Abstract. The purpose of this paper is to prove some common fixed point theorems for four self maps in complete 2-metric spaces by employing the notion of weakly compatible mappings. Our results extend and generalize the results of Iseki (Fixed point theorems in 2-metric spaces, Math Seminar Notes, Kobe Uni. 3, 1975, 133 - 136) and several other authors.

Keywords: Fixed point, 2-metric space, weakly compatible, contractive modulus.

AMS Subject Classification: 54H25, 47H10.

1. Introduction

Fixed point theory has many applications, including variational and linear inequalities, optimization, approximation theory and minimum norm problem. Banach [1] proved the famous and well known Banach contraction principle concerning the fixed point of contraction mappings defined on a complete metric space. This theorem has been generalized and extended by many authors (see: [7, 8]).

In 1963, Gahler [5] introduced the generalization of metric space and called it 2-metric space. Let X be a set consisting at least three points. 2-metric on X is a function $\rho : X \times X \times X \rightarrow IR^+$ which satisfies the following conditions:

1. To each pair of points $a, b \in X$ with $a \neq b$, there exists a point $c \in X$ such that $\rho(a, b, c) \neq 0$;
2. $\rho(a, b, c) = 0$, when at least two of points are equal;
3. $\rho(a, b, c) = \rho(b, c, a) = \rho(c, a, b), \forall a, b, c \in X$
4. $\rho(a, b, c) \leq \rho(a, b, d) + \rho(a, d, c) + \rho(d, b, c), \forall a, b, c, d \in X$.

Here the 2 metric $\rho(x, y, z)$ represents the area of triangle spanned by x, y, z Examples of 2-metric space are:

Example 1. [5] A circle in the Euclidean space R^2 is a 2-metric space.

Example 2. [5] Define d on $R^+ \times R^+ \times R^+$ as
Fixed Point Theory in 2-metric space has been proved initially by Iseki [9]. After that several authors ([12, 19, 22]) proved fixed point results in the setting of 2-metric space.

In 1992, Murthy [17] used compatible type mapping to prove fixed point results which is more general than commuting and semi-commuting maps.

After that in 1978, Khan [13] proved a result by taking a uniformly convergent sequence of 2-metrics in \(X \).

In 1977, Fisher [3] proved the following result in metric space:

Theorem 1. [3] Let \(f \) be a self map on complete metric space \((X, \rho)\) such that

\[
\rho^2(fx, fy) \leq \alpha \rho(x, fx) \rho(y, fy) - \beta \rho(x, fy) \rho(y, fx), \quad \forall x, y \in X
\]

and for some nonnegative constants \(\alpha, \beta \) with \(\alpha < 1 \). Then \(f \) has a fixed point in \(X \).

Moreover, if further \(\beta < 1 \), then \(f \) has a unique fixed point in \(X \).

Further, in 1989, Bijendra [2] introduced the concept of semi-compatibility in 2-metric space and prove some fixed point results which improves the results of Kang et al. [12]. Also, Gupta et al. [21], [20] proved a result by using the concept of weak compatibility and property \(\alpha \). Gupta [6] in 2012, proved fixed point results using A-contraction in the setting of 2-metric space.

In 2011, Mehta et al. [16] proved fixed point result using weakly contractive condition and contractive modulus property in the setting of metric space. Also in 2014, Gupta et al. [11] showed result employing the same property in complete metric space.

In this paper, we prove a common fixed point result for four mappings by using weakly compatible property and contractive modulus.

2. Preliminaries

Definition 1. [9] A sequence \(\{x_n\} \) said to be a Cauchy sequence in 2-metric space \(X \), if for each \(a \in X \) there exists \(n_0 \in X \), \(\lim_{n,m \to \infty} d(x_n, x_m, a) = 0 \), \(\forall n, m \geq n_0 \).

Definition 2. [9] A sequence \(\{x_n\} \) in 2-metric space \(X \) is convergent to an element \(x \in X \), if for each \(a \in X \), \(\lim_{n \to \infty} d(x_n, x, a) = 0 \).

