk —pRykit gty (as ¢ =0) (13)
We use the method of mathematical induction.
When j =1, according to (10), (11) is equivalent to the i—condition (4).
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Suppose that ', A/, ' at any step j>1 satisfy the sweep conditions of i-th

condition concerning the solution of k —th equation of system (1), i.e., takes place
the following:

ajykj +A’jykj+l

+

- is,s is,s S is ., SN — is. s i . . (14)
+[z<v1y1+v2y2>+z<wlym1+w2yNs>}ﬂl, 1N,
s=k+1 s=1

Let’s define the values for sweep coefficients o', A", g for (j+1)— th
step:
L L
aj+lykj+l+ﬂfj+lykj+2+|:Z(V;Sy51+Vi25y52)+z(W;SySNS_1+W;SySNS):|Zﬂj+1- (15)
s=k+1 s=1

We take into account k — th equation of system (13) in (15):

aj+1ykj+1+ﬁj+1(d_kj_bkjykj+1_akjykj)+

L L
-I-[ Z(Vlisysl +Vi23y52)+2(wlisyst—1 +Wi25yst ):| =,Bj+l .
s=k+1 s=1

From this equation we subtract equation (14), and obtain after grouping the
following:
[ — A — 9]y 4 [-A74aY — gl ]y [ — AdY — 1]=0 Given  that
this equality must hold for all possible solutions of k —th equation of system (1),
we require from o', A7 g™ satisfy the equality to zero of the expressions in

square brackets. As a result, we obtain the necessary relations for sweep
coefficients in the form (12). The theorem is proved.
Having completed the procedure for replacing the values of the k—th

coefficient of the condition at y** and y** in the i—th condition with y*™and
y*" with the new values of the coefficients W™ and W;":, we obtain a new
condition equivalent to the i—th one. In this condition, there are no y** and y*?
values.

Next, we go to the following non-zero coefficients: v;°,v;, s>k, until the
conditions v;°=0, v; =0, s=1...,L are fulfilled. This means that the i—th

condition has been fully transferred to the right. Then the whole procedure is
performed for (i+1)-th term. If (i+1)>M, then all the conditions (4) are

transferred to the right and the result are the conditions of the form (3.1) or (3.2)
and equivalent to (4).

Conditions (6) and (7) represent a system of linear algebraic equations with
respect to the vectors y"*,y" e R", after solving of which, from (1) the desired

solution y= (yl,...,yN )*of the problem under consideration is determined.
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Similarly to the above procedure of transferring conditions in the right end, a
serial transfer is carried out in terms of the left end in order to obtain the conditions
(8) or (9), equivalent to (4).

Let in the i —th condition among the vectors w;*,w?,s=1,...,L, the first non-
zero vector is w = 0or wy #0,1<k<L,w°=0, wy =0, fors <Kk.

Definition 2. We say that the values «’,A'and B’, j=1..,N, carry out the
transfer of the i—th condition (4) with respect to the k —th unknown y*’ to the
left, if for all vectors y*’, satisfying the k —th equation of the system (1), we have

the equalities
kj+1

aly¥ + Ayt
y . 2y . Nt . . (15)
| D YT VYR + D Wy T R wsye) = B j=100N,
s=1 s=k+1
T T an

It is clear that (15) with j = N, match the i—th condition (4).
If @', A" and B', j=1...,N, are sweep coefficients, then from (15) at j=1
we get a new condition

zvlsy51+zvlsy52+ Zwls SN l+ ZWIS SNy __ 1 “1M

s=k+1 s=k+1

equwalent to the i —th one, and where the following notations are introduced
U =vE r ot U=V 4 A T =S TR =vE, s=1..L, s=k, R =4

This condition differs from the i—th condition (4) so that in its i—th part
there are no terms with y*™<*, y*"_Further, this procedure is repeated until there
is at least one coefficient w;*,w;, different from zero. After that, if i+1<M , the

transfer of the next  (i+1) -th condition is carried out. The left sweep factors
transferring i—th conditions to the left, can be determined from the following
theorem.