Definition 3. [9] A complete 2-metric space is one in which every Cauchy sequence in \(X \) converges to an element of \(X \).
Definition 4. [4] Let \(A \) and \(S \) be self mappings on a 2-metric space then, \(A \) and \(S \) are said to be weakly compatible if they commute at their coincidence point. i.e. if \(Ax = Sx \) for some \(x \in X \), then \(ASx = SAx \).

Definition-5. [18] Two self maps \(f \) and \(g \) of a 2-metric space \((X, d)\) are called compatible if

\[
\lim_{n \to \infty} d(fgx_n, gfx_n, a) = 0 \quad \text{whenever} \quad \{x_n\} \quad \text{is a sequence in} \quad X
\]
such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t \) for some \(t \in X \).

Definition-6. [18] Two self maps \(f \) and \(g \) of a 2-metric space \((X, d)\) are called non compatible if \(\exists \) at least one sequence \(\{x_n\} \) such that \(\lim_{n \to \infty} fx_n = \lim_{n \to \infty} gx_n = t \) for some \(t \in X \). But \(\lim_{n \to \infty} d(fgx_n, gfx_n, a) \) is either non zero or non – existent.

Definition-7. [4] Two self maps \(f \) and \(g \) are said to be commuting if

\[
fgx = gfx \quad \forall x \in X.
\]

Definition-8. [4] Let \(f \) and \(g \) be two self maps on a set \(X \), if \(fx = gx \quad \forall x \in X \), then \(x \) is called coincidence point of \(f \) and \(g \).

Definition-9. [16] A function \(\phi : [0, \infty) \to [0, \infty) \) is said to be contractive modulus if \(\phi(t) < t \), for \(t > 0 \).

3. Main result

Theorem 2. Let \(F, G, S \) and \(T \) be four self mappings on 2-metric space \((X, d)\) satisfying the following conditions:

1. The pair \((F, S)\) and \((G, T)\) are weakly compatible,
2. \(F(X) \subseteq T(X) \) and \(G(X) \subseteq S(X) \) are closed subset of \(X \),
3. \(\phi(t) \leq \phi[\min\{d(Sx, Ty, t), d(Fx, Sx, t), d(Gy, Ty, t), d(Fx, Ty, t), d(Sx, Gy, t)\}] \)

where \(\phi \) is a contractive modulus.

Then the maps \(F, G, S \) and \(T \) have a unique common fixed point in \(X \).

Proof. Let \(\{y_n\} \) be a sequence in \(X \) such that \(y_n = Fx_n = Tx_{n+1} \)

and \(y_{n+1} = Gx_{n+1} = Sx_{n+2} \), by (3)

\[
d(y_n, y_{n+1}, t) = d(Fx_n, Gx_{n+1}, t)
\]

\[
\leq \phi[\min\{d(Sx_n, Tx_{n+1}, t), d(Fx_n, Sx_{n+1}, t), d(Gx_{n+1}, Tx_n, t), d(Fx_n, Tx_{n+1}, t), d(Sx_n, Gx_{n+1}, t)\}]
\]

\[
\leq \phi[\min\{d(y_n, y_{n-1}, t), d(y_n, y_{n-1}, t), d(y_{n+1}, y_n, t), d(y_n, y_{n+1}, t), d(y_{n-1}, y_{n+1}, t)\}]
\]

Thus \(d(y_n, y_{n+1}, t) \leq \phi[\min\{d(y_n, y_{n-1}, t)\}] \).
But \(\phi \) is a contractive module therefore \(\phi(d(y_n, y_{n+1}, t)) < d(y_n, y_{n+1}, t) \) and this is possible only if \(\lim_{n \to \infty} d(y_n, y_{n+1}, t) = 0 \).

Now we show that \(\{y_n\} \) is a Cauchy sequence in \(X \). If not \(\exists \varepsilon > 0 \) such that \(m < n < N, d(y_n, y_m, t) \geq \varepsilon \), but \(d(y_{n-1}, y_m, t) < \varepsilon \) and \(\varepsilon \leq d(y_{n-1}, y_m, t) = d(F_{x_m}, G_{x_n}, t) \)
\[
\leq \phi[\min\{d(S_{x_n}, T_{x_n}, t), d(F_{x_n}, S_{x_n}, t), d(G_{x_n}, T_{x_n}, t), d(F_{x_n}, T_{x_n}, t), d(S_{x_n}, G_{x_n}, t)\}]
\leq \phi[\min\{d(Y_{n-1}, Y_{n-1}, t), d(Y_{n-1}, Y_{n-1}, t), d(y_{n-1}, y_{n-1}, t), d(y_{n-1}, y_{n-1}, t), d(y_{n-1}, y_{n-1}, t)\}]
\leq \phi[\min\{\varepsilon, \varepsilon, 0, \varepsilon, \varepsilon\}] \text{. This gives } \varepsilon \leq \phi(\varepsilon) \text{.}
\]

But \(\phi \) is a contractive module therefore \(\phi(\varepsilon) < \varepsilon \), from this one can get \(\varepsilon < \varepsilon \), this is a contradiction, hence \(\{y_n\} \) is a Cauchy sequence. Since \(X \) is complete there exists a point \(z \) in \(X \) such that \(\lim_{n \to \infty} y_n = z \), this gives
\[
\lim_{n \to \infty} G_{x_n} = \lim_{n \to \infty} S_{x_n} = z = \lim_{n \to \infty} F_{x_n} = \lim_{n \to \infty} T_n \text{. Since } F(X) \subseteq T(X), \exists \text{ a point } \alpha \in X \text{ s.t. } z = T\alpha.
\]

If \(z \neq G\alpha \), using (3) we get \(d(G\alpha, z, t) = d(G\alpha, F_{x_n}, t) \)
\[
\leq \phi[\min\{d(S_{x_n}, T_{x_n}, t), d(F_{x_n}, S_{x_n}, t), d(G\alpha, T\alpha, t), d(F_{x_n}, T\alpha, t), d(S_{x_n}, G\alpha, t)\}]
\leq \phi[\min\{d(z, z, t), d(z, z, t), d(G\alpha, z, t), d(z, z, t), d(z, G\alpha, t)\} \leq \phi[d(G\alpha, z, t)] \text{.}
\]

This implies \(d(G\alpha, z, t) \leq \phi[d(G\alpha, z, t)] \). But \(\phi \) is a contractive modulus, this gives \(\phi[d(G\alpha, z, t)] < d(G\alpha, z, t) \), this is a contradiction. Thus \(G\alpha = z = T\alpha \).

Thus, \(\alpha \) is a co-occurrence point of \(G \) and \(T \) and \((G, T) \) is weakly compatible, we get, \(GT\alpha = TG\alpha \Rightarrow Gz = Tz \). Now \(G(X) \subseteq S(X) \) therefore there exists a point \(w \in X \) s.t. \(Sw = z \) if \(Fw \neq z \).

Using (3), \(d(Fw, z, t) = d(G\alpha, Fw, t) \)
\[
\leq \phi[\min\{d(Sw, T\alpha, t), d(Fw, Sw, t), d(G\alpha, T\alpha, t), d(Fw, T\alpha, t), d(Sw, G\alpha, t)\}]
\leq \phi[\min\{d(z, z, t), d(Fw, z, t), d(z, z, t), d(Fw, z, t), d(z, z, t) \leq \phi[d(Fw, z, t)] \text{,}
\]

this gives \(d(Fw, z, t) \leq \phi[d(Fw, z, t)] \).

But \(\phi \) is a contractive modulus therefore \(\phi[d(Fz, z, t)] < d(Fz, z, t) \) this is a contradiction.

So \(Fw = z = Sw \), hence \(w \) is a co-occurrence point of \(F \) and \(S \). Since \((F, S) \) is weakly compatible therefore \(FSw = SFw \Rightarrow Fz = Sz \).