Theorem 2. Suppose that the magnitudes «’, A’ and ,Bj, j=1...,N, are defined
by the following recurrent relations (discrete Cauchy problems):

051'71:_}&E ANkzwizk, J=N,-LN,-2..1

At =gl 4o o™ =w, (18)
ﬂj—l :aj—lﬁ_ﬂhlyﬂm -R', J _ Nk -1 Nk -2,..1.
Then o', AM'and B’ are left sweep coefficients for the i—th condition (4) with

respect to the solution y*“ of the k — th equation of the system (1).
The proof is similar to the above proof of Theorem 1.
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The very process of bringing all the conditions (4) and (5) to (8), (9) due to the
transfer of values y*"*, y*™ to the left end is similar to the process described
above transfer conditions to the right. After the end of the transfer process we get a
system of algebraic equations M for the vectors y*,y*. Solving this system, a

recurrent calculation for required solutions y** of system (1) is carried out from
left to right, s=1,...,N,,k=1,...,L.

4. The results of numerical experiments

Consider the system of independent discrete equations consisting of five
subsystems (L=5, N =201 s=1...5):
160400y —320000y" +159600/™"*" = —-0,02i —2e*** +2 , i =2,...,200,
159400y*"* —320000y* +160600y>"** = —3,5*"*' +9—c0s(0,005) —3sin(0,005)
320200y*'* —640000y* +319800y*"*" =1, (19)
160200y*'* —320000y* +159800y*'"* =1—0,5***" —ih ,
160200y>'"* —320000y* +159800y>"** =0,01i —0,5e***' —0,25x10*i?

with the following ten unshared conditions, including the condition in the initial
and final points:

y"t+y* +y* =0, (20)
yr -yt yt -y =0, (21)
y?Z —y* 4yt —y*?2 =0, (22)

ia 29)
S (24)

YN gy st 6@—}/, (25)
y3,N3 _ y3,N3—1 _ ySst + y5st—1 =0, (26)
YNy Nl st ysNel g (27)
P rae, @9

y>Ne =3-2e +cos(l) . (29)

It is easy to verify that the solution of the problem (19) - (29) up 10 is a
vector whose components are defined as follows

y" =0,25x107 (i —1)* + 2e>*%(D _2,
y*' =0,015(i —1) — 2e>**(Y 4 cos(0,005(i —1)),
y*' =0,005(i —1) +2e>*0 1, (30)
y* =0125x107* (i —1)* + 20D 1 2,
y*' =0125x10°(i —1)° + 2e°%% _3,
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Note that the system of equations (19) and (20) - (29) are obtained by
simulation of finite difference approximations with partial differential equations of
hyperbolic type, which describes the motion of the fluid in the pipe network.

System (19) determines the driving mode only in the first layer at discrete
time points of the pipeline sections. All portions have equal lengths and divided
into 200 portions.Conditions (20) and (25) define the law of the material balance at
the nodal points of the network, the conditions (21) and (22), (26) and (27) -
characterize the condition of continuity of the flow (equal pressure at the end
portions adjacent to the node) The conditions (23) and (24), (28) and (29)
determine the modes of external sources (the value of inflow and outflow of raw
materials through source).

Given an equal number of non-zero coefficients at y** and y*" in the terms
(20) - (29), the direction of transport conditions does’t matter.

As a result of the transfer conditions (20) - (24) the right conditions were

obtained in the form of an algebraic system (6), ten-dimentional matrices W~1 and

VVZ which are presented in Tables 1 and 2, and the right side — vector R had the
form:
R*=[0.00359.72570.0 0.0 0.0050-0.0706 4.4366 0.2429 0.0324 - 0.0082.

Solving the resulting system of equations by Gauss with a choice of main member,
was found the following vector

y" =(4.3998 4.4366 0.2403 0.2429 3.2771 3.2903 5.7886 5.8018 0.6203 0.6336)".
Using this vector, recurrent calculations were carried out to find
y*,  i=2011, s=15 from the subsystems of the system (19). Accuracy of the
results did not exceed

msaxmiaxlAySi <107 .