Now if \(Fz \neq z \) then by using (3) we can get,
\[
d(Fz, z, t) = d(Fz, G\alpha, t)
\leq \phi[\min\{d(Sz, T\alpha, t), d(Fz, Sz, t), d(G\alpha, T\alpha, t), d(Fz, T\alpha, t), d(Sz, G\alpha, t)\}]
\leq \phi[\min\{d(Sz, z, t), d(Fz, Sz, t), d(z, z, t), d(z, z, t), d(Sz, z, t)\}].
\]
Since $Fz = Sz$, therefore $d(Fz, z, t) \leq \phi[d(Fz, z, t)]$. Also ϕ is a contractive modulus. Thus $\phi[d(Fz, z, t)] < d(Fz, z, t)$. This is a contradiction. Hence $Fz = Sz = z$. Now if $Gz \neq z$ then by using (3), we get $d(z, Gz, t) = d(Fz, Gz, t)$
\[\leq \phi[\min\{d(Sz, Tz, t), d(Fz, Sz, t), d(Gz, Tz, t), d(Fz, Tz, t), d(Sz, Gz, t)\}] \]
\[\leq \phi[\min\{d(z, Tz, t), d(z, z, t), d(Gz, Tz, t), d(z, Tz, t), d(z, Gz, t)\}] \]
And $Gz = Tz \Rightarrow d(z, Gz, t) \leq \phi[d(z, Gz, t)]$ and ϕ is a contractive modulus, therefore $\phi[d(z, Gz, t)] < d(z, Gz, t)$, which is a contradiction. So $Gz = z = Tz$, hence we have $Gz = Tz = Fz = Sz = z$.

Hence F, S, T, G have a common fixed point in X.

Now we prove uniqueness.
Let there be another point say w s.t. $w \neq z$, then by (3)
\[d(Fz, Gw, t) \leq \phi[\min\{d(Sz, Tw, t), d(Fz, Sz, t), d(Gw, Tw, t), d(Fz, Tw, t), d(Sz, Gw, t)\}] \]
\[d(z, w, t) \leq \phi[\min\{d(z, w, t), d(z, z, t), d(w, w, t), d(z, w, t), d(z, w, t)\}] \]
\[\Rightarrow d(z, w, t) \leq \phi[d(z, w, t)] \]
Since ϕ is a contractive modulus, we get $\Rightarrow \phi[d(z, w, t)] < d(z, w, t)$, which is a contradiction.

Therefore fixed points are unique. This proves the Theorem 2.1.

Corollary 1. Let F, G, S and T be four self mappings of a 2-metric space (X, d) satisfying the following conditions:
1. The pairs (F, S) and (G, T) are weakly compatible.
2. $\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Gy_n = \lim_{n \to \infty} Ty_n = z$ for some z in X.
3. $d(Fx, Gy, t) \leq \phi[\min\{d(Sx, Ty, t), d(Fx, Sx, t), d(Gy, Ty, t), d(Fx, Ty, t), d(Sx, Gy, t)\}]$,

where ϕ is a contractive modulus. Then the maps F, G, S and T have a unique common fixed point in X.

Proof. Using condition (2), since $\lim_{n \to \infty} Fx_n = \lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Gy_n = \lim_{n \to \infty} Ty_n = z$ for some z in X since $\lim_{n \to \infty} Ty_n = z$ then there exists a point $\alpha \in X$ s.t. $z = T\alpha$, refers this to the proof of theorem 3.1, we have corollary 1.

References

2-ölçülü metrik fəzalarda tərpənməz nöqtə haqqında vahid ümumi teorem

Navin Gulati, Vişal Gupta, Ravinder Kumar, Sima Devi

XÜLASƏ

Bu işin məqsədi 2 ölçülü metrik fəzalarda zəif uyuşan inikas anlayışından istifadə etmək, 4 ayrı misal üçün tərpənməz nöqtə haqqında bəzi teoremlərin isbat edilməsidir. Bu nəzətələr Iseki və digar bəzi müəlliflərin nəticələrini genişləndirir və əməliyyatlı və əməliyyatlıdır.

Açar sözlər: tərpənməz nöqtə, 2 ölçülü metrik fəzalar, zəif uyğunluq, sıxılan modullar

Единая общая теорема о неподвижной точке в 2-мерном метрическом пространстве

Нэвин Гулати, Вишал Гупта, Равиндер Кумар, Сима Деви

РЕЗЮМЕ

Целью данной работы является доказать некоторые общие теоремы о неподвижной точке для четырех самостоятельных примеров в 2-мерном метрическом пространстве с использованием понятие слабо совместимых отображений. Наши результаты расширяют и обобщают результаты Iseki и ряда других авторов.

Ключевые слова: неподвижная точка, 2-мерное метрическое пространство, слабо совместимость, сжимающие модули.