Table 1. Elements of matri(:eVV1 of system 3.1.

1 2 3 4 5
i
1 -0.5501 -8.1103 -1 0 0
2 0.2231 0 -1 0 0
3 0 33.1173 -1 0 0
4 0 0 0 1 0
5 0 0 0 0 1
6 0 0 0 0 0
7 0 0 -1 0 1
8 0 0 0 -1 1
9 0 0 0 0 0
10 |0 0 0 0 0
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Table 2. Elements of matrice\/\~/2 of system 3.1.

1 2 3 4 5
i
1 0.5438 8.1040 09936 |0 0
2 -0.2231 0 1 0 0
3 0 -33.1173 1 0 0
4 0 0 0 -0.9921 |0
5 0 0 0 0 -0.9921
6 0 0 1 1 1
7 0 0 1 0 -1
8 0 0 0 1 -1
9 1 0 0 0 0
10 |0 1 0 0 0

5. Conclusions

In this paper we consider the solution of systems of independent three-point
difference equations of large dimension with "weak™ and arbitrary connections
between the individual equations, leading to indivisibility of defining the boundary
conditions, and the matrix of the coupling conditions among the equations has
sparse Jacobian. We have to solve such kind of systems repeatedly when
optimizing the parameters of the objects of complex structure or when discretizing
optimal control problems for processes described by ordinary or partial differential
equations of second order. We have derived schemes and the corresponding
formulas based on the idea of the conditions transfer method, which takes into
account the characteristic features of the system’s Jacobi matrix.

Numerical results obtained in solving the problem on the calculation mode of
unsteady flow of fluid in the pipe network loopback complex structure, to which is
applied the implicit scheme of finite difference method.
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Ayrilmayan sarhad sartli iic néqtsli diskret bir-birindan asili olmayan
tonliklor sisteminin adadi halli

C.O. Osadova
XULASO

Isdo ayrilmayan sorhad sortlorino malik ii¢ noqtoli diskret tonliklor sisteminin hallino
adadi yanasma toklif edilmisdir. Bu masalonin holli ii¢lin diisturlar alinmis vo toklif edilon
isulun totbiqi G¢ilin alqoritm verilmisdir. Masalonin adadi hoallinin naticalori verilmisdir ki,
bu da toklif edilon isulun effektivliyini gostorir.

Acar sozlar: diskret tonliklor sistemi, decompozisiya, ayrilmayan sorhad sortlori,
sorhad sortinin ko¢iiriilmasi.

YucjaenHoe pemieHrue CUCTEMbI HE3ABMCUMBbIX TPEXTOYECIHBIX
AUCKPETHBIX ypaBHe}mifl C HEPpa3aCJCHHbIMU I'PAHUYHBIMH YCJIOBUAMU

J.A. AcagoBa
PE3IOME

B pabote mpemioskeH YHCICHHBIM TMOAXOM K PEIICHHIO IHCKPETHBIX YpaBHEHUHA
BTOPOTO TOPSAKA C HEpas3lIeICHHBIMH KPaeBBHIMH YCIOBHAMHU. [lomydeHbl QOpMynBl UIs
pelIeHns 3TOH 3a7aqil U MPUBOJUTCS allTOPUTM IS IPAMEHEHUS MPeIaraeMoro MeTo/a.
[IpuBomsATcs  pe3yapTaThl  YUCIEHHOTO  peHIeHHs]  3aJaud,  WUIIOCTPUPYIOIIHE
3¢ (HEKTHBHOCTH MpeIaraeMoro Mmoaxo/a.

KiroueBble  cioBa:  CUCTEMBl  JUCKPETHBIX  YpPaBHEHUH,  JIEKOMIIO3ULUA,
HEPA3ACICHHBIC TPAHUYHBIC YCIIOBUA, IIEPEHOC KPACBBIX yCJ'IOBI/II\/’I.
